252 results on '"Eric V. Linder"'
Search Results
2. Quantum power: a Lorentz invariant approach to Hawking radiation
- Author
-
Michael R. R. Good and Eric V. Linder
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Particle radiation from black holes has an observed emission power depending on the surface gravity $$\kappa = c^4/(4GM)$$ κ = c 4 / ( 4 G M ) as $$\begin{aligned} P_{\text {black hole}} \sim \frac{\hbar \kappa ^2}{6\pi c^2} = \frac{\hbar c^6}{96\pi G^2 M^2}, \end{aligned}$$ P black hole ∼ ħ κ 2 6 π c 2 = ħ c 6 96 π G 2 M 2 , while both the radiation from accelerating particles and moving mirrors (accelerating boundaries) obey similar relativistic Larmor powers, $$\begin{aligned} P_{\text {electron}}= \frac{q^2\alpha ^2}{6\pi \epsilon _0 c^3}, \quad P_{\text {mirror}} =\frac{\hbar \alpha ^2}{6\pi c^2}, \end{aligned}$$ P electron = q 2 α 2 6 π ϵ 0 c 3 , P mirror = ħ α 2 6 π c 2 , where $$\alpha $$ α is the Lorentz invariant proper acceleration. This equivalence between the Lorentz invariant powers suggests a close relation that could be used to understand black hole radiation. We show that an accelerating mirror with a prolonged metastable acceleration plateau can provide a unitary, thermal, energy-conserved analog model for black hole decay.
- Published
- 2022
- Full Text
- View/download PDF
3. Ultra Fast Astronomy: Optimized Detection of Multimessenger Transients
- Author
-
Mikhail Denissenya and Eric V. Linder
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
Ultra Fast Astronomy is a new frontier becoming enabled by improved detector technology allowing discovery of optical transients on millisecond to nanosecond time scales. These may reveal counterparts of energetic processes such as fast radio bursts, gamma ray bursts, gravitational wave events, or play a role in the optical search for extraterrestrial intelligence (oSETI). We explore some example science cases and their optimization under constrained resources, basically how to distribute observations along the spectrum of short duration searches of many targets or long searches over fewer targets. As a demonstration of the method we present some analytic and some numerical optimizations, of both raw detections and science characterization such as an information matrix analysis of constraining a burst delay -- flash duration relation.
- Published
- 2021
- Full Text
- View/download PDF
4. Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation
- Author
-
Michael R. R. Good and Eric V. Linder
- Subjects
moving mirrors ,acceleration radiation ,black holes ,quantum field theory in curved space ,Elementary particle physics ,QC793-793.5 - Abstract
We study the quantum radiation of particle production by vacuum from an ultra-relativistic moving mirror (dynamical Casimir effect) solution that allows (possibly for the first time) analytically calculable time evolution of particle creation and an Airy particle spectral distribution. The reality of the beta Bogoliubov coefficients is responsible for the simplicity, and the mirror is asymptotically inertial at the speed of light, with finite energy production. We also discuss general relations regarding negative energy flux, the transformation to the 1-D Schrödinger equation, and the incompleteness of entanglement entropy.
- Published
- 2021
- Full Text
- View/download PDF
5. Cosmology requirements on supernova photometric redshift systematics for the Rubin LSST and Roman Space Telescope
- Author
-
Ayan Mitra and Eric V. Linder
- Published
- 2021
- Full Text
- View/download PDF
6. Out of one, many: distinguishing time delays from lensed supernovae
- Author
-
Mikhail Denissenya, Satadru Bag, Alex G Kim, Eric V Linder, and Arman Shafieloo
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,strong [gravitational lensing] ,data analysis ,FOS: Physical sciences ,numerical [methods] ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,supernovae [transients] ,observations [cosmology] ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitationally lensed Type Ia supernovae are an emerging probe with great potential for constraining dark energy, spatial curvature, and the Hubble constant. The multiple images and their time delayed and magnified fluxes may be unresolved, however, blended into a single lightcurve. We demonstrate methods without a fixed source template matching for extracting the individual images, determining whether there are one (no lensing) or two or four (lensed) images, and measuring the time delays between them that are valuable cosmological probes. We find 100% success for determining the number of images for time delays greater than $\sim10$ days., 9 pages, 6 figures; matches version published in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
7. Spectrograph stabilization of 500x using a single-delay interferometer
- Author
-
David J. Erskine, Edward H. Wishnow, Eric V. Linder, Erik J. Davies, Martin Sirk, Richard Ozer, Dayne E. Fratanduono, and Jerry Edelstein
- Published
- 2022
- Full Text
- View/download PDF
8. Möbius mirrors
- Author
-
Michael R R Good and Eric V Linder
- Subjects
High Energy Physics - Theory ,Quantum Physics ,General Relativity and Quantum Cosmology ,Physics and Astronomy (miscellaneous) ,High Energy Physics - Theory (hep-th) ,Physical Sciences ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Quantum Physics (quant-ph) ,Nuclear & Particles Physics ,Mathematical Sciences - Abstract
An accelerating boundary (mirror) acts as a horizon and black hole analog, radiating energy with some particle spectrum. We demonstrate that a M\"obius transformation on the null coordinate advanced time mirror trajectory uniquely keeps invariant not only the energy flux but the particle spectrum. We clarify how the geometric entanglement entropy is also invariant. The transform allows generation of families of dynamically distinct trajectories, including $\mathcal{PT}$-symmetric ones, mapping from the eternally thermal mirror to the de Sitter horizon, and different boundary motions corresponding to Kerr or Schwarzschild black holes., Comment: 10 pages, 4 figures, appendix
- Published
- 2022
9. Deep Learning Unresolved Lensed Lightcurves
- Author
-
Mikhail Denissenya and Eric V Linder
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitationally lensed sources may have unresolved or blended multiple images, and for time varying sources the lightcurves from individual images can overlap. We use convolutional neural nets to both classify the lightcurves as due to unlensed, double, or quad lensed sources and fit for the time delays. Focusing on lensed supernova systems with time delays $\Delta t\gtrsim6$ days, we achieve 100\% precision and recall in identifying the number of images and then estimating the time delays to $\sigma_{\Delta t}\approx1$ day, with a $1000\times$ speedup relative to our previous Monte Carlo technique. This also succeeds for flux noise levels $\sim10\%$. For $\Delta t\in[2,6]$ days we obtain 94--98\% accuracy, depending on image configuration. We also explore using partial lightcurves where observations only start near maximum light, without the rise time data, and quantify the success., Comment: 10 pages, 7 figures; v2: minor clarifications
- Published
- 2022
10. Constraining scale dependent growth with redshift surveys
- Author
-
Mikhail Denissenya and Eric V. Linder
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Ongoing and future redshift surveys have the capability to measure the growth rate of large scale structure at the percent level over a broad range of redshifts, tightly constraining cosmological parameters. Beyond general relativity, however, the growth rate in the linear density perturbation regime can be not only redshift dependent but scale dependent, revealing important clues to modified gravity. We demonstrate that a fully model independent approach of binning the gravitational strength $G_{\rm eff}(k,z)$ matches scalar-tensor results for the growth rate $f\sigma_8(k,z)$ to $0.02\%$-$0.27\%$ rms accuracy. For data of the quality of the Dark Energy Spectroscopic Instrument (DESI) we find the bin values can be constrained to 1.4\%-28\%. We also explore the general scalar-tensor form, constraining the amplitude and past and future scalaron mass/shape parameters. Perhaps most interesting is the strong complementarity of low redshift peculiar velocity data with DESI-like redshift space distortion measurements, enabling improvements up to a factor 6-7 on 2D joint confidence contour areas. Finally, we quantify some issues with gravity parametrizations that do not include all the key physics., Comment: 12 pages, 8 figures; v2 minor edits to match published version
- Published
- 2022
- Full Text
- View/download PDF
11. Distinguishing time clustering of astrophysical bursts
- Author
-
B. Grossan, Eric V. Linder, and Mikhail Denissenya
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Series (mathematics) ,Soft gamma repeater ,FOS: Physical sciences ,Astrophysics ,Duty cycle ,Spatial clustering ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Focus (optics) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Time clustering ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Many astrophysical bursts can recur, and their time series structure or pattern could be closely tied to the emission and system physics. While analysis of periodic events is well established, some sources, e.g. some fast radio bursts and soft gamma-ray emitters, are suspected of more subtle and less explored periodic windowed behavior: the bursts themselves are not periodic, but the activity only occurs during periodic windows. We focus here on distinguishing periodic windowed behavior from merely clustered events through time clustering analysis, using techniques analogous to spatial clustering, demonstrating methods for identifying and characterizing the behavior. An important aspect is accounting for the ``curious incident of the dog in the night time'' - lack of bursts carries information. As a worked example, we analyze six years of data from the soft gamma repeater SGR1935+2154, deriving a window period of 231 days and 55% duty cycle; this has now successfully predicted both active and inactive periods., 12 pages, 11 figures; v2 highlights successful burst prediction, improves uncertainty quantification, adds comparison to other optimization results, PRD accepted
- Published
- 2021
12. The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries
- Author
-
Risa H. Wechsler, Henk Hoekstra, Hans Böhringer, Zachary Raha, S. Dixon, Daniel Stern, Greg Aldering, X. Huang, J. Meyers, J. Nordin, Mark Brodwin, Susana E. Deustua, Rene Fassbender, E. Rozo, Dragan Huterer, Michael D. Gladders, Ravi Gupta, Rahman Amanullah, J. S. Santos, Mike Yen, Greta Chappell, Alex G. Kim, A. S. Fruchter, A. L. Spadafora, Tracy Webb, Isobel Hook, David Rubin, Hendrik Hildebrandt, Miles Currie, Eli S. Rykoff, Caroline Sofiatti, Brian Hayden, Ariel Goobar, Clare Saunders, Nao Suzuki, Steven Williams, Saul Perlmutter, Kyle Boone, Peter Eisenhardt, Chris Lidman, Anthony H. Gonzalez, Johan Richard, Parker Fagrelius, Kyle Luther, M. James Jee, Piero Rosati, Carlos Cunha, Adam Muzzin, Reynald Pain, A. Stanford, Kyle Barbary, Pilar Ruiz-Lapuente, Eric V. Linder, Gillian Wilson, Marek Kowalski, Gemini Observatory, National Science Foundation (US), National Research Council of Canada, Comisión Nacional de Investigación Científica y Tecnológica (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), Ministério da Ciência, Tecnologia e Inovação (Brasil), Korea Astronomy and Space Science Institute, European Southern Observatory, National Aeronautics and Space Administration (US), German Research Foundation, European Commission, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Supernova Cosmology Project, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Observational cosmology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Cosmology ,NO ,Photometry (optics) ,0103 physical sciences ,Cluster (physics) ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Galaxy cluster ,Weak gravitational lensing ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Type Ia supernovae ,Type La Supernovae ,Astronomy and Astrophysics ,Redshift ,Supernova ,Space and Planetary Science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
21 pags., 12 figs., 4 tabs., The See Change survey was designed to make z > 1 cosmological measurements by efficiently discovering high-redshift Type Ia supernovae (SNe Ia) and improving cluster mass measurements through weak lensing. This survey observed twelve galaxy clusters with the Hubble Space Telescope (HST) spanning the redshift range z = 1.13-1.75, discovering 57 likely transients and 27 likely SNe Ia at z ~ 0.8-2.3. As in similar previous surveys, this proved to be a highly efficient use of HST for supernova observations; the See Change survey additionally tested the feasibility of maintaining, or further increasing, the efficiency at yet higher redshifts, where we have less detailed information on the expected cluster masses and star formation rates. We find that the resulting number of SNe Ia per orbit is a factor of ~8 higher than for a field search, and 45% of our orbits contained an active SN Ia within 22 rest-frame days of peak, with one of the clusters by itself yielding 6 of the SNe Ia. We present the survey design, pipeline, and supernova discoveries. Novel features include fully blinded supernova searches, the first random forest candidate classifier for undersampled IR data (with a 50% detection threshold within 0.05 mag of human searchers), real-time forward-modeling photometry of candidates, and semi-automated photometric classifications and follow-up forecasts. We also describe the spectroscopic follow-up, instrumental in measuring host galaxy redshifts. The cosmology analysis of our sample will be presented in a companion paper. * Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, under programs 13677, 14327., Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). Based on observations collected at the Table 4. European Organisation for Astronomical Research in the Southern Hemisphere under ESO program(s) 294.A-5025(A), 095.A-0830(A, B, C), 096.A-0926(B, C), 097.A-0442(A, B, C), and 0100.A-0851(A). G.W. acknowledges support from the National Science Foundation through grant AST-1517863, by HST program numbers GO-13677/14327.01 and GO-15294, and by grant No. 80NSSC17K0019 issued through the NASA Astrophysics Data Analysis Program (ADAP). G.A. and R.G. acknowledge support from HST program NASA HST-GO14163.002-A, and by grant No. NNH16AC25I issued through NASA ADAP. M. J. J. acknowledges support for the current research from the National Research Foundation (NRF) of Korea under the programs 2017R1A2B2004644 and 2020R1A4A2002885. H. Hildebrandt is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). Support for program numbers GO-13677/14327.01 and GO-15294 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. This work was also partially supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. Facilities: Hubble Space Telescope, Keck:I (LRIS), Keck:I (MOSFIRE), VLT, Gemini, GTC, Subaru. Software: astropy (Astropy Collaboration 2013), DrizzlePac (Gonzaga et al. 2012), iPython (Pérez & Granger 2007), Matplotlib (Hunter 2007), Numpy (van der Walt et al. 2011), SEP (Barbary 2016), scikit-learn (Pedregosa et al. 2011), SciPy
- Published
- 2021
- Full Text
- View/download PDF
13. Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation
- Author
-
Eric V. Linder and Michael R. R. Good
- Subjects
High Energy Physics - Theory ,lcsh:QC793-793.5 ,General Physics and Astronomy ,FOS: Physical sciences ,Quantum entanglement ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Schrödinger equation ,Entropy (classical thermodynamics) ,symbols.namesake ,quantum field theory in curved space ,Quantum ,Physics ,acceleration radiation ,Quantum Physics ,lcsh:Elementary particle physics ,moving mirrors ,Time evolution ,black holes ,Casimir effect ,High Energy Physics - Theory (hep-th) ,Quantum electrodynamics ,symbols ,Speed of light ,Negative energy ,Quantum Physics (quant-ph) - Abstract
We study the quantum radiation of particle production by vacuum from an ultra-relativistic moving mirror (dynamical Casimir effect) solution that allows (possibly for the first time) analytically calculable time evolution of particle creation and an Airy particle spectral distribution. The reality of the beta Bogoliubov coefficients is responsible for the simplicity, and the mirror is asymptotically inertial at the speed of light, with finite energy production. We also discuss general relations regarding negative energy flux, the transformation to the 1-D Schr{\"o}dinger equation, and the incompleteness of entanglement entropy., Comment: 10 pages, 9 figures
- Published
- 2021
- Full Text
- View/download PDF
14. Cosmology requirements on supernova photometric redshift systematics for the Rubin LSST and Roman Space Telescope
- Author
-
Eric V. Linder and Ayan Mitra
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,Cosmology ,Redshift ,Supernova ,Spitzer Space Telescope ,Observatory ,0103 physical sciences ,Dark energy ,010306 general physics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Photometric redshift - Abstract
Some million Type Ia supernovae (SN) will be discovered and monitored during upcoming wide area time domain surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). For cosmological use, accurate redshifts are needed among other characteristics; however the vast majority of the SN will not have spectroscopic redshifts, even for their host galaxies, only photometric redshifts. We assess the redshift systematic control necessary for robust cosmology. Based on the photometric vs true redshift relation generated by machine learning applied to a simulation of 500,000 galaxies as observed with LSST quality, we quantify requirements on systematics in the mean relation and in the outlier fraction and deviance so as not to bias dark energy cosmological inference. Certain redshift ranges are particularly sensitive, motivating spectroscopic followup of SN at $z\lesssim0.2$ and around $z\approx0.5$-0.6. Including Nancy Grace Roman Space Telescope near infrared bands in the simulation, we reanalyze the constraints, finding improvements at high redshift but little at the low redshifts where systematics lead to strong cosmology bias. We identify a complete spectroscopic survey of SN host galaxies for $z\lesssim0.2$ as a highly favored element for robust SN cosmology., Comment: Accepted in PRD. 9 pages, 11 figures
- Published
- 2021
15. A novel approach for calculating galaxy rotation curves using spaxel cross-correlation and iterative smoothing
- Author
-
Satadru Bag, Arman Shafieloo, Rory Smith, Haeun Chung, Eric V Linder, Changbom Park, Y Sultan Abylkairov, and Khalykbek Yelshibekov
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Precise measurements of the internal dynamics of galaxies have proven of great importance for understanding the internal dark matter distribution of galaxies. We present a novel method for measuring the line-of-sight (LOS) velocities across the face of galaxies by cross-correlation of spectral pixels (spaxels) and an iterative method of smoothing. On simulated data the method can accurately recover the input LOS velocities for different types of spectra (absorption line dominated, emission line dominated, and differing shapes of the continuum), and can handle stellar population radial gradients. Most important of all, it continues to provide reliable measurements of LOS velocities with reasonable uncertainties even when the spectra are very low signal-to-noise (approaching $\sim 1$), which is a challenge for traditional template-fitting approaches. We apply our method to data from a real MaNGA galaxy as a demonstration and find promising results with good precision. This novel approach can be complementary to existing methods primarily based on template fitting., Comment: 21 pages, 17 figures, accepted for publication in MNRAS
- Published
- 2021
- Full Text
- View/download PDF
16. Quantum power: a Lorentz invariant approach to Hawking radiation
- Author
-
Michael R. R. Good and Eric V. Linder
- Subjects
High Energy Physics - Theory ,Quantum Physics ,Physics and Astronomy (miscellaneous) ,Astrophysics::High Energy Astrophysical Phenomena ,Molecular ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Atomic ,Nuclear & Particles Physics ,General Relativity and Quantum Cosmology ,Particle and Plasma Physics ,High Energy Physics - Theory (hep-th) ,Nuclear ,Quantum Physics (quant-ph) ,Engineering (miscellaneous) - Abstract
Particle radiation from black holes has an observed emission power depending on the surface gravity $\kappa = c^4/(4GM)$ as \begin{equation}\nonumber P_{\textrm{black hole}} \sim \frac{\hbar \kappa^2}{6\pi c^2} = \frac{\hbar c^6}{96\pi G^2 M^2}\,,\end{equation} while both the radiation from accelerating particles and moving mirrors (accelerating boundaries) obey similar relativistic Larmor powers, \begin{equation}\nonumber P_{\textrm{electron}}= \frac{q^2\alpha^2}{6\pi \epsilon_0 c^3}\,, \quad P_{\textrm{mirror}} =\frac{\hbar \alpha^2}{6\pi c^2}\,, \end{equation} where $\alpha$ is the Lorentz invariant proper acceleration. This equivalence between the Lorentz invariant powers suggests a close relation that could be used to understand black hole radiation. We show that an accelerating mirror with a prolonged metastable acceleration plateau can provide a unitary, thermal, energy-conserved analog model for black hole decay., Comment: 4 pages, 3 figures
- Published
- 2021
- Full Text
- View/download PDF
17. Ultra Fast Astronomy: Optimized Detection of Multimessenger Transients
- Author
-
Eric V. Linder and Mikhail Denissenya
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Millisecond ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Gravitational wave ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astronomy ,FOS: Physical sciences ,Nanosecond ,Characterization (materials science) ,Flash (photography) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Gamma-ray burst ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Search for extraterrestrial intelligence ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Ultra Fast Astronomy is a new frontier becoming enabled by improved detector technology allowing discovery of optical transients on millisecond to nanosecond time scales. These may reveal counterparts of energetic processes such as fast radio bursts, gamma ray bursts, gravitational wave events, or play a role in the optical search for extraterrestrial intelligence (oSETI). We explore some example science cases and their optimization under constrained resources, basically how to distribute observations along the spectrum of short duration searches of many targets or long searches over fewer targets. As a demonstration of the method we present some analytic and some numerical optimizations, of both raw detections and science characterization such as an information matrix analysis of constraining a burst delay -- flash duration relation., Comment: 11 pages, 8 figures; v3: matches published version
- Published
- 2021
- Full Text
- View/download PDF
18. THE SLEWING MIRROR TELESCOPE AND THE DATA-ACQUISITION SYSTEM
- Author
-
V. Reglero, G. W. Na, A. J. Castro-Tirado, Yong-Jin Choi, S. Dagoret-Campagne, S. I. Svertilov, J. M. Rodrigo, S. Ahmad, Meng Wang, J. Lee, H. Lim, Tsung-Che Liu, Il Han Park, S. Jeong, Niels Lund, J. E. Kim, Eric V. Linder, Jiwoo Nam, P. Barrillon, Jakub Ripa, A. Jung, M. I. Panasyuk, S. W. Kim, P. H. Connell, K. W. Min, M. B. Kim, Carl Budtz-Jørgensen, Pisin Chen, C. J. Eyles, J. E. Suh, I. V. Yashin, Søren Brandt, N. N. Vedenkin, M.-H. A. Huang, Y. W. Kim, B. Grossan, George F. Smoot, and A.S. Krasnov
- Subjects
Telescope ,Data acquisition ,Optics ,law ,business.industry ,Computer science ,business ,law.invention - Published
- 2020
- Full Text
- View/download PDF
19. Cosmic Growth Rate as Probe of Dark Matter and Gravity. Final Report
- Author
-
Eric V. Linder
- Subjects
Engineering ,Engineering management ,business.industry ,Technical report ,business - Published
- 2020
- Full Text
- View/download PDF
20. Be It Unresolved: Measuring Time Delays from Lensed Supernovae
- Author
-
Eric V. Linder, Arman Shafieloo, Satadru Bag, and Alex G. Kim
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Strong gravitational lensing ,FOS: Physical sciences ,Astrophysics ,Astronomy & Astrophysics ,Type (model theory) ,Gravitational microlensing ,Atomic ,01 natural sciences ,Cosmology ,symbols.namesake ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,Time domain ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Molecular ,Astronomy and Astrophysics ,Supernova ,Space and Planetary Science ,symbols ,Dark energy ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Hubble's law ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitationally lensed Type Ia supernovae may be the next frontier in cosmic probes, able to deliver independent constraints on dark energy, spatial curvature, and the Hubble constant. Measurements of time delays between the multiple images become more incisive due to the standardized candle nature of the source, monitoring for months rather than years, and partial immunity to microlensing. While currently extremely rare, hundreds of such systems should be detected by upcoming time domain surveys. Even more will have the images spatially unresolved, with the observed lightcurve a superposition of time delayed image fluxes. We investigate whether unresolved images can be recognized as lensed sources given only lightcurve information, and whether time delays can be extracted robustly. We develop a method that successfully identifies such systems, with a false positive rate of $\lesssim 5\%$, and measures the time delays with a completeness of $\gtrsim 93\%$ and with a bias of $\lesssim 0.5\%$ for $\Delta t_{\rm fit} \gtrsim 10$ days., Comment: 18 pages, 15 figures
- Published
- 2020
21. Euclid preparation: VII. Forecast validation for Euclid cosmological probes
- Author
-
Ivan Lloro, Peter Schneider, S. Ilić, Elisabetta Maiorano, Andrea Zacchei, E. Franceschi, A. Balaguera-Antolinez, M. Frailis, Fabio Pasian, S. Kermiche, S. Paltani, B. Gillis, S. Casas, Ralf Bender, Jason Rhodes, Javier Graciá-Carpio, Luca Valenziano, R. Kohley, Franck Ducret, Mauro Roncarelli, S. Farrens, Sotiria Fotopoulou, Remi A. Cabanac, V. F. Cardone, Jean Coupon, Paula Gomez-Alvarez, Herve Aussel, S. Galeotta, Alain Blanchard, Lucia Pozzetti, Jean-Luc Starck, F. Torradeflot, P. B. Lilje, Ole Marggraf, S. Bardelli, Massimo Brescia, L. Stanco, J. Carretero, Rafael Toledo-Moreo, G. A. Verdoes Kleijn, S. Yahia-Cherif, Richard Massey, Knud Jahnke, G. Polenta, Michele Moresco, Enrico Bozzo, M. Poncet, Stefano Cavuoti, S. Brau-Nogue, G. Sirri, Stefano Andreon, Elisabetta Majerotto, D. Tavagnacco, Isaac Tutusaus, Valeria Pettorino, Carmelita Carbone, D. Di Ferdinando, Davide Maino, Felix Hormuth, Sebastien Clesse, F. Dubath, Simona Mei, A. Boucaud, F. J. Castander, C. A. J. Duncan, R. Cledassou, Z. Sakr, E. Romelli, Robert C. Nichol, E. Munari, Henk Hoekstra, V. Capobianco, Hélène M. Courtois, Stefano Camera, B. Kubik, E. Medinaceli, J. J. Metge, M. H. Fabricius, P. Tallada-Crespí, Matteo Viel, S. Dusini, Andrea Cimatti, Emanuel Rossetti, Yannick Mellier, D. Bonino, C. Padilla, Benjamin J. Metcalf, K. Markovic, Andrea Biviano, Andy Taylor, F. Lacasa, E. Zucca, P. Franzetti, S. de la Torre, A. Da Silva, Julien Zoubian, W. Gillard, Carlo Burigana, Marco Baldi, Martin Kilbinger, L. Conversi, Will J. Percival, T. Vassallo, Yu Wang, Marco Castellano, C. C. Kirkpatrick, V. Yankelevich, Giuseppe D. Racca, Y. Copin, S. Niemi, Domenico Sapone, Pablo Fosalba, G. Congedo, N. Fourmanoit, F. Raison, Enzo Branchini, A. Secroun, N. Martinet, M. Martinelli, Mark Cropper, Ismael Tereno, M. Tenti, A. Cappi, Sandrine Pires, C. J. Conselice, Eric V. Linder, Giulio Fabbian, H. Israel, G. Meylan, Alkistis Pourtsidou, Leonardo Corcione, X. Dupac, Lauro Moscardini, Carlo Giocoli, E. Keihänen, Roberto P. Saglia, F. Grupp, Luigi Guzzo, Ricard Casas, Ariel G. Sánchez, A. Renzi, V. Scottez, Martin Kunz, Federico Marulli, M. Fumana, C. Colodro-Conde, F. Sureau, Sebastiano Ligori, Achille A. Nucita, Hannu Kurki-Suonio, Thomas D. Kitching, Jarle Brinchmann, C. S. Carvalho, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Eurecat, Ctr Tecnol Catalunya, Placa Ciencia 2, Manresa 08242, Spain, Corporate technology Siemens, Siemens AG [Munich], Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre Jean Perrin [Clermont-Ferrand] (UNICANCER/CJP), UNICANCER, INAF - Osservatorio Astronomico di Brera (OAB), Istituto Nazionale di Astrofisica (INAF), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, Ludwig-Maximilians-Universität München (LMU), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), INAF - Osservatorio Astronomico di Capodimonte (OAC), Institut de Ciencies de l'Espai [Barcelona] (ICE-CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Centre National d'Études Spatiales [Toulouse] (CNES), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Durham University, Université de Genève = University of Geneva (UNIGE), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Fisica (Milano), Università degli Studi di Milano = University of Milan (UNIMI), Department of Surgical Oncology, University of Groningen [Groningen], Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Milieux aquatiques, écologie et pollutions (UR MALY), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Centre International de Recherches Médicales de Franceville (CIRMF), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Biogeochemical Integration [Jena], Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Euclid Collaboration, Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Euclid, Blanchard A., Camera S., Carbone C., Cardone V.F., Casas S., Clesse S., Ilic S., Kilbinger M., Kitching T., Kunz M., Lacasa F., Linder E., Majerotto E., Markovic K., Martinelli M., Pettorino V., Pourtsidou A., Sakr Z., Sanchez A.G., Sapone D., Tutusaus I., Yahia-Cherif S., Yankelevich V., Andreon S., Aussel H., Balaguera-Antolinez A., Baldi M., Bardelli S., Bender R., Biviano A., Bonino D., Boucaud A., Bozzo E., Branchini E., Brau-Nogue S., Brescia M., Brinchmann J., Burigana C., Cabanac R., Capobianco V., Cappi A., Carretero J., Carvalho C.S., Casas R., Castander F.J., Castellano M., Cavuoti S., Cimatti A., Cledassou R., Colodro-Conde C., Congedo G., Conselice C.J., Conversi L., Copin Y., Corcione L., Coupon J., Courtois H.M., Cropper M., Da Silva A., De La Torre S., Di Ferdinando D., Dubath F., Ducret F., Duncan C.A.J., Dupac X., Dusini S., Fabbian G., Fabricius M., Farrens S., Fosalba P., Fotopoulou S., Fourmanoit N., Frailis M., Franceschi E., Franzetti P., Fumana M., Galeotta S., Gillard W., Gillis B., Giocoli C., Gomez-Alvarez P., Gracia-Carpio J., Grupp F., Guzzo L., Hoekstra H., Hormuth F., Israel H., Jahnke K., Keihanen E., Kermiche S., Kirkpatrick C.C., Kohley R., Kubik B., Kurki-Suonio H., Ligori S., Lilje P.B., Lloro I., Maino D., Maiorano E., Marggraf O., Martinet N., Marulli F., Massey R., Medinaceli E., Mei S., Mellier Y., Metcalf B., Metge J.J., Meylan G., Moresco M., Moscardini L., Munari E., Nichol R.C., Niemi S., Nucita A.A., Padilla C., Paltani S., Pasian F., Percival W.J., Pires S., Polenta G., Poncet M., Pozzetti L., Racca G.D., Raison F., Renzi A., Rhodes J., Romelli E., Roncarelli M., Rossetti E., Saglia R., Schneider P., Scottez V., Secroun A., Sirri G., Stanco L., Starck J.-L., Sureau F., Tallada-Crespi P., Tavagnacco D., Taylor A.N., Tenti M., Tereno I., Toledo-Moreo R., Torradeflot F., Valenziano L., Vassallo T., Verdoes Kleijn G.A., Viel M., Wang Y., Zacchei A., Zoubian J., Zucca E., Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Academy of Finland, European Commission, Agenzia Spaziale Italiana, Belgian Science Policy Office, Canadian Euclid Consortium, Centre National D'Etudes Spatiales (France), Danish Space Research Institute, German Centre for Air and Space Travel, Fundação para a Ciência e a Tecnologia (Portugal), Ministerio de Economía y Competitividad (España), National Aeronautics and Space Administration (US), Netherlands Research School for Astronomy, Norwegian Space Agency, Romanian Space Agency, State Secretariat for Education, Research and Innovation (Switzerland), Swiss Space Office, UK Space Agency, Ministero dell'Istruzione, dell'Università e della Ricerca, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), International Max Planck Research Schools, Swiss National Science Foundation, Blanchard, A., Camera, S., Carbone, C., Cardone, V. F., Casas, S., Clesse, S., Ilić, S., Kilbinger, M., Kitching, T., Kunz, M., Lacasa, F., Linder, E., Majerotto, E., Markovič, K., Martinelli, M., Pettorino, V., Pourtsidou, A., Sakr, Z., Sánchez, A. G., Sapone, D., Tutusaus, I., Yahia-Cherif, S., Yankelevich, V., Andreon, S., Aussel, H., Balaguera-Antolínez, A., Baldi, M., Bardelli, S., Bender, R., Biviano, A., Bonino, D., Boucaud, A., Bozzo, E., Branchini, E., Brau-Nogue, S., Brescia, M., Brinchmann, J., Burigana, C., Cabanac, R., Capobianco, V., Cappi, A., Carretero, J., Carvalho, C. S., Casas, R., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Coupon, J., Courtois, H. M., Cropper, M., Da, Silva, de la, Torre, Di, Ferdinando, D., Dubath, F., Ducret, F., Duncan, C. A. J., Dupac, X., Dusini, S., Fabbian, G., Fabriciu, M., Farren, S., Fosalba, P., Fotopoulou, S., Fourmanoit, N., Fraili, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Gillard, W., Gilli, B., Giocoli, C., Gómez-Alvarez, P., Graciá-Carpio, J., Grupp, F., Guzzo, L., Hoekstra, H., Hormuth, F., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kirkpatrick, C. C., Kohley, R., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Metcalf, B., Metge, J. J., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nichol, R. C., Niemi, S., Nucita, A. A., Padilla, C., Paltani, S., Pasian, F., Percival, W. J., Pire, S., Polenta, G., Poncet, M., Pozzetti, L., Racca, G. D., Raison, F., Renzi, A., Rhode, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Scottez, V., Secroun, A., Sirri, G., Stanco, L., Starck, J., -L., Sureau, F., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tenti, M., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Verdoes, Kleijn, G. A., Viel, M., Wang, Y., Zacchei, A., Zoubian, J., Zucca, Ilic, S., Markovic, K., Sanchez, A. G., Balaguera-Antolinez, A., Da Silva, A., De La Torre, S., Di Ferdinando, D., Dubath, F., Ducret, F., Duncan, C. A. J., Dupac, X., Dusini, S., Fabbian, G., Fabricius, M., Farrens, S., Fosalba, P., Fotopoulou, S., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gomez-Alvarez, P., Gracia-Carpio, J., Grupp, F., Guzzo, L., Hoekstra, H., Hormuth, F., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kirkpatrick, C. C., Kohley, R., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Metcalf, B., Metge, J. J., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nichol, R. C., Niemi, S., Nucita, A. A., Padilla, C., Paltani, S., Pasian, F., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Pozzetti, L., Racca, G. D., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Scottez, V., Secroun, A., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespi, P., Verdoes Kleijn, G. A., Viel, M., Wang, Y., Zacchei, A., Zoubian, J., Zucca, E., Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Geneva [Switzerland], Università degli Studi di Milano [Milano] (UNIMI), Institut Régional de Médecine Physique et de Réadaptation Louis Pierquin [Nancy] (IRR Louis Pierquin), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Department of Physics, Helsinki Institute of Physics, and Astronomy
- Subjects
cosmology: observations / cosmological parameters / cosmology: theory ,Cosmological parameter ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,DARK ENERGY CONSTRAINTS ,IMPACT ,ANGULAR POWER SPECTRA ,Cosmological parameters ,Cosmology: observations ,Cosmology: theory ,FOS: Physical sciences ,observation [Cosmology] ,GALAXY REDSHIFT SURVEYS ,Astrophysics ,Cosmological constant ,Astrophysics::Cosmology and Extragalactic Astrophysics ,ACOUSTIC-OSCILLATIONS ,01 natural sciences ,Measure (mathematics) ,Cosmology: observation ,PRIMORDIAL NON-GAUSSIANITY ,Set (abstract data type) ,INFORMATION-CONTENT ,HALO-MODEL ,theory [Cosmology] ,cosmology: theory ,0103 physical sciences ,cosmological parameters ,observations [Cosmology] ,Cluster analysis ,010303 astronomy & astrophysics ,Astrophysique ,Weak gravitational lensing ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,INTRINSIC ALIGNMENTS ,115 Astronomy, Space science ,MASSIVE NEUTRINOS ,Space and Planetary Science ,cosmology: observations ,astro-ph.CO ,Dark energy ,Baryon acoustic oscillations ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Algorithm ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts. Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required. Results. We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three., 0, info:eu-repo/semantics/published
- Published
- 2020
- Full Text
- View/download PDF
22. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology
- Author
-
Abay Zhakenuly, Michael R. R. Good, and Eric V. Linder
- Subjects
High Energy Physics - Theory ,Physics ,Quantum Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Spacetime ,010308 nuclear & particles physics ,FOS: Physical sciences ,Boundary (topology) ,Shape of the universe ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Cosmology ,High Energy Physics - Theory (hep-th) ,Planck's law ,De Sitter universe ,0103 physical sciences ,Horizon (general relativity) ,Minkowski space ,Quantum Physics (quant-ph) ,010306 general physics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Mathematical physics - Abstract
An accelerated boundary correspondence (ABC) is solved for the de Sitter moving mirror cosmology. The beta Bogoliubov coefficients reveal the particle spectrum is a Planck distribution with temperature inversely proportional to horizon radius. The quantum stress-tensor indicates a constant emission of energy flux consistent with eternal equilibrium, while the total energy carried by the particles remains finite. The curved spacetime transformation to flat spacetime with an accelerated boundary is illustrated, and also shown for Anti-de Sitter (AdS) spacetime., Comment: 4 pages, 5 figures
- Published
- 2020
- Full Text
- View/download PDF
23. Accelerating boundary analog of a Kerr black hole
- Author
-
Eric V. Linder, Joshua Foo, and Michael R. R. Good
- Subjects
High Energy Physics - Theory ,Angular momentum ,Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,Mathematical Sciences ,General Relativity and Quantum Cosmology ,0103 physical sciences ,Schwarzschild metric ,010306 general physics ,Spin-½ ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Cauchy stress tensor ,Nuclear & Particles Physics ,Planck's law ,Rotating black hole ,High Energy Physics - Theory (hep-th) ,Quantum electrodynamics ,Physical Sciences ,Quantum Physics (quant-ph) ,Schwarzschild radius ,Hawking radiation - Abstract
An accelerated boundary correspondence (i.e. a flat spacetime accelerating mirror trajectory) is derived for the Kerr spacetime, with a general formula that ranges from the Schwarzschild limit (zero angular momentum) to the extreme maximal spin case (yielding asymptotic uniform acceleration). The beta Bogoliubov coefficients reveal the particle spectrum is a Planck distribution at late times with temperature cooler than a Schwarzschild black hole, due to the "spring constant" analog of angular momentum. The quantum stress tensor indicates a constant emission of energy flux at late times consistent with eternal thermal equilibrium., 7 pages, 6 figures
- Published
- 2020
24. Next generation strong lensing time delay estimation with Gaussian processes
- Author
-
Alireza Hojjati and Eric V. Linder
- Published
- 2014
- Full Text
- View/download PDF
25. Limited Modified Gravity
- Author
-
Eric V. Linder
- Subjects
Gravity (chemistry) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,General relativity ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,Atomic ,General Relativity and Quantum Cosmology ,Luminosity ,Gravitation ,Theoretical physics ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,Luminosity distance ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Gravitational wave ,Cosmic distance ladder ,Molecular ,Astronomy and Astrophysics ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We systematically assess several limiting cases of modified gravity, where particular theoretical or observational conditions hold. This framework includes the well known scalar-tensor gravity and No Slip Gravity and No Run Gravity, and we extend it to three new limits: Only Run, Only Light, and Only Growth Gravities. These limits give simplifications that allow deeper understanding of modified gravity, including demonstration that gravitational effects on light and matter can have opposite signs in their deviation from general relativity. We also show observational predictions for the different cosmic structure growth rates $f\sigma_8$ and the ratio of gravitational wave standard siren luminosity to photon standard candle luminosity distance relations, defining a new statistic $D_G$ that emphasizes their complementarity and ability to distinguish models., Comment: 8 pages, 7 figures
- Published
- 2020
26. Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment
- Author
-
Peter A. R. Ade, Davide Poletti, C. Verges, Shunsuke Adachi, Kam Arnold, Yuji Chinone, A. Suzuki, Yuto Minami, Chang Feng, J. Peloton, Nathan Whitehorn, Oliver Jeong, N. W. Halverson, Yuki Inoue, T. Hamada, Akito Kusaka, Y. Zhou, A. Zahn, A. Cukierman, M. Aguilar, Carole Tucker, D. Beck, Nicoletta Krachmalnicoff, Rolando Dünner, Brian Keating, Paul L. Richards, Stephen M. Feeney, J. C. Groh, Julian Borrill, C. Tsai, Joshua Montgomery, Darcy Barron, Theodore Kisner, R. Stompor, G. Hall, D. Boettger, Tucker Elleflot, Josquin Errard, Frederick Matsuda, L. N. Lowry, D. Leon, Takayuki Tomaru, Reijo Keskitalo, Benjamin Westbrook, M. Navaroli, D. Kaneko, K. Cheung, Osamu Tajima, A. T. P. Pham, Eric V. Linder, Giulio Fabbian, A. J. Gilbert, L. Howe, Neil Goeckner-Wald, H. El-Bouhargani, Max Silva-Feaver, Hans P. Paar, M. A. Dobbs, S. Takatori, Federico Bianchini, Colin Ross, Christian L. Reichardt, John Groh, Praween Siritanasak, Julien Carron, Tomotake Matsumura, T. Fujino, Y. Akiba, H. Nishino, G. Jaehnig, Giuseppe Puglisi, Charles A. Hill, D. Tanabe, Andrew H. Jaffe, Masashi Hazumi, Nicholas Galitzki, Blake D. Sherwin, S. Kikuchi, Carlo Baccigalupi, E. M. Leitch, S. Beckman, N. Katayama, Grant Teply, A. Ducout, Aashrita Mangu, M. LeJeune, Adrian T. Lee, Nathan Stebor, Masaya Hasegawa, S. Takakura, Y. Segawa, Scott Chapman, Kevin T. Crowley, Chinone, Y, Adachi, S, Ade, P, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Elbouhargani, H, Carron, J, Chapman, S, Cheung, K, Crowley, K, Cukierman, A, Dunner, R, Dobbs, M, Ducout, A, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jaffe, A, Jeong, O, Lejeune, M, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leitch, E, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Matsumura, T, Minami, Y, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Richards, P, Ross, C, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tomaru, T, Tsai, C, Tucker, C, Verges, C, Westbrook, B, Whitehorn, N, Zahn, A, Zhou, Y, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
History ,satellite: Planck ,Cosmic microwave background ,gravitational lensing ,cosmic background radiation: polarization ,detector: noise ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravity waves ,power spectrum ,01 natural sciences ,Education ,Primary mirror ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,Polarization ,0103 physical sciences ,Planck ,mirror ,010303 astronomy & astrophysics ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Gravitational wave ,Settore FIS/05 ,POLARBEAR experiment ,Gravitational effects ,gravitational radiation: primordial ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Galaxy ,Computer Science Applications ,Gravitational lens ,B-mode ,symbols ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,galaxy - Abstract
POLARBEAR is a Cosmic Microwave Background radiation (CMB) polarization experiment that is located in the Atacama Desert in Chile. The scientific goals of the experiment are to characterize the B-mode signal from gravitational lensing, as well as to search for B-mode signals created by primordial gravitational waves (PGWs). Polarbear started observations in 2012 and has published a series of results. These include the first measurement of a nonzero B-mode angular auto-power spectrum at sub-degree scales where the dominant signal is gravitational lensing of the CMB. In addition, we have achieved the first measurement of crosscorrelation between the lensing potential, which was reconstructed from the CMB polarization data alone by Polarbear, and the cosmic shear field from galaxy shapes by the Subaru Hyper Suprime-Cam (HSC) survey. In 2014, we installed a continuously rotating half-wave plate (CRHWP) at the focus of the primary mirror to search for PGWs and demonstrated the control of low-frequency noise. We have found that the low-frequency B-mode power in the combined dataset with the Planck high-frequency maps is consistent with Galactic dust foreground, thus placing an upper limit on the tensor-to-scalar ratio of r < 0.90 at the 95% confidence level after marginalizing over the foregrounds.
- Published
- 2020
- Full Text
- View/download PDF
27. Moving mirror model for quasithermal radiation fields
- Author
-
Michael R. R. Good, Frank Wilczek, and Eric V. Linder
- Subjects
Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Evaporation ,Flux ,Radiation ,01 natural sciences ,Computational physics ,Black hole ,Flow (mathematics) ,Quantum state ,0103 physical sciences ,Thermal ,Negative energy ,010306 general physics - Abstract
We analyze the flow of energy and entropy emitted by a class of moving mirror trajectories which provide models for important aspects of the radiation fields produced by black hole evaporation. The mirror radiation fields provide natural, concrete examples of processes that follow thermal distributions for long periods, accompanied by transients which are brief and carry little net energy, yet ultimately represent pure quantum states. A burst of negative energy flux is a generic feature of these fields, but it need not be prominent.
- Published
- 2020
- Full Text
- View/download PDF
28. Detecting Helium Reionization with Fast Radio Bursts
- Author
-
Eric V. Linder
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Electron density ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Epoch (reference date) ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Redshift ,Amplitude ,chemistry ,0103 physical sciences ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,Reionization ,Helium ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Fast radio bursts (FRB) probe the electron density of the universe along the path of propagation, making high redshift FRB sensitive to the helium reionization epoch. We analyze the signal to noise with which a detection of the amplitude of reionization can be made, and its redshift, for various cases of future FRB survey samples, assessing survey characteristics including total number, redshift distribution, peak redshift, redshift depth, and number above the reionization redshift, as well as dependence on reionization redshift. We take into account scatter in the dispersion measure due to an inhomogeneous intergalactic medium (IGM) and uncertainty in the FRB host and environment dispersion measure, as well as cosmology. For a future survey with 500 FRB extending out to $z=5$, and a sudden reionization, the detection of helium reionization can approach the $5\sigma$ level and the reionization redshift be determined to $\sigma(z_r)\approx0.24$ in an optimistic scenario, or $2\sigma$ and $\sigma(z_r)\approx0.34$ taking into account further uncertainties on IGM fraction evolution and redshift uncertainties., Comment: 8 pages, 8 figures; v2 minor clarifications in text and Fig. 3, matches PRD version
- Published
- 2020
29. Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity
- Author
-
Alex G. Kim and Eric V. Linder
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,General relativity ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Large Synoptic Survey Telescope ,Lambda ,01 natural sciences ,Cosmology ,Gravitation ,Redshift-space distortions ,Supernova ,0103 physical sciences ,Peculiar velocity ,010306 general physics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Peculiar-velocity surveys of the low-redshift universe have significant leverage to constrain the growth rate of cosmic structure and test gravity. Wide-field imaging surveys combined with multi-object spectrographs (e.g. ZTF2, LSST, DESI, 4MOST) can use Type Ia supernovae as informative tracers of the velocity field, reaching few percent constraints on the growth rate $f\sigma_8$ at $z\lesssim0.2$ where density tracers cannot do better than $\sim10\%$. Combining the high-redshift DESI survey mapping redshift space distortions with a low-redshift supernova peculiar velocity survey using LSST and DESI can determine the gravitational growth index to $\sigma(\gamma)\approx0.02$, testing general relativity. We study the characteristics needed for the peculiar velocity survey, and how its complementarity with clustering surveys improves when going from a $\Lambda$CDM model assumption to a $w_0$-$w_a$ cosmology., Comment: 6 pages, 4 figures
- Published
- 2020
- Full Text
- View/download PDF
30. A measurement of the CMB E-mode angular power spectrum at subdegree scales from 670 square degrees of POLARBEAR data
- Author
-
Osamu Tajima, T. Fujino, Andrew H. Jaffe, Scott Chapman, Eric V. Linder, S. Kikuchi, N. Katayama, D. Leon, Masashi Hazumi, Oliver Jeong, D. Tanabe, Grant Teply, Nicholas Galitzki, Tucker Elleflot, S. Takakura, Christian L. Reichardt, Praween Siritanasak, Josquin Errard, Akito Kusaka, Giulio Fabbian, John Groh, Brian Keating, Federico Bianchini, Ben Westbrook, M. A. O. Aguilar Faúndez, Shunsuke Adachi, Ted Kisner, K. Cheung, Adrian T. Lee, Y. Zhou, C. Tsai, Neil Goeckner-Wald, Frederick Matsuda, Tomotake Matsumura, D. Beck, Kam Arnold, Masaya Hasegawa, S. Takatori, Darcy Barron, Carlo Baccigalupi, L. N. Lowry, Davide Poletti, Clara Vergès, Kevin D. Crowley, G. Hall, M. Navaroli, Haruki Nishino, Yuto Minami, Haruaki Hirose, A. T. P. Pham, Chang Feng, Yuji Chinone, H. El Bouhargani, Y. Segawa, M. A. Dobbs, Daisuke Kaneko, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Polarbear, Adachi, S, Aguilar Faundez, M, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Dobbs, M, El Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Hasegawa, M, Hazumi, M, Hirose, H, Jaffe, A, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Kikuchi, S, Kisner, T, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Minami, Y, Navaroli, M, Nishino, H, Pham, A, Poletti, D, Reichardt, C, Segawa, Y, Siritanasak, P, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
cosmological model ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,Astrophysics ,cosmic background radiation ,01 natural sciences ,Physical Chemistry ,Atomic ,expansion: multipole ,Cosmology ,Particle and Plasma Physics ,Cosmic microwave background radiation ,Big Bang nucleosynthesis ,polarbear data ,polarization: power spectrum ,010303 astronomy & astrophysics ,helium: primordial ,Physics ,Hubble constant ,symbols ,astro-ph.CO ,power spectrum: angular dependence ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,satellite: Planck ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,nucleosynthesis: big bang ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,statistical analysis ,Nucleosynthesis ,0103 physical sciences ,Nuclear ,Planck ,cosmic background radiation: power spectrum ,0105 earth and related environmental sciences ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Abundance of the chemical elements ,detector: sensitivity ,Space and Planetary Science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Hubble's law - Abstract
We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from July 2014 to December 2016 with the POLARBEAR experiment. We reach an effective polarization map noise level of $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range $500 \leq \ell, Comment: 15 pages, 5 figures, submitted to ApJ
- Published
- 2020
- Full Text
- View/download PDF
31. The Well-Tempered Cosmological Constant: Fugue in B$^\flat$
- Author
-
Eric V. Linder and Stephen Appleby
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Spacetime ,010308 nuclear & particles physics ,De Sitter space ,Zero-point energy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmological constant ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Theoretical physics ,0103 physical sciences ,Minkowski space ,Attractor ,Degeneracy (mathematics) ,Quantum ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Zero point fluctuations of quantum fields should generate a large cosmological constant energy density in any spacetime. How then can we have anything other than de Sitter space without fine tuning? Well tempering -- dynamical cancellation of the cosmological constant using degeneracy within the field equations -- can replace a large cosmological constant with a much lower energy state. Here we give an explicit mechanism to obtain a Minkowski solution, replacing the cosmological constant with zero, and testing its attractor nature and persistence through a vacuum phase transition. We derive the general conditions that Horndeski scalar-tensor gravity must possess, and evolve in a fugue of functions, to deliver nothing and make the universe be flat., Comment: 15 pages, 3 figures
- Published
- 2020
- Full Text
- View/download PDF
32. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
- Full Text
- View/download PDF
33. Fast Radio Burst Dispersion Measure Distribution as a Probe of Helium Reionization
- Author
-
Pawan Kumar, Eric V. Linder, and Mukul Bhattacharya
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Monte Carlo method ,chemistry.chemical_element ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Atomic ,01 natural sciences ,Particle and Plasma Physics ,Ionization ,0103 physical sciences ,Nuclear ,010306 general physics ,Reionization ,Helium ,Physics ,Statistical ensemble ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Quantum Physics ,010308 nuclear & particles physics ,Fast radio burst ,Molecular ,Nuclear & Particles Physics ,Galaxy ,Redshift ,chemistry ,Astrophysics - High Energy Astrophysical Phenomena ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Fast radio burst (FRB) discoveries are occurring rapidly, with thousands expected from upcoming surveys. The dispersion measures (DM) observed for FRB include important information on cosmological distances and the ionization state of the universe from the redshift of emission until today. Rather than considering the DM--redshift relation, we investigate the statistical ensemble of the distribution of dispersion measures. We explore the use of this abundance information, with and without redshift information, to probe helium reionization. Carrying out Monte Carlo simulations of FRB survey samples, we examine the effect of different source redshift distributions, host galaxy models, sudden vs gradual reionization, and covariance with cosmological parameters on determination of helium reionization properties. We find that a fluence limited survey with 10$^4$ FRBs can discriminate different helium reionization histories at $\sim6\sigma$ using the DM-distribution of bursts, without redshift information (and $\sim10\sigma$ with redshifts)., Comment: 15 pages, 11 figures
- Published
- 2020
- Full Text
- View/download PDF
34. An Expansion of Well Tempered Gravity
- Author
-
Stephen Appleby and Eric V. Linder
- Subjects
Monomial ,Gravity (chemistry) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Planck mass ,FOS: Physical sciences ,Cosmological constant ,Kinetic term ,General Relativity and Quantum Cosmology (gr-qc) ,Atomic ,01 natural sciences ,General Relativity and Quantum Cosmology ,Theoretical physics ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,Physics ,010308 nuclear & particles physics ,Molecular ,Astronomy and Astrophysics ,Nuclear & Particles Physics ,Dark energy ,Scalar field ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmological constant problem - Abstract
When faced with two nigh intractable problems in cosmology -- how to remove the original cosmological constant problem and how to parametrize modified gravity to explain current cosmic acceleration -- we can make progress by counterposing them. The well tempered solution to the cosmological constant through degenerate scalar field dynamics also relates disparate Horndeski gravity terms, making them contrapuntal. We derive the connection between the kinetic term $K$ and braiding term $G_3$ for shift symmetric theories (including the running Planck mass $G_4$), extending previous work on monomial or binomial dependence to polynomials of arbitrary finite degree. We also exhibit an example for an infinite series expansion. This contrapuntal condition greatly reduces the number of parameters needed to test modified gravity against cosmological observations, for these "golden" theories of gravity., Comment: 7 pages
- Published
- 2020
- Full Text
- View/download PDF
35. Exploring Early and Late Cosmology with Next Generation Surveys
- Author
-
Guilherme Brando and Eric V. Linder
- Subjects
Physics ,Structure formation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,Spectral density ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Redshift survey ,Cosmology ,Galaxy ,Redshift ,Neutrino ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Perturbations from inflation evolve into large scale structure of the late universe, and encode abundant cosmic structure formation physics. We allow freedom in the primordial power spectrum, rather than assuming a power law scale dependence, to study its impact on cosmological parameter determination. Combining various generations of cosmic microwave background (CMB) data and galaxy redshift survey data, we investigate the constraints on reconstruction of the primordial curvature perturbation power spectrum and the late time cosmology, especially the sum of neutrino masses. We quantify how each successive generation, in CMB and galaxy surveys, provides significant improvements, often by factors of several. By using CMB polarization information over a broad range of angular scales, and galaxy redshift data in many bins of redshift, one can allow inflationary freedom and still constrain parameters comparably to assuming power law dependence. The primordial power spectrum can be reconstructed at the subpercent level in a dozen wavenumber bins, while simultaneously fitting the sum of neutrino masses to 14 meV., Comment: 19 pages, 12 figures, 2 tables, v2 accepted for publication
- Published
- 2020
- Full Text
- View/download PDF
36. The Well-Tempered Cosmological Constant: The Horndeski Variations
- Author
-
Stephen Appleby and Eric V. Linder
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Cosmological constant ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,Atomic ,Cosmology ,General Relativity and Quantum Cosmology ,Theoretical physics ,Particle and Plasma Physics ,Vacuum energy ,De Sitter universe ,0103 physical sciences ,Nuclear ,Physics ,Spacetime ,010308 nuclear & particles physics ,Classical field theory ,Molecular ,Astronomy and Astrophysics ,Nuclear & Particles Physics ,Arbitrarily large ,Astronomical and Space Sciences ,Cosmological constant problem ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Well tempering is one of the few classical field theory methods for solving the original cosmological constant problem, dynamically canceling a large (possibly Planck scale) vacuum energy and leaving the matter component intact, while providing a viable cosmology with late time cosmic acceleration and an end de Sitter state. We present the general constraints that variations of Horndeski gravity models with different combinations of terms must satisfy to admit an exact de Sitter spacetime that does not respond to an arbitrarily large cosmological constant. We explicitly derive several specific scalar-tensor models that well temper and can deliver a standard cosmic history including current cosmic acceleration. Stability criteria, attractor behavior of the de Sitter state, and the response of the models to pressureless matter are considered. The well tempered conditions can be used to focus on particular models of modified gravity that have special interest -- not only removing the original cosmological constant problem but providing relations between the free Horndeski functions and reducing them to a couple of parameters, suitable for testing gravity and cosmological data analysis., Comment: 25 pages, 3 figures
- Published
- 2020
- Full Text
- View/download PDF
37. Limits on dark radiation, early dark energy, and relativistic degrees of freedom
- Author
-
Erminia Calabrese, Dragan Huterer, Eric V. Linder, Alessandro Melchiorri, and Luca Pagano
- Published
- 2011
- Full Text
- View/download PDF
38. Future CMB constraints on early, cold, or stressed dark energy
- Author
-
Erminia Calabrese, Roland de Putter, Dragan Huterer, Eric V. Linder, and Alessandro Melchiorri
- Published
- 2011
- Full Text
- View/download PDF
39. Λ Is coming: Parametrizing freezing fields
- Author
-
Eric V. Linder
- Subjects
Physics ,Field (physics) ,010308 nuclear & particles physics ,Equation of state (cosmology) ,Astronomy and Astrophysics ,Observable ,Lambda-CDM model ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmological constant ,01 natural sciences ,Thermodynamics of the universe ,Classical mechanics ,Phase space ,0103 physical sciences ,Dark energy ,Statistical physics ,010303 astronomy & astrophysics - Abstract
We explore freezing dark energy, where the evolution of the field approaches that of a cosmological constant at late times. We propose two general, two parameter forms to describe the class of freezing field models, in analogy to ones for thawing fields, here based on the physics of the flow parameter or the calibrated w–w′ phase space. Observables such as distances and Hubble parameters are fit to within 0.1%, and the dark energy equation of state generally to within better than 1%, of the exact numerical solutions.
- Published
- 2017
- Full Text
- View/download PDF
40. Use of fast radio burst dispersion measures as distance measures
- Author
-
Pawan Kumar and Eric V. Linder
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Electron density ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC cancer database ,010308 nuclear & particles physics ,Fast radio burst ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Measure (mathematics) ,Distance measures ,Computational physics ,Convolution ,0103 physical sciences ,Dispersion (optics) ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,Reionization ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Fast radio bursts appear to be cosmological signals whose frequency-time structure provides a dispersion measure. The dispersion measure is a convolution of the cosmic distance element and the electron density, and contains the possibility of using these events as new cosmological distance measures. We explore the challenges of extracting the distance in a robust manner, and give quantitative estimates for the systematics control needed for fast radio bursts to become a competitive distance probe. The methodology can also be applied to assessing their use for mapping electron density fluctuations or helium reionization., Comment: 9 pages, 5 figures; v2 with clarifications, reordering; v3 updated references, matches PRD version
- Published
- 2019
- Full Text
- View/download PDF
41. Internal delensing of cosmic microwave background polarization B-modes with the POLARBEAR experiment
- Author
-
Kam Arnold, Grant Teply, D. Leon, R. Stompor, Neil Goeckner-Wald, Yuji Chinone, D. Beck, J. Borrill, H. El Bouhargani, Kevin T. Crowley, S. Takatori, Toshiya Namikawa, M. A. O. Aguilar Faúndez, Max Silva-Feaver, M. Navaroli, Christian L. Reichardt, J. Peloton, Tucker Elleflot, Josquin Errard, Darcy Barron, Davide Poletti, Osamu Tajima, K. Cheung, C. Verges, L. N. Lowry, N. Katayama, Federico Bianchini, Eric V. Linder, Giulio Fabbian, Praween Siritanasak, Yuto Minami, Brian Keating, Julien Carron, L. Howe, Shunsuke Adachi, Tomotake Matsumura, A. T. P. Pham, Y. Segawa, Carlo Baccigalupi, Aamir Ali, Akito Kusaka, Masaya Hasegawa, Frederick Matsuda, Aaron Lee, Chang Feng, Giuseppe Puglisi, Charles A. Hill, T. Fujino, Y. Akiba, D. Tanabe, S. Kikuchi, H. Nishino, Masashi Hazumi, Blake D. Sherwin, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), POLARBEAR, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Adachi, S, Aguilar Faundez, M, Akiba, Y, Ali, A, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Borrill, J, Carron, J, Cheung, K, Chinone, Y, Crowley, K, El Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Goeckner-Wald, N, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Katayama, N, Keating, B, Kikuchi, S, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Minami, Y, Namikawa, T, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stompor, R, Tajima, O, Takatori, S, Tanabe, D, Teply, G, Verges, C, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic Microwave Background Polarization ,Cosmic microwave background ,FOS: Physical sciences ,General Physics and Astronomy ,cosmic background radiation: polarization ,General Relativity and Quantum Cosmology (gr-qc) ,Gravitation and Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,B-mode: primordial ,Settore FIS/05 - Astronomia e Astrofisica ,QB0980 ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,QC ,QB ,Physics ,Settore FIS/05 ,Polarization (waves) ,inflation: model ,Computational physics ,POLARBEAR Experiment ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Instrumentation and Methods for Astrophysics ,Variance reduction ,Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5\sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments., Comment: Matches version published in Physical Review Letters
