14 results on '"Emilie Dorchies"'
Search Results
2. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis
- Author
-
Hélène Dehondt, Arianna Marino, Laura Butruille, Denis A. Mogilenko, Arielle C. Nzoussi Loubota, Oscar Chávez-Talavera, Emilie Dorchies, Emmanuelle Vallez, Joel Haas, Bruno Derudas, Antonino Bongiovanni, Meryem Tardivel, Folkert Kuipers, Philippe Lefebvre, Sophie Lestavel, Anne Tailleux, David Dombrowicz, Sandrine Caron, and Bart Staels
- Subjects
White adipose tissue ,Nuclear receptor FXR ,Inflammation ,Oxidative stress ,Glucose metabolism ,Internal medicine ,RC31-1245 - Abstract
Objective: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. Methods: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR−/−) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR−/−) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR−/− mice. Results: eWAT from HFD-fed whole-body FXR−/− and Ad-FXR−/− mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR−/− mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR−/− mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. Conclusions: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.
- Published
- 2023
- Full Text
- View/download PDF
3. Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver
- Author
-
Vanessa Dubois, Céline Gheeraert, Wouter Vankrunkelsven, Julie Dubois‐Chevalier, Hélène Dehondt, Marie Bobowski‐Gerard, Manjula Vinod, Francesco Paolo Zummo, Fabian Güiza, Maheul Ploton, Emilie Dorchies, Laurent Pineau, Alexis Boulinguiez, Emmanuelle Vallez, Eloise Woitrain, Eric Baugé, Fanny Lalloyer, Christian Duhem, Nabil Rabhi, Ronald E van Kesteren, Cheng‐Ming Chiang, Steve Lancel, Hélène Duez, Jean‐Sébastien Annicotte, Réjane Paumelle, Ilse Vanhorebeek, Greet Van den Berghe, Bart Staels, Philippe Lefebvre, and Jérôme Eeckhoute
- Subjects
liver injury ,NFIL3 ,PAR‐bZIP ,sepsis ,super‐enhancer ,Biology (General) ,QH301-705.5 ,Medicine (General) ,R5-920 - Abstract
Abstract Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver‐identity (LIVER‐ID) transcription factor (TF) network, initiated by rapid LIVER‐ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER‐ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co‐recruitment of LIVER‐ID TFs and decommissioning of BRD4 super‐enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER‐ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
- Published
- 2020
- Full Text
- View/download PDF
4. Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System
- Author
-
Benjamin Deckmyn, Dorothée Domenger, Chloé Blondel, Sarah Ducastel, Emilie Nicolas, Emilie Dorchies, Emilie Caron, Julie Charton, Emmanuelle Vallez, Benoit Deprez, Jean-Sébastien Annicotte, Sophie Lestavel, Anne Tailleux, Christophe Magnan, Bart Staels, and Kadiombo Bantubungi
- Subjects
FXR ,brain ,hypothalamus ,energy homeostasis ,brown adipose tissue ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR.
- Published
- 2022
- Full Text
- View/download PDF
5. Farnesoid X Receptor activation in brain alters brown adipose tissue function via the sympathetic system
- Author
-
Kadiombo Bantubungi, Bart Staels, Emmanuelle Vallez, Emilie Caron, Sophie Lestavel, Benjamin Deckmyn, sarah ducatsel, Julie Charton, Emilie Dorchies, Dorothée Domenger, Benoit Deprez, Anne Tailleux, Jean-Sébastien Annicotte, emilie nicolas, and christophe magnan
- Subjects
Agonist ,medicine.medical_specialty ,Tyrosine hydroxylase ,medicine.drug_class ,Chemistry ,Central nervous system ,Lipid metabolism ,Energy homeostasis ,Endocrinology ,medicine.anatomical_structure ,Internal medicine ,Brown adipose tissue ,medicine ,Farnesoid X receptor ,Receptor - Abstract
Background and Prupose: The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. Experimental Approach: We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Key Results: Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. Conclusions and Implication: These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR.
