7 results on '"Embree, Amanda"'
Search Results
2. A community effort in SARS‐CoV‐2 drug discovery
- Author
-
Schimunek, Johannes, primary, Seidl, Philipp, additional, Elez, Katarina, additional, Hempel, Tim, additional, Le, Tuan, additional, Noé, Frank, additional, Olsson, Simon, additional, Raich, Lluís, additional, Winter, Robin, additional, Gokcan, Hatice, additional, Gusev, Filipp, additional, Gutkin, Evgeny M., additional, Isayev, Olexandr, additional, Kurnikova, Maria G., additional, Narangoda, Chamali H., additional, Zubatyuk, Roman, additional, Bosko, Ivan P., additional, Furs, Konstantin V., additional, Karpenko, Anna D., additional, Kornoushenko, Yury V., additional, Shuldau, Mikita, additional, Yushkevich, Artsemi, additional, Benabderrahmane, Mohammed, additional, Bousquet-Melou, Patrick, additional, Bureau, Ronan, additional, Charton, Beatrice, additional, Cirou, Bertrand, additional, Gil, Gérard, additional, Allen, William J., additional, Sirimulla, Suman, additional, Watowich, Stanley, additional, Antonopoulos, Nick, additional, Epitropakis, Nikolaos, additional, Krasoulis, Agamemnon, additional, Pitsikalis, Vassilis, additional, Theodorakis, Stavros, additional, Kozlovskii, Igor, additional, Maliutin, Anton, additional, Medvedev, Alexander, additional, Popov, Petr, additional, Zaretckii, Mark, additional, Eghbal-zadeh, Hamid, additional, Halmich, Christina, additional, Hochreiter, Sepp, additional, Mayr, Andreas, additional, Ruch, Peter, additional, Widrich, Michael, additional, Berenger, Francois, additional, Kumar, Ashutosh, additional, Yamanishi, Yoshihiro, additional, Zhang, Kam, additional, Bengio, Emmanuel, additional, Bengio, Yoshua, additional, Jain, Moksh, additional, Korablyov, Maksym, additional, Liu, Cheng-Hao, additional, Gilles, Marcous, additional, Glaab, Enrico, additional, Barnsley, Kelly, additional, Iyengar, Suhasini M., additional, Ondrechen, Mary Jo, additional, Haupt, V. Joachim, additional, Kaiser, Florian, additional, Schroeder, Michael, additional, Pugliese, Luisa, additional, Albani, Simone, additional, Athanasiou, Christina, additional, Beccari, Andrea, additional, Carloni, Paolo, additional, D'Arrigo, Giulia, additional, Gianquinto, Eleonora, additional, Goßen, Jonas, additional, Hanke, Anton, additional, Joseph, Benjamin P., additional, Kokh, Daria B., additional, Kovachka, Sandra, additional, Manelfi, Candida, additional, Mukherjee, Goutam, additional, Muñiz-Chicharro, Abraham, additional, Musiani, Francesco, additional, Nunes-Alves, Ariane, additional, Paiardi, Giulia, additional, Rossetti, Giulia, additional, Sadiq, S. Kashif, additional, Spyrakis, Francesca, additional, Talarico, Carmine, additional, Tsengenes, Alexandros, additional, Wade, Rebecca, additional, Copeland, Conner, additional, Gaiser, Jeremiah, additional, Olson, Daniel R., additional, Roy, Amitava, additional, Venkatraman, Vishwesh, additional, Wheeler, Travis J., additional, Arthanari, Haribabu, additional, Blaschitz, Klara, additional, Cespugli, Marco, additional, Durmaz, Vedat, additional, Fackeldey, Konstantin, additional, Fischer, Patrick D., additional, Gorgulla, Christoph, additional, Gruber, Christian, additional, Gruber, Karl, additional, Hetmann, Michael, additional, Kinney, Jamie E., additional, Das, Krishna M. Padmanabha, additional, Pandita, Shreya, additional, Singh, Amit, additional, Steinkellner, Georg, additional, Tesseyre, Guilhem, additional, Wagner, Gerhard, additional, Wang, Zi-Fu, additional, Yust, Ryan J., additional, Druzhilovskiy, Dmitry S., additional, Filimonov, Dmitry, additional, Pogodin, Pavel V., additional, Poroikov, Vladimir, additional, Rudik, Anastassia V., additional, Stolbov, Leonid A., additional, Veselovsky, Alexander V., additional, De Rosa, Maria, additional, Simone, Giada De, additional, Gulotta, Maria R., additional, Lombino, Jessica, additional, Mekni, Nedra, additional, Perricone, Ugo, additional, Casini, Arturo, additional, Embree, Amanda, additional, Gordon, D. Benjamin, additional, Lei, David, additional, Pratt, Katelin, additional, Voigt, Christopher A., additional, Chen, Kuang-Yu, additional, Jacob, Yves, additional, Krischuns, Tim, additional, Lafaye, Pierre, additional, Zettor, Agnès, additional, Rodríguez, M. Luis, additional, White, Kris M., additional, Fearon, Daren, additional, von Delft, Frank, additional, Walsh, Martin A., additional, Horvath, Dragos, additional, Brooks, Charles L., additional, Falsafi, Babak, additional, Ford, Bryan, additional, García-Sastre, Adolfo, additional, Lee, Sang Yup, additional, Naffakh, Nadia, additional, Varnek, Alexandre, additional, Klambauer, Guenter, additional, and Hermans, Thomas M., additional
- Published
- 2023
- Full Text
- View/download PDF
3. A community effort to discover small molecule SARS-CoV-2 inhibitors
- Author
-
Schimunek, Johannes, primary, Seidl, Philipp, additional, Elez, Katarina, additional, Hempel, Tim, additional, Le, Tuan, additional, Noé, Frank, additional, Olsson, Simon, additional, Raich, Lluís, additional, Winter, Robin, additional, Gokcan, Hatice, additional, Gusev, Filipp, additional, Gutkin, Evgeny M., additional, Isayev, Olexandr, additional, Kurnikova, Maria G., additional, Narangoda, Chamali H., additional, Zubatyuk, Roman, additional, Bosko, Ivan P., additional, Furs, Konstantin V., additional, Karpenko, Anna D., additional, Kornoushenko, Yury V., additional, Shuldau, Mikita, additional, Yushkevich, Artsemi, additional, Benabderrahmane, Mohammed B., additional, Bousquet-Melou, Patrick, additional, Bureau, Ronan, additional, Charton, Beatrice, additional, Cirou, Bertrand C., additional, Gil, Gérard, additional, Allen, William J., additional, Sirimulla, Suman, additional, Watowich, Stanley, additional, Antonopoulos, Nick A., additional, Epitropakis, Nikolaos E., additional, Krasoulis, Agamemnon K., additional, Pitsikalis, Vassilis P., additional, Theodorakis, Stavros T., additional, Kozlovskii, Igor, additional, Maliutin, Anton, additional, Medvedev, Alexander, additional, Popov, Petr, additional, Zaretckii, Mark, additional, Eghbal-zadeh, Hamid, additional, Halmich, Christina, additional, Hochreiter, Sepp, additional, Mayr, Andreas, additional, Ruch, Peter, additional, Widrich, Michael, additional, Berenger, Francois, additional, Kumar, Ashutosh, additional, Yamanishi, Yoshihiro, additional, Zhang, Kam Y.J., additional, Bengio, Emmanuel, additional, Bengio, Yoshua, additional, Jain, Moksh J., additional, Korablyov, Maksym, additional, Liu, Cheng-Hao, additional, Marcou, Gilles, additional, Glaab, Enrico, additional, Barnsley, Kelly, additional, Iyengar, Suhasini M., additional, Ondrechen, Mary Jo, additional, Haupt, V. Joachim, additional, Kaiser, Florian, additional, Schroeder, Michael, additional, Pugliese, Luisa, additional, Albani, Simone, additional, Athanasiou, Christina, additional, Beccari, Andrea, additional, Carloni, Paolo, additional, D'Arrigo, Giulia, additional, Gianquinto, Eleonora, additional, Goßen, Jonas, additional, Hanke, Anton, additional, Joseph, Benjamin P., additional, Kokh, Daria B., additional, Kovachka, Sandra, additional, Manelfi, Candida, additional, Mukherjee, Goutam, additional, Muñiz-Chicharro, Abraham, additional, Musiani, Francesco, additional, Nunes-Alves, Ariane, additional, Paiardi, Giulia, additional, Rossetti, Giulia, additional, Sadiq, S. Kashif, additional, Spyrakis, Francesca, additional, Talarico, Carmine, additional, Tsengenes, Alexandros, additional, Wade, Rebecca C., additional, Copeland, Conner, additional, Gaiser, Jeremiah, additional, Olson, Daniel