- Published
- 2019
- Full Text
- View/download PDF
42. A Measurement of the Degree Scale CMB B-mode Angular Power Spectrum with POLARBEAR
- Author
-
Julien Carron, M. A. Dobbs, C. Tsai, Dominic Beck, D. Leon, Ted Kisner, Aashrita Mangu, D. Boettger, Christian L. Reichardt, A. T. P. Pham, Kam Arnold, Akito Kusaka, Nicoletta Krachmalnicoff, T. Hamada, John Groh, S. Beckman, Josquin Errard, Ben Westbrook, Nathan Stebor, Neil Goeckner-Wald, Reijo Keskitalo, Daisuke Kaneko, Greg Jaehnig, Kevin T. Crowley, S. Takatori, Masaya Hasegawa, D. Tanabe, Tucker Elleflot, Giulio Fabbian, L. Howe, A. Cukierman, T. Fujino, Y. Zhou, S. Takakura, Eric V. Linder, Julian Borrill, N. Katayama, Yuki Inoue, Davide Poletti, Praween Siritanasak, Haruki Nishino, Yuto Minami, Yuji Chinone, Y. Segawa, H. El Bouhargani, Osamu Tajima, Aritoki Suzuki, N. W. Halverson, Darcy Barron, Masashi Hazumi, L. N. Lowry, G. Hall, Frederick Matsuda, Federico Bianchini, Scott Chapman, M. Navaroli, R. Stompor, Nicholas Galitzki, Clara Vergès, Maximiliano Silva-Feaver, Oliver Jeong, M. A. O. Aguilar Faúndez, Grant Teply, Brian Keating, Shunsuke Adachi, S. Kikuchi, K. Cheung, Adrian T. Lee, Giuseppe Puglisi, Charles A. Hill, Chang Feng, C. Baccigalupi, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Adachi, S, Aguilar Faundez, M, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmic microwave background radiation ,Cosmic inflation ,Cosmology ,Observational cosmology ,cosmological model ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,Astrophysics ,01 natural sciences ,Atomic ,Physical Chemistry ,Spectral line ,thermal ,Cosmic microwave background radiationCosmic inflationCosmologyObservational cosmology ,Particle and Plasma Physics ,polarization: power spectrum ,010303 astronomy & astrophysics ,media_common ,Physics ,Settore FIS/05 ,Polarization (waves) ,symbols ,astro-ph.CO ,power spectrum: angular dependence ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,data analysis method ,noise ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,media_common.quotation_subject ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,frequency: high ,cosmic background radiation: B-mode ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,statistical analysis ,0103 physical sciences ,Nuclear ,Planck ,cosmic background radiation: power spectrum ,inflation ,0105 earth and related environmental sciences ,gravitational radiation: primordial ,gravitational radiation ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Square degree ,detector: sensitivity ,Space and Planetary Science ,Sky ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $\mathrm{NET}_\mathrm{array}=23\, \mu \mathrm{K} \sqrt{\mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^\mathrm{h}12^\mathrm{m}0^\mathrm{s},-59^\circ18^\prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $\ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $\Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 \leq \ell \leq 600$. The data disfavor zero $C_\ell^{BB}$ at $2.2\sigma$ using this $\ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$\ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
- Published
- 2019
- Full Text
- View/download PDF
43. A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process regression
- Author
-
Arman Shafieloo, Eric V. Linder, Ryan E. Keeley, and Kai Liao
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Strong gravitational lensing ,FOS: Physical sciences ,Astronomy and Astrophysics ,Quasar ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Supernova ,symbols.namesake ,Space and Planetary Science ,Angular diameter ,0103 physical sciences ,Dark energy ,symbols ,Sensitivity (control systems) ,010303 astronomy & astrophysics ,Gaussian process ,0105 earth and related environmental sciences ,Hubble's law ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Strongly lensed quasar systems with time delay measurements provide "time delay distances", which are a combination of three angular diameter distances and serve as powerful tools to determine the Hubble constant $H_0$. However, current results often rely on the assumption of the $\Lambda$CDM model. Here we use a model-independent method based on Gaussian process to directly constrain the value of $H_0$. By using Gaussian process regression, we can generate posterior samples of unanchored supernova distances independent of any cosmological model and anchor them with strong lens systems. The combination of a supernova sample with large statistics but no sensitivity to $H_0$ with a strong lens sample with small statistics but $H_0$ sensitivity gives a precise $H_0$ measurement without the assumption of any cosmological model. We use four well-analyzed lensing systems from the state-of-art lensing program H0LiCOW and the Pantheon supernova compilation in our analysis. Assuming the Universe is flat, we derive the constraint $H_0=72.2 \pm 2.1\,$km/s/Mpc, a precision of $2.9\%$. Allowing for cosmic curvature with a prior of $\Omega_{k}=[-0.2,0.2]$, the constraint becomes $H_0=73.0_{-3.0}^{+2.8}\,$km/s/Mpc., Comment: 7 pages, 5 figures. Accepted for publication in ApJ Letters
- Published
- 2019
44. CMB-S4 Decadal Survey APC White Paper
- Author
-
Shaul Hanany, Georges Obied, J. Colin Hill, Thomas Cecil, Keith L. Thompson, Adam Anderson, Michael L. Brown, Doug Johnstone, Lorenzo Moncelsi, Erminia Calabrese, Howard Hui, Haruki Nishino, Sara M. Simon, James Kerby, Theodore Kisner, K. T. Story, Moritz Münchmeyer, Aritoki Suzuki, Joseph J. Mohr, Adrian T. Lee, Bradley R. Johnson, Sanah Bhimani, W. C. Jones, A. E. Lowitz, Nathan Whitehorn, Valentine Novosad, Marcelo A. Alvarez, Anze Slosar, Kam Arnold, Kevork N. Abazajian, Mustafa A. Amin, Evan Grohs, Abigail G. Vieregg, Siavash Yasini, Mathew S. Madhavacheril, Julien Carron, Ritoban Basu Thakur, Jean-Baptiste Melin, Shawn W. Henderson, Asantha Cooray, Chris Stoughton, Peter Timbie, Matteo Bonato, Ki Won Yoon, Blakesley Burkhart, Salman Habib, T. Natoli, Jacques Delabrouille, Carlo Baccigalupi, Victor Guarino, Steven W. Allen, Kathy Bailey, Aurelien A. Fraisse, Osamu Tajima, Silvia Galli, Denis Barkats, Antony Lewis, Ari Cukierman, Johannes Hubmayr, Marilena LoVerde, Erik Shirokoff, G. P. Holder, James G. Bartlett, James Yeck, Dale Li, N. W. Halverson, Graeme E. Addison, Adam Mantz, Matthieu Tristram, Laura Newburgh, Sarah Shandera, Alessandro Schillaci, Lindsey Bleem, Raphael Flauger, Marcel Schmittfull, S. Pandey, Kent D. Irwin, N. Kurita, Gregory S. Tucker, Matthew Hasselfield, Reijo Keskitalo, Levon Pogosian, Rachel S. Somerville, C. D. Sheehy, Srini Rajagopalan, Jesse Treu, Giuseppe Puglisi, Eric J. Baxter, John M Kovac, Emmanuel Schaan, Marcel Demarteau, Akito Kusaka, Suzanne T. Staggs, Kirit Karkare, Josquin Errard, Thomas Essinger-Hileman, Anne Lähteenmäki, Mattia Negrello, Toshiya Namikawa, Zhilei Xu, Mark Halpern, Simone Ferraro, Edo Berger, François R. Bouchet, Zeeshan Ahmed, Frederick Matsuda, Joseph Eimer, Alexandra S. Rahlin, W. L. Kimmy Wu, Giulio Fabbian, Chao-Lin Kuo, Christian L. Reichardt, Marius Millea, Stephen Padin, A. T. Crites, Joel Meyers, William Edwards, R. Gualtieri, Jason W. Henning, Arthur Kosowsky, Edward J. Wollack, W. L. Holzapfel, Michael D. Niemack, John E. Carlstrom, Rachel Bean, Cora Dvorkin, Ely D. Kovetz, David Alonso, Nicholas Battaglia, Sean Bryan, Gianfranco De Zotti, Anthony Challinor, Graca Rocha, Federico Nati, Jeffrey P. Filippini, Katrin Heitmann, Eric V. Linder, Antony A. Stark, Martin Nordby, Grant Teply, Benjamin Saliwanchik, Peter Adshead, P. Daniel Meerburg, Victoria Calafut, Francis-Yan Cyr-Racine, M.E. Huffer, Chris Bebek, Lloyd Knox, Masashi Hazumi, Eleonora Di Valentino, Natalie A. Roe, Nicholas Galitzki, Masaya Hasegawa, Sarah Kernovsky, Victor Buza, Darcy Barron, C. Pryke, Tijmen de Haan, Tony Mroczkowski, Vera Gluscevic, Andrea Zonca, Daniel Green, Kimberly K. Boddy, Srinivasan Raghunathan, Jeff McMahon, J. E. Ruhl, Steve Kuhlmann, Blake D. Sherwin, Joaquin Vieira, Peter S. Barry, Daisuke Nagai, Karen Byrum, Neelima Sehgal, Murdock Gilchriese, Marco Raveri, M. Tomasi, Douglas Scott, James J. Bock, Martin White, Chang Feng, Ken Ganga, Martina Gerbino, Suvodip Mukherjee, Radek Stompor, Gensheng Wang, B. Racine, Mark Reichanadter, Paul O'Connor, Alexander van Engelen, Kevin M. Huffenberger, Maria Salatino, Kathleen Harrington, Nobuhiko Katayama, Bradford Benson, Daniel Grin, Colin A. Bischoff, Charles R. Lawrence, Mark Vogelsberger, Shannon M. Duff, Scott Watson, Sebastian Bocquet, C. Umiltà, Andrei V. Frolov, C. L. Chang, Johanna Nagy, J. Richard Bond, Philip Daniel Mauskopf, B. Flaugher, Robert R. Caldwell, Mark J. Devlin, Renée Hlozek, Anirban Roy, Elena Pierpaoli, Amy N. Bender, Bruce Partridge, E. Y. Young, Matt Dobbs, Julian Borrill, Adriaan J. Duivenvoorden, Yuji Chinone, Mathieu Remazeilles, T. M. Crawford, Jon E. Gudmundsson, Hsiao-Mei Sherry Cho, and Gunther Haller
- Subjects
White paper ,010308 nuclear & particles physics ,0103 physical sciences ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Environmental science ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Project plan ,010306 general physics ,01 natural sciences - Abstract
We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey.
