1. Revisiting the BE99 method for the study of outflowing gas in protostellar jets
- Author
-
Sperling, T. and Eislöffel, J.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
An established method measuring the hydrogen ionisation fraction in shock excited gas is the BE99 method, which utilises six bright forbidden emission lines of [SII]6716, 6731, [NII]6548, 6583, and [OI]6300, 6363. We aim to extent the BE99 method by including more emission lines in the blue and near-infrared part of the spectrum ($\lambda$ = 3500-11000A), and considering higher hydrogen ionisation fractions ($x_e > 0.3$). In addition, we investigate how a non-equilibrium state of the gas and the presence of extinction influence the BE99 technique. We find that plenty additional emission line ratios can in principle be exploited as extended curves (or stripes) in the ($x_e, T_e$)-diagram. If the BE99 equilibrium is reached and extinction is corrected for, all stripes overlap in one location in the ($x_e, T_e$)-diagram indicating the existing gas parameters. The application to the Par Lup 3-4 outflow shows that the classical BE99 lines together with the [NI]5198+5200 lines do not meet in one locationin the ($x_e, T_e$)-diagram. This indicates that the gas parameters derived from the classical BE99 method are not fully consistent with other observed line ratios. A multi-line approach is necessary to determine the gas parameters. From our analysis we derive $n_e \sim$ 45 000 cm^-3 - 53000 cm^-3 , $T_e$ = 7600K - 8000K, and $x_e \sim$ 0.027 - 0.036 for the Par Lup 3-4 outflow. For the 244-440 Proplyd we were able to use the line ratios of [SII]6716+6731, [OI]6300+6363, and [OII]7320, 7330 in the BE99 diagram to estimate the ionisation fraction at knot E3 ($x_e = 0.58 \pm 0.05$). In conclusion, exploiting new line ratios reveals more insights on the state of the gas. Our analysis indicates, however, that a multi-line approach is more robust in deriving gas parameters, especially for high density gas., Comment: 12 pages, 10 figures, accepted to A&A
- Published
- 2024