- Published
- 2021
6. The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids
- Author
-
Alexis Boulinguiez, Jean-Sébastien Annicotte, Laura Butruille, Anne Tailleux, Olivier Briand, Mohamed-Sami Trabelsi, Laure B. Bindels, Emilie Dorchies, Simon Peschard, Véronique Touche, Sandrine Caron, Emmanuelle Vallez, Sophie Lestavel, Sarah Ducastel, Steve Lancel, Oscar Chávez-Talavera, Nathalie M. Delzenne, Kadiombo Bantubungi, Bart Staels, Margaux Nawrot, UCL - SSS/LDRI - Louvain Drug Research Institute, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Metabolic functional (epi)genomics and molecular mechanisms involved in type 2 diabetes and related diseases - UMR 8199 - UMR 1283 (EGENODIA (GI3M)), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Metabolism and Nutrition Research Group [Bruxelles, Belgique], Louvain Drug Research Institute [Bruxelles, Belgique] (LDRI), Université Catholique de Louvain = Catholic University of Louvain (UCL)-Université Catholique de Louvain = Catholic University of Louvain (UCL), This work was supported by grants from 'European Genomic Institute for Diabetes' (E.G.I.D., ANR-10-LABX-46), European Commission and Agence Nationale pour la Recherche (ANR-FXREn). B.S. holds a 'European Research Council advanced Grant' (694717). A.B., M.N., O.C.T. and M.S.T. received a PhD fellowship from the French Ministry of Research., ANR-11-BSV1-0032,FXRen,Rôle du récepteur nucléaire Farnesoid X Receptor (FXR) dans l'homéostasie énergétique(2011), European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Génomique Intégrative et Modélisation des Maladies Métaboliques (EGID), Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Louvain Drug Research Institute [Bruxelles, Belgique], Université Catholique de Louvain (UCL)-Université Catholique de Louvain (UCL), Bodescot, Myriam, BLANC - Rôle du récepteur nucléaire Farnesoid X Receptor (FXR) dans l'homéostasie énergétique - - FXRen2011 - ANR-11-BSV1-0032 - BLANC - VALID, Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Metabolic functional (epi)genomics and molecular mechanisms involved in type 2 diabetes and related diseases - UMR 8199 - UMR 1283 (GI3M)
- Subjects
Male ,0301 basic medicine ,medicine.medical_specialty ,Colon ,medicine.drug_class ,Receptors, Cytoplasmic and Nuclear ,lcsh:Medicine ,Incretin ,030209 endocrinology & metabolism ,Enteroendocrine cell ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Article ,Receptors, G-Protein-Coupled ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Nuclear receptors ,Glucagon-Like Peptide 1 ,Internal medicine ,medicine ,Animals ,Secretion ,Gastrointestinal hormones ,lcsh:Science ,Receptor ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,Mice, Knockout ,Multidisciplinary ,Bile acid ,Chemistry ,Microbiota ,lcsh:R ,digestive, oral, and skin physiology ,Endocrine system and metabolic diseases ,Nutrient signalling ,Fatty Acids, Volatile ,Glucagon-like peptide-1 ,3. Good health ,Mice, Inbred C57BL ,030104 developmental biology ,Endocrinology ,Nuclear receptor ,Preclinical research ,lcsh:Q ,Farnesoid X receptor - Abstract
The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes.
- Published
- 2020
7. Farnesoid X Receptor and Its Ligands Inhibit the Function of Platelets
- Author
-
Marfoua S. Ali, David Bishop-Bailey, Neline Kriek, Gagan D. Flora, Olivier Molendi-Coste, David Dombrowicz, Sakthivel Vaiyapuri, Alexander P. Bye, Parvathy Sasikumar, Amanda J. Unsworth, Jonathan M. Gibbins, Tanya Sage, Bart Staels, Leonardo A. Moraes, and Emilie Dorchies
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Integrin ,Fibrinogen binding ,030204 cardiovascular system & hematology ,Biology ,G protein-coupled bile acid receptor ,Cell biology ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,Endocrinology ,Internal medicine ,medicine ,biology.protein ,Platelet aggregation inhibitor ,Platelet ,Farnesoid X receptor ,Platelet activation ,Signal transduction ,Cardiology and Cardiovascular Medicine - Abstract
Objective— Although initially seemingly paradoxical because of the lack of nucleus, platelets possess many transcription factors that regulate their function through DNA-independent mechanisms. These include the farnesoid X receptor (FXR), a member of the superfamily of ligand-activated transcription factors, that has been identified as a bile acid receptor. In this study, we show that FXR is present in human platelets and FXR ligands, GW4064 and 6α-ethyl-chenodeoxycholic acid, modulate platelet activation nongenomically. Approach and Results— FXR ligands inhibited the activation of platelets in response to stimulation of collagen or thrombin receptors, resulting in diminished intracellular calcium mobilization, secretion, fibrinogen binding, and aggregation. Exposure to FXR ligands also reduced integrin α IIb β 3 outside-in signaling and thereby reduced the ability of platelets to spread and to stimulate clot retraction. FXR function in platelets was found to be associated with the modulation of cyclic guanosine monophosphate levels in platelets and associated downstream inhibitory signaling. Platelets from FXR-deficient mice were refractory to the actions of FXR agonists on platelet function and cyclic nucleotide signaling, firmly linking the nongenomic actions of these ligands to the FXR. Conclusions— This study provides support for the ability of FXR ligands to modulate platelet activation. The atheroprotective effects of GW4064, with its novel antiplatelet effects, indicate FXR as a potential target for the prevention of atherothrombotic disease.
- Published
- 2016
8. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells
- Author
-
Kadiombo Bantubungi, Yasmine Sebti, Emilie Dorchies, Emmanuelle Vallez, Nathalie Hennuyer, Olivier Briand, Sophie Lestavel, Alessia Perino, Anne Tailleux, Philippe Marchetti, Jerome Kluza, Philippe Lefebvre, Robert Caiazzo, Sama I. Sayin, Cheryl A. Brighton, Sarah Ducastel, Véronique Touche, Fiona M. Gribble, Hélène Dehondt, Bart Staels, Mohamed-Sami Trabelsi, Frank Reimann, Valeria Spinelli, Janne Prawitt, Fredrik Bäckhed, Kristina Schoonjans, Mehdi Daoudi, François Pattou, Gregory Baud, and Sandrine Caron
- Subjects
Blood Glucose ,Colesevelam Hydrochloride ,Mice, Obese ,Receptors, Cytoplasmic and Nuclear ,General Physics and Astronomy ,Enteroendocrine cell ,Proglucagon ,Receptors, G-Protein-Coupled ,Mice ,Glucagon-Like Peptide 1 ,Insulin-Secreting Cells ,Insulin Secretion ,Insulin ,Glucose homeostasis ,glucose ,Intestinal Mucosa ,Mice, Knockout ,Multidisciplinary ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Anticholesteremic Agents ,Nuclear Proteins ,glycolysis ,G protein-coupled bile acid receptor ,Glucagon-like peptide-1 ,3. Good health ,Intestines ,Jejunum ,Signal Transduction ,medicine.medical_specialty ,Colon ,Enteroendocrine Cells ,Biology ,Diet, High-Fat ,Article ,General Biochemistry, Genetics and Molecular Biology ,Bile Acids and Salts ,Ileum ,Internal medicine ,medicine ,Animals ,Humans ,Secretion ,Obesity ,RNA, Messenger ,intestine ,Sequestering Agents ,bile acids ,General Chemistry ,Endocrinology ,Nuclear receptor ,Farnesoid X receptor ,pharmacology ,Transcription Factors - Abstract
Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates beta-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.