R., additional, Roy, Amitava, additional, Venkatraman, Vishwesh, additional, Wheeler, Travis J., additional, Arthanari, Haribabu, additional, Blaschitz, Klara, additional, Cespugli, Marco, additional, Durmaz, Vedat, additional, Fackeldey, Konstantin, additional, Fischer, Patrick D., additional, Gorgulla, Christoph, additional, Gruber, Christian, additional, Gruber, Karl, additional, Hetmann, Michael, additional, Kinney, Jamie E., additional, Padmanabha Das, Krishna M., additional, Pandita, Shreya, additional, Singh, Amit, additional, Steinkellner, Georg, additional, Tesseyre, Guilhem, additional, Wagner, Gerhard, additional, Wang, Zi-Fu, additional, Yust, Ryan J., additional, Druzhilovskiy, Dmitry S., additional, Filimonov, Dmitry A., additional, Pogodin, Pavel V., additional, Poroikov, Vladimir, additional, Rudik, Anastassia V., additional, Stolbov, Leonid A., additional, Veselovsky, Alexander V., additional, De Rosa, Maria, additional, De Simone, Giada, additional, Gulotta, Maria R., additional, Lombino, Jessica, additional, Mekni, Nedra, additional, Perricone, Ugo, additional, Casini, Arturo, additional, Embree, Amanda, additional, Gordon, D. Benjamin, additional, Lei, David, additional, Pratt, Katelin, additional, Voigt, Christopher A., additional, Chen, Kuang-Yu, additional, Jacob, Yves, additional, Krischuns, Tim, additional, Lafaye, Pierre, additional, Zettor, Agnès, additional, Rodríguez, M. Luis, additional, White, Kris M., additional, Fearon, Daren, additional, Von Delft, Frank, additional, Walsh, Martin A., additional, Horvath, Dragos, additional, Brooks III, Charles L., additional, Falsafi, Babak, additional, Ford, Bryan, additional, García-Sastre, Adolfo, additional, Lee, Sang Yup, additional, Naffakh, Nadia, additional, Varnek, Alexandre, additional, Klambauer, Günter, additional, and Hermans, Thomas M., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnO x Cathode Design
- Author
-
Cha, Tae‐Gon, Tsedev, Uyanga, Ransil, Alan, Embree, Amanda, Gordon, D. Benjamin, Belcher, Angela M., Voigt, Christopher A., Cha, Tae‐Gon, Tsedev, Uyanga, Ransil, Alan, Embree, Amanda, Gordon, D. Benjamin, Belcher, Angela M., and Voigt, Christopher A.
- Abstract
Aerogels are ultralight porous materials whose matrix structure can be formed by interlinking 880 nm long M13 phage particles. In theory, changing the phage properties would alter the aerogel matrix, but attempting this using the current production system leads to heterogeneous lengths. A phagemid system that yields a narrow length distribution that can be tuned in 0.3 nm increments from 50 to 2500 nm is designed and, independently, the persistence length varies from 14 to 68 nm by mutating the coat protein. A robotic workflow that automates each step from DNA construction to aerogel synthesis is used to build 1200 aerogels. This is applied to compare Ni–MnOx cathodes built using different matrixes, revealing a pareto-optimal relationship between performance metrics. This work demonstrates the application of genetic engineering to create “tuning knobs” to sweep through material parameter space; in this case, toward creating a physically strong and high-capacity battery.
- Published
- 2022
5. Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnOxCathode Design
- Author
-
Cha, Tae‐Gon, primary, Tsedev, Uyanga, additional, Ransil, Alan, additional, Embree, Amanda, additional, Gordon, D. Benjamin, additional, Belcher, Angela M., additional, and Voigt, Christopher A., additional
- Published
- 2021
- Full Text
- View/download PDF
6. Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnOx Cathode Design.
- Author
-
Cha, Tae‐Gon, Tsedev, Uyanga, Ransil, Alan, Embree, Amanda, Gordon, D. Benjamin, Belcher, Angela M., and Voigt, Christopher A.
