Safran, Josip, Biologie des Plantes et Innovation - UR UPJV 3900 (BIOPI), Université de Picardie Jules Verne (UPJV)-Transfrontalière BioEcoAgro - UMR 1158 (BioEcoAgro), Université d'Artois (UA)-Université de Liège-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Université de Picardie Jules Verne, Jérôme Pelloux, and Fabien Sénéchal
Plant cell wall plays a key role in the control of cell elongation and differentiation as well as in defence against pathogens. Homogalacturonan (HG)-type pectin, one of the major components of the primary cell wall in dicotyledonous plants, comprises 1,4 linked α-D galacturonic acids (GalA) that can be methylesterified. HG is modified by homogalacturonan modifying enzymes (HGME), such as pectin methylesterase (PME), polygalacturonases (PG) and pectin/pectate lyases like (PLLs), that control their degree of methylesterification (DM) and polymerization (DP), respectively. Plant enzymes fine-tune the cell wall pectins during development, while pathogens’ enzymes degrade the pectin matrix to facilitate infection. These enzymes are encoded, in plants and pathogens, by large multigenic families, which questions the rationale for such abundance. Thus, to understand the biochemistry, catalytic mechanisms and structure/function relationships of these enzymes, we expressed and characterized isoforms from Verticillium dahliae (VdPME1, VdPG2 and VdPelB) and Arabidopsis thaliana (PGLR, ADPG2). VdPME1 had processive mode of action at pH 7 for demethylesterification, that could be related to the surface electrostatic properties of the protein, and which creates a substrate for VdPG2. VdPG2, act as an endo-enzyme and was most active at pH 5 and temperature of 50°C. VdPelB had surprising PNL-PL biochemical characteristics, being most active at alkaline pH in presence of Ca2+ ions and on high DM pectins. Using X-ray diffraction, we resolved the VdPelB structure at 1.2 Å and showed that it indeed differed from previously reported fungal enzymes. We further characterized Arabidopsis PGLR and ADPG2, whose expression overlaps in roots. LC-MS/MS analyses of digested pectins showed that the oligogalacturonides (OGs) released by both enzymes differed. To understand these differences in processivity, we resolved the structures of PGLR and ADPG2 at 1.3 and 2.03 Å, respectively. The two enzymes had right-handed parallel β-helix fold, characteristic for pectinases with the tunnel like active site allowing the release of OGs of distinct DP. If the amino acids at the active site were conserved, those in subsites differed, partly explaining substrate specificities. These first structures of plant PGs shed new light on the functional diversity of enzymes in plants and the differences with that of pathogens; La paroi cellulaire des plantes joue un rôle clé dans le contrôle de l'élongation et de la différenciation, ainsi que dans la défense des plantes face aux pathogènes. Les pectines de type homogