1. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils.
- Author
-
Shaghaleh H, Alhaj Hamoud Y, and Sun Q
- Subjects
- Adsorption, Agriculture, Metal-Organic Frameworks chemistry, Environmental Restoration and Remediation methods, Environmental Restoration and Remediation instrumentation, Soil Pollutants chemistry, Nanocomposites chemistry, Lead chemistry, Copper chemistry, Cellulose chemistry, Hydrogels chemistry, Lignin chemistry, Soil chemistry
- Abstract
Hydrogel adsorbents are promising tools for reducing heavy metals' bioavailability in contaminated soil. However, their practical feasibility remains limited by the low stability, inefficient removal efficiency, and potential secondary pollution. Optimizing the adsorption operation and the functional properties of hydrogel adsorbents could eliminate this method's drawbacks. Herein, three innovative in-situ remediation strategies for Pb/Cu-contaminated soil were adopted based on the concept of novel TEMPO-cellulose (TO-NFCs)/lignin/acrylamide@MIL-100(Fe) nanocomposite hydrogel adsorbent (NCLMH). Characteristic analyses revealed ideal Pb/Cu adsorption mechanisms by swelling, complexation, electrical attraction, and ion exchange via carboxyl/hydroxyl/carbonyl groups and unsaturated Fe(III) sites on ANCMH besides FeOOH formation. The highest maximum theoretical adsorption capacities of Pb(II) and Cu(II) on ANCMH were 416.39 and 133.98 mg/g, under pH 6.5, governed by pseudo-second-order/Freundlich models. Greenhouse pot experiments with contaminated soils amended with two-depth layers of 0.5% NCLMHs (SA@NCLMH) displayed a decline in Pb and Cu bioavailability up to 85.9% and 74.5% within 45 d. Soil column studies simulating continuous water soil flushing coupled with NCLMH layers, instead of conventional extractant fluids, and connected to NCLMH-sand column as purification unit (CF@NCLMH) achieved higher removal rates for Pb, and Cu of 89.5% and 77.2% within 24 h. Alternatively, conducting multiple-pulse soil flushing mode (MF@NCLMH) gained the highest Pb and Cu removal of 96.5% and 85.4%, as the water flushing-stop flux events allowed adequate water movement/residence period, promoting Pb/Cu desorption-adsorption from soil to NCLMH. Also, the NCLMH-sand column conducting and easy separation of the stable/reusable NCLMHs prevented the potential secondary pollution. Interestingly, the three remediated soils reached the corresponding regulation of the permissible limits for Pb and Cu residential scenarios in medium-to-heavily agricultural polluted soils, alleviating the Pb/Cu bioaccumulation and phytotoxicity symptoms in cultivated wheat, especially after MF@NCLMH treatment. This study introduces promising alternative remediation strategies with high sustainability and feasibility in acidic-to-neutral heavy metal-contaminated agricultural soil., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF