1. Large eddy simulation of cough jet dynamics, droplet transport, and inhalability over a ten minute exposure.
- Author
-
Calmet H, Inthavong K, Both A, Surapaneni A, Mira D, Egukitza B, and Houzeaux G
- Abstract
High fidelity simulations of expiratory events such as coughing provide the opportunity to predict the fate of the droplets from the turbulent jet cloud produced from a cough. It is well established that droplets carrying infectious pathogens with diameters of 1 - 5 μ m remain suspended in the air for several hours and transported by the air currents over considerable distances (e.g., in meters). This study used a highly resolved mesh to capture the multiphase turbulent buoyant cloud with suspended droplets produced by a cough. The cough droplets' dispersion was subjected to thermal gradients and evaporation and allowed to disperse between two humans standing 2 m apart. A nasal cavity anatomy was included inside the second human to determine the inhaled droplets. Three diameter ranges characterized the droplet cloud, < 5 μ m , which made up 93% of all droplets by number; 5 to 100 μ m comprised 3%, and > 100 μ m comprising 4%. The results demonstrated the temporal evolution of the cough event, where a jet is first formed, followed by a thermally driven puff cloud with the latter primarily composed of droplets under 5 μ m diameter, moving with a vortex string structure. After the initial cough, the data were interpolated onto a more coarse mesh to allow the simulation to cover ten minutes, equivalent to 150 breathing cycles. We observe that the critical diameter size susceptible to inhalation was 0.5 μ m , although most inhaled droplets after 10 min by the second human were approximately 0.8 μ m . These observations offer insight into the risk of airborne transmission and numerical metrics for modeling and risk assessment., (© 2021 Author(s).)
- Published
- 2021
- Full Text
- View/download PDF