- Published
- 2015
9. Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice
- Author
-
Emmanuelle Vallez, Sandrine Caron, Valeria Spinelli, Emilie Dorchies, Hélène Dehondt, Anne Tailleux, Céline Martin, Bart Staels, and Mohamed-Sami Trabelsi
- Subjects
Genetics ,Cell specific ,Mice, Knockout ,Recombination, Genetic ,Strain (chemistry) ,Integrases ,Transgene ,Computational biology ,Biology ,Molecular medicine ,Polymerase Chain Reaction ,Mice, Inbred C57BL ,Islets of Langerhans ,Mice ,Germ Cells ,Knockout mouse ,Animals ,Animal Science and Zoology ,Agronomy and Crop Science ,Gene ,Function (biology) ,Recombination ,Alleles ,Biotechnology - Abstract
Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100 %, rendering it useless (aP2-Cre strain), to ~5 %, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.
- Published
- 2015
10. Rôle du récepteur nucléaire Farnésoid X (FXR) dans la réponse hypothalamique à l’insuline
- Author
-
Sandrine Humez, Kadiombo Bantubungi-Blum, David Blum, Luc Buée, Benjamin Deckmyn, Bart Staels, Emilie Dorchies, Anne Muher-Tailleux, Salah-Eddine Amini, Sophie Lestavel, Jean Lesage, and Dorothée Domenger
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Published
- 2017
11. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes.: Transrepression of ChREBP by FXR
- Author
-
Philippe Lefebvre, Olivier Briand, Fleur Lien, Hélène Dehondt, Emilie Dorchies, Catherine Postic, Sandrine Caron, Bertrand Cariou, Bart Staels, Maheul Ploton, Carolina Huaman Samanez, Julie Dumont, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), This work was supported by Grants from the EU Grant HEPADIP (N° 018734), the Region Nord-Pas-de-Calais/FEDER, the Agence Nationale de la Recherche (No. 11 BSV1 032 01) and 'European Genomic Institute for Diabetes' (E.G.I.D., ANR-10-LABX-46)., Récepteurs nucléaires, maladies cardiovasculaires et diabète ( EGID ), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Institut Pasteur de Lille, Réseau International des Instituts Pasteur ( RIIP ) -Réseau International des Instituts Pasteur ( RIIP ) -Centre Hospitalier Régional Universitaire [Lille] ( CHRU Lille ), Institut Cochin ( UM3 (UMR 8104 / U1016) ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), unité de recherche de l'institut du thorax UMR1087 UMR6291 ( ITX ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Nantes ( UN ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Unité de recherche de l'institut du thorax (ITX-lab), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Sialoglycoproteins ,Pyruvate Kinase ,Receptors, Cytoplasmic and Nuclear ,Biology ,Cell Line ,Histones ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Glucose homeostasis ,Animals ,Humans ,Nuclear Receptor Co-Repressor 2 ,p300-CBP Transcription Factors ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Carbohydrate-responsive element-binding protein ,Promoter Regions, Genetic ,Molecular Biology ,Transcription factor ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,Regulation of gene expression ,0303 health sciences ,Binding Sites ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Lysine ,Cell Biology ,Articles ,G protein-coupled bile acid receptor ,Peptide Fragments ,Hepatocyte nuclear factors ,Protein Transport ,Glucose ,Biochemistry ,Gene Expression Regulation ,Hepatocyte Nuclear Factor 4 ,Liver ,030220 oncology & carcinogenesis ,Hepatocytes ,Farnesoid X receptor ,Glycolysis ,Pyruvate kinase - Abstract
International audience; The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes.
- Published
- 2013
12. Farnesoid x receptor deficiency improves glucose homeostasis in mouse models of obesity.: FXR-deficiency improves glucose metabolism in obesity
- Author
-
Iuliana Popescu, Theo H. van Dijk, Vidya Velagapudi, Bertrand Cariou, F Anthony San Lucas, Hélène Duez, Sandrine Caron, Matej Orešič, Julie Dumont, Janne Prawitt, Mehdi Daoudi, Sophie Lestavel, Emilie Dorchies, Frank J. Gonzalez, Mouaadh Abdelkarim, Johanna H.M. Stroeve, Folkert Kuipers, Emmanuel Bouchaert, Bart Staels, Center for Liver, Digestive and Metabolic Diseases (CLDM), Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Department of Pediatrics, University of Groningen and University Medical Center Groningen-Center for Liver, Digestive and Metabolic Diseases, Technical Research Centre of Finland, VTT Technical Research Centre of Finland (VTT), Laboratory of metabolism, Center for Cancer Research-National Institute of Health (NIH), Institut du thorax, Université de Nantes (UN)-IFR26-Institut National de la Santé et de la Recherche Médicale (INSERM), and This study was supported by the EU Grant HEPADIP (N° 018734), the Agence Nationale de la Recherche (No.A05056GS) and COST (Action BM0602).
- Subjects
Male ,Endocrinology, Diabetes and Metabolism ,medicine.medical_treatment ,CARBOHYDRATE-METABOLISM ,Adipose tissue ,Mice, Obese ,Receptors, Cytoplasmic and Nuclear ,Weight Gain ,TRIGLYCERIDE LEVELS ,triglyceride metabolism ,bile acid sequestrants ,ACTIVATION ,0302 clinical medicine ,energy metabolism ,Glucose homeostasis ,Homeostasis ,Insulin ,2. Zero hunger ,Hypertriglyceridemia ,0303 health sciences ,BILE-ACIDS ,INSULIN-RESISTANCE ,ADIPOCYTE DIFFERENTIATION ,Adipose Tissue ,FXR ,030220 oncology & carcinogenesis ,SENSITIVITY ,medicine.medical_specialty ,Carbohydrate metabolism ,Biology ,Bile Acids and Salts ,03 medical and health sciences ,Insulin resistance ,SDG 3 - Good Health and Well-being ,HYPERGLYCEMIA ,Internal medicine ,Internal Medicine ,medicine ,glucose homeostasis ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Obesity ,030304 developmental biology ,bile acids ,Lipid metabolism ,medicine.disease ,Lipid Metabolism ,Disease Models, Animal ,MICE ,Endocrinology ,Glucose ,Metabolism ,Farnesoid X receptor ,Insulin Resistance - Abstract
OBJECTIVE Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed. RESEARCH DESIGN AND METHODS Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity. RESULTS FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism. CONCLUSIONS Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis.
- Published
- 2011
13. P150 Stratégie de génotypage pour détecter les recombinaisons non-spécifiques dans le système Cre-Lox: exemples des souches RIP-CRE et aP2-CRE
- Author
-
H. Dehondt, Bart Staels, Emilie Dorchies, Anne Tailleux, Mohamed-Sami Trabelsi, C. Martin, Emmanuelle Vallez, V. Spinelli, and Sandrine Caron
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Abstract
Introduction L'invalidation conditionnelle in vivo par la strategie Cre-Lox est un outil puissant pour identifier la fonction d'un gene/d'une proteine specifiquement dans un tissu ou un type cellulaire donne. Le choix du promoteur guidant l'expression de la recombinase Cre est fondamental pour determiner la specificite tissulaire de l'invalidation genique. Cependant, le choix d'un promoteur approprie ne permet pas d'empecher les recombinaisons non-specifiques dues au phenomene d'activation non-specifique du gene codant la Cre dans les tissus non cibles. Materiels et methodes Un meme gene d'interet a ete invalide dans 2 types cellulaires differents (cellule beta pancreatique et adipocyte) en croisant une souche de souris floxee pour le gene d'interet avec respectivement une souche transgenique RIP (Rat Insulin Promoter) -Cre (Tg (Ins2-Cre) 23Herr) et une souche transgenique aP2 (adipocyte protein 2) -Cre (aP2-CreSI). Pour detecter une potentielle recombinaison non-specifique, une recherche systematique de l'allele « nul » (allele floxe et recombine par la l'enzyme Cre-recombinase) en plus de l'allele floxe et de l'allele sauvage a ete realisee par PCR sur l'ADN extrait de biopsie caudale et des principaux tissus metaboliques dans les souris issues des deux elevages. Resultats 1) L'utilisation systematique d'une simple PCR permet de detecter les recombinaisons non-specifiques dans le genotypage sur biopsie caudale, et ainsi d'eliminer les souris problematiques de l'elevage. 2) Le taux de recombi-naison non-specifique est dependant de la souche Cre, allant de 5 % (RIP-Cre, la souche est alors utilisable pour generer les souris invalidees pour le gene d'interet) a 100 % (aP2-Cre, rendant la souche inutilisable). 3) L'analyse de l'ADN de differents tissus metabolique (foie, pancreas, tissus adipeux) par la meme procedure de PCR montre que lorsque la recombinaison non-specifique est presente dans l'ADN caudal, elle est retrouvee aussi dans les autres organes analyses. Conclusion Une recherche systematique de recombinaison non-specifique devrait etre mise en œuvre par simple PCR au cours du genotypage dans toutes les souches murines obtenues par ce systeme. Declaration d’interet Les auteurs declarent ne pas avoir d'interet direct ou indirect (financier ou en nature) avec un organisme prive, industriel ou commercial en relation avec le sujet presente.
- Published
- 2015
14. P211 Rôle pathophysiologie du récepteur nucléaire FXR dans la cellule bêta-pancréatique : connection entre l’axe entéro-hépatique et le pancréas endocrine via les acides biliaires
- Author
-
Anne Tailleux, V. Spinelli, Bart Staels, Emmanuelle Vallez, Pedro Luis Herrera, and Emilie Dorchies
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Abstract
Introduction Les acides biliaires (ABs) jouent un role fondamental dans l’homeostasie du glucose en se liant a 2 recepteurs : TGR5, recepteur membranaire, exprime en particulier dans les cellules enterointestinales et promouvant la secretion de l’incretine GLP-1, et FXR, recepteur nucleaire, exprime dans differents organes cles du metabolisme, en particulier dans la cellule beta-pancreatique, ou il a ete montre comme regulateur de la secretion d’insuline. Ainsi, les ABs contribueraient au controle de l’homeostasie du glucose en orchestrant la relation entre l’axe entero-hepatique et le pancreas endocrine. Notre objectif est de comprendre la contribution de FXR de la cellule beta-pancreatique dans la reponse aux ABs dans ce systeme integre en caracterisant le modele murin deficient pour FXR dans la cellule beta-pancreatique (FXRbetacell-KO). Materiels et methodes Le phenotype de la souris FXR-betacell-KO est caracterise par analyse des parametres circulants (glycemie, insulinemie), des tests fonctionnels de reponse au glucose chez la souris nourrie par un regime standard ou par un regime riche en lipides (60 %, Research Diet), des tests fonctionnels ex vivo sur les ilots en reponse a differents stimuli insulino-secretagogues (glucose, incretines…), une analyse transcriptomique et metabolomique, et l’analyse du profil des ABs circulants et tissulaires (HPLC-MS/MS). Resultats Sous regime standard, la souris FXR-betacell-KO presente une intolerance au glucose qui apparait avec l’âge, avec une insulinemie plus faible comparees aux controles, a l’etat basal et apres injection de glucose, phenotype exacerbe chez les souris nourries par un regime riche en graisses. Discussion Nos resultats confirment un role regulateur positif de FXR-betapancreatique dans la secretion de l’insuline en reponse au glucose in vivo. Ces resultats seront completes par l’etude de l’impact de FXR-beta-pancreatique sur la reponse aux incretines et les mecanismes moleculaires associes et permettrons de mieux comprendre le lien Acides Biliaires/axe entero-hepatique/pancreas endocrine dans la physiopathologie du diabete.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.