- Subjects
AEROGELS ,POROUS materials ,AEROGEL synthesis ,GENETIC engineering ,KEY performance indicators (Management) - Abstract
Aerogels are ultralight porous materials whose matrix structure can be formed by interlinking 880 nm long M13 phage particles. In theory, changing the phage properties would alter the aerogel matrix, but attempting this using the current production system leads to heterogeneous lengths. A phagemid system that yields a narrow length distribution that can be tuned in 0.3 nm increments from 50 to 2500 nm is designed and, independently, the persistence length varies from 14 to 68 nm by mutating the coat protein. A robotic workflow that automates each step from DNA construction to aerogel synthesis is used to build 1200 aerogels. This is applied to compare Ni–MnOx cathodes built using different matrixes, revealing a pareto‐optimal relationship between performance metrics. This work demonstrates the application of genetic engineering to create "tuning knobs" to sweep through material parameter space; in this case, toward creating a physically strong and high‐capacity battery. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
7. A community effort in SARS‐CoV‐2 drug discovery
- Author
-
Schimunek, Johannes, Seidl, Philipp, Elez, Katarina, Hempel, Tim, Le, Tuan, Noé, Frank, Olsson, Simon, Raich, Lluís, Winter, Robin, Gokcan, Hatice, Gusev, Filipp, Gutkin, Evgeny M., Isayev, Olexandr, Kurnikova, Maria G., Narangoda, Chamali H., Zubatyuk, Roman, Bosko, Ivan P., Furs, Konstantin V., Karpenko, Anna D., Kornoushenko, Yury V., Shuldau, Mikita, Yushkevich, Artsemi, Benabderrahmane, Mohammed B., Bousquet‐Melou, Patrick, Bureau, Ronan, Charton, Beatrice, Cirou, Bertrand C., Gil, Gérard, Allen, William J., Sirimulla, Suman, Watowich, Stanley, Antonopoulos, Nick, Epitropakis, Nikolaos, Krasoulis, Agamemnon, Itsikalis, Vassilis, Theodorakis, Stavros, Kozlovskii, Igor, Maliutin, Anton, Medvedev, Alexander, Popov, Petr, Zaretckii, Mark, Eghbal‐Zadeh, Hamid, Halmich, Christina, Hochreiter, Sepp, Mayr, Andreas, Ruch, Peter, Widrich, Michael, Berenger, Francois, Kumar, Ashutosh, Yamanishi, Yoshihiro, Zhang, Kam Y. J., Bengio, Emmanuel, Bengio, Yoshua, Jain, Moksh J., Korablyov, Maksym, Liu, Cheng‐Hao, Marcou, Gilles, Glaab, Enrico, Barnsley, Kelly, Iyengar, Suhasini M., Ondrechen, Mary Jo, Haupt, V. Joachim, Kaiser, Florian, Schroeder, Michael, Pugliese, Luisa, Albani, Simone, Athanasiou, Christina, Beccari, Andrea, Carloni, Paolo, D'Arrigo, Giulia, Gianquinto, Eleonora, Goßen, Jonas, Hanke, Anton, Joseph, Benjamin P., Kokh, Daria B., Kovachka, Sandra, Manelfi, Candida, Mukherjee, Goutam, Muñiz‐Chicharro, Abraham, Musiani, Francesco, Nunes‐Alves, Ariane, Paiardi, Giulia, Rossetti, Giulia, Sadiq, S. Kashif, Spyrakis, Francesca, Talarico, Carmine, Tsengenes, Alexandros, Wade, Rebecca C., Copeland, Conner, Gaiser, Jeremiah, Olson, Daniel R., Roy, Amitava, Venkatraman, Vishwesh, Wheeler, Travis J., Arthanari, Haribabu, Blaschitz, Klara, Cespugli, Marco, Durmaz, Vedat, Fackeldey, Konstantin, Fischer, Patrick D., Gorgulla, Christoph, Gruber, Christian, Gruber, Karl, Hetmann, Michael, Kinney, Jamie E., Padmanabha Das, Krishna M., Pandita, Shreya, Singh, Amit, Steinkellner, Georg, Tesseyre, Guilhem, Wagner, Gerhard, Wang, Zi‐Fu, Yust, Ryan J., Druzhilovskiy, Dmitry S., Filimonov, Dmitry A., Pogodin, Pavel V., Poroikov, Vladimir, Rudik, Anastassia V., Stolbov, Leonid A., Veselovsky, Alexander V., De Rosa, Maria, De Simone, Giada, Gulotta, Maria R., Lombino, Jessica, Mekni, Nedra, Perricone, Ugo, Casini, Arturo, Embree, Amanda, Gordon, D. Benjamin, Lei, David, Pratt, Katelin, Voigt, Christopher A., Chen, Kuang‐Yu, Jacob, Yves, Krischuns, Tim, Lafaye, Pierre, Zettor, Agnès, Rodríguez, M. Luis, White, Kris M., Fearon, Daren, Von Delft, Frank, Walsh, Martin A., Horvath, Dragos, Brooks, Charles L., Falsafi, Babak, Ford, Bryan, García‐Sastre, Adolfo, Yup Lee, Sang, Naffakh, Nadia, Varnek, Alexandre, Klambauer, Günter, and Hermans, Thomas M.
- Abstract
The COVID‐19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small‐molecule drugs that are widely available, including in low‐ and middle‐income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the “Billion molecules against COVID‐19 challenge”, to identify small‐molecule inhibitors against SARS‐CoV‐2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding‐, cleavage‐, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS‐CoV‐2 treatments.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.