- Published
- 2019
- Full Text
- View/download PDF
45. Astro2020 APC White Paper: The MegaMapper: a z > 2 Spectroscopic Instrument for the Study of Inflation and Dark Energy
- Author
-
Mohamed Bouri, G. Tarle, Stephen A. Shectman, Jean-Paul Kneib, Christophe Yèche, Claire Poppett, Matthew Johns, Guillermo A. Blanc, Robert Besuner, Hee-Jong Seo, Marcelle Soares-Santos, Zachary Slepian, Jeffrey D. Crane, H. Heetderks, Anthony L. Piro, Patrick N. Jelinsky, Andreu Font-Ribera, Segev BenZvi, Luzius Kronig, Greg Aldering, Peter Nugent, Christophe Magneville, Dennis Zaritsky, Juna A. Kollmeier, Dragan Huterer, Michele Liguori, Nathalie Palanque-Delabrouille, Adam S. Bolton, Ashley J. Ross, David Rabinowitz, Ofer Lahav, Eric V. Linder, John S. Mulchaey, Lado Samushia, E. Buckley-Geer, Ian B. Thompson, Joshua D. Simon, Risa H. Wechsler, Peter Doel, David J. Brooks, L. Infante, G. Gutierrez, Dustin Lang, Paul Martini, Hans-Walter Rix, Michael Lampton, Xiaohui Fan, Stephen M. Kent, Julien Guy, C. Baltay, Monica Valluri, Anthony R. Pullen, Uroš Seljak, Martin White, Joseph H. Silber, Nick Konidaris, Michael J. Wilson, Christopher J. Miller, David J. Schlegel, Zheng Cai, Stephen Bailey, Jason X. Prochaska, Patrick McDonald, Mario Mateo, Dionysios Karagiannis, Emmanuel Schaan, Simone Ferraro, Michael Schubnell, Alexie Leauthaud, John Moustakas, Alex G. Kim, Adam D. Myers, Nikhil Padmanabhan, Jeffrey A. Newman, S. Ramirez, Arjun Dey, and Chris Bebek
- Subjects
White (horse) ,010308 nuclear & particles physics ,media_common.quotation_subject ,0103 physical sciences ,Art ,010306 general physics ,01 natural sciences ,Humanities ,media_common - Abstract
Author(s): Schlegel, David J; Kollmeier, Juna A; Aldering, Greg; Bailey, Stephen; Baltay, Charles; Bebek, Christopher; BenZvi, Segev; Besuner, Robert; Blanc, Guillermo; Bolton, Adam S; Bouri, Mohamed; Brooks, David; Buckley-Geer, Elizabeth; Cai, Zheng; Crane, Jeffrey; Dey, Arjun; Doel, Peter; Fan, Xiaohui; Ferraro, Simone; Font-Ribera, Andreu; Gutierrez, Gaston; Guy, Julien; Heetderks, Henry; Huterer, Dragan; Infante, Leopoldo; Jelinsky, Patrick; Johns, Matthew; Karagiannis, Dionysios; Kent, Stephen M; Kim, Alex G; Kneib, Jean-Paul; Kronig, Luzius; Konidaris, Nick; Lahav, Ofer; Lampton, Michael L; Lang, Dustin; Leauthaud, Alexie; Liguori, Michele; Linder, Eric V; Magneville, Christophe; Martini, Paul; Mateo, Mario; McDonald, Patrick; Miller, Christopher J; Moustakas, John; Myers, Adam D; Mulchaey, John; Newman, Jeffrey A; Nugent, Peter E; Palanque-Delabrouille, Nathalie; Padmanabhan, Nikhil; Piro, Anthony L; Poppett, Claire; Prochaska, Jason X; Pullen, Anthony R; Rabinowitz, David; Ramirez, Solange; Rix, Hans-Walter; Ross, Ashley J; Samushia, Lado; Schaan, Emmanuel; Schubnell, Michael; Seljak, Uros; Seo, Hee-Jong; Shectman, Stephen A; Silber, Joseph; Simon, Joshua D; Slepian, Zachary; Soares-Santos, Marcelle; Tarle, Greg; Thompson, Ian; Valluri, Monica; Wechsler, Risa H; White, Martin; Wilson, Michael J; Yeche, Christophe; Zaritsky, Dennis | Abstract: MegaMapper is a proposed ground-based experiment to measure Inflation parameters and Dark Energy from galaxy redshifts at 2
- Published
- 2019
- Full Text
- View/download PDF
46. Deployment of Polarbear-2A
- Author
-
Chang Feng, Radek Stompor, Takayuki Tomaru, Rolando Dünner, Josquin Errard, D. Tanabe, Praween Siritanasak, N. Stebor, Julien Carron, D. Leon, Davide Poletti, K. Cheung, C. Tsai, S. Takakura, Grant Teply, Yuto Minami, Yuki Inoue, Stephen M. Feeney, Yuji Chinone, Frederick Matsuda, D. Beck, Akito Kusaka, Y. Akiba, A. Suzuki, Nicoletta Krachmalnicoff, Adrian T. Lee, M. Aguilar Faúndez, J. Peloton, Colin Ross, Osamu Tajima, D. Boettger, B. Westbrook, A. T. P. Pham, M. Navaroli, N. W. Halverson, Y. Zhou, Federico Bianchini, A. Cukierman, Aashrita Mangu, Nobuhiko Katayama, T. Hamada, Tucker Elleflot, Y. Segawa, Masaya Hasegawa, G. Hall, Julian Borrill, Peter A. R. Ade, Eric V. Linder, Giulio Fabbian, H. Nishino, G. Jaehnig, Giuseppe Puglisi, Charles A. Hill, Shunsuke Adachi, S. Takatori, L. Howe, A. J. Gilbert, H. El-Bouhargani, Christian L. Reichardt, Kam Arnold, John Groh, Masashi Hazumi, Neil Goeckner-Wald, Nicholas Galitzki, S. Beckman, Brian Keating, M. A. Dobbs, Carlo Baccigalupi, Clara Vergès, Theodore Kisner, Reijo Keskitalo, Daisuke Kaneko, T. Fujino, S. Kikuchi, Darcy Barron, L. N. Lowry, Scott Chapman, Maximiliano Silva-Feaver, Oliver Jeong, Kevin T. Crowley, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Kaneko, D, Adachi, S, Ade, P, Aguilar Faundez, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Dunner, R, El-Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Ross, C, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tomaru, T, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[PHYS]Physics [physics] ,Settore FIS/05 ,Gravitational wave ,Cosmic microwave background ,Millimeter wave ,First light ,CMB ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,Microwave emission ,Settore FIS/05 - Astronomia e Astrofisica ,TES bolometer ,Planet ,Software deployment ,0103 physical sciences ,Extremely high frequency ,B-mode polarization ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Remote sensing - Abstract
International audience; Polarbear-2A is the first of three receivers in the Simons array, a cosmic microwave background experiment located on the Atacama Plateau in Chile. Polarbear-2A was deployed and achieved the first light in January 2019 by mapping the microwave emission from planet observations. Commissioning work is underway to prepare the receiver for science observations.
- Published
- 2019
- Full Text
- View/download PDF
47. Debiasing Cosmic Gravitational Wave Sirens
- Author
-
Arman Shafieloo, Benjamin L'Huillier, Eric V. Linder, and Ryan E. Keeley
- Subjects
Physics ,Length scale ,COSMIC cancer database ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Gravitational wave ,FOS: Physical sciences ,Astronomy and Astrophysics ,Allowance (engineering) ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Redshift ,symbols.namesake ,Supernova ,Space and Planetary Science ,Dark energy ,symbols ,Hubble's law ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Accurate estimation of the Hubble constant, and other cosmological parameters, from distances measured by cosmic gravitational wave sirens requires sufficient allowance for the dark energy evolution. We demonstrate how model independent statistical methods, specifically Gaussian process regression, can remove bias in the reconstruction of $H(z)$, and can be combined model independently with supernova distances. This allows stringent tests of both $H_0$ and $\Lambda$CDM, and can detect unrecognized systematics. We also quantify the redshift systematic control necessary for the use of dark sirens, showing that it must approach spectroscopic precision to avoid significant bias., Comment: 8 pages, 7 figures
- Published
- 2019
48. Finite energy but infinite entropy production from moving mirrors
- Author
-
Eric V. Linder and Michael R. R. Good
- Subjects
High Energy Physics - Theory ,Physics ,Entropy production ,FOS: Physical sciences ,Energy flux ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Relativistic particle ,High Energy Physics - Theory (hep-th) ,Radiative transfer ,Proper time ,Statistical physics ,Entropy (energy dispersal) ,Total energy ,Entropy flux - Abstract
Accelerating mirrors provide a simple conceptual laboratory for studying particle production and the relation between trajectory and particle, energy, and entropy fluxes. We focus on the relation between energy and entropy, studying some special cases with finite total energy but infinite integrated entropy (though the entropy flux may be finite at any particular moment). We present a new asymptotically static moving mirror trajectory with solvable beta Bogolyubov coefficients, total energy and fully relativistic particle count. The integrated entropy diverges despite finite global radiative particle and energy emission. Another class of models includes exponentially accelerated mirrors in proper time; one of its unexpected behaviors is finite energy emission but divergent entropy. We compare mirrors exponentially accelerated in other coordinates as well, showing their close relation and an interesting duality property., 10 pages, 8 figures, 2 tables
- Published
- 2019
- Full Text
- View/download PDF
49. Pole Dark Energy
- Author
-
Eric V. Linder
- Subjects
High Energy Physics - Theory ,Inflation (cosmology) ,Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,FOS: Physical sciences ,Kinetic term ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Swampland ,Kinetic energy ,01 natural sciences ,Stability (probability) ,Theoretical physics ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,Attractor ,Dark energy ,010306 general physics ,Quantum ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Theories with a pole in the kinetic term have been used to great effect in studying inflation, owing to their quantum stability and attractor properties. We explore the use of such pole kinetic terms in dark energy theories, finding an interesting link between thawing and freezing models, and the possibility of enhanced plateaus with ``superattractor''-like behavior. We assess the observational viability of pole dark energy, showing that simple models can give dark energy equation of state evolution with $w(z), Comment: 7 pages, 7 figures
- Published
- 2019
- Full Text
- View/download PDF
50. A 1000x Stabler Spectrograph using an Interferometer with Crossfaded Delays
- Author
-
Eric V. Linder and David J. Erskine
- Subjects
Point spread function ,Physics ,Interferometry ,Wavelength ,Optics ,business.industry ,business ,Adaptive optics ,Signal ,Spectrograph ,Diffraction grating ,Weighting - Abstract
We describe a data analysis strategy weighting signal components from at least two overlapping delays in an externally dispersed interferometer that reduces by 1000x the net shift in response to a wavelength drift in the disperser. © 2019 The Author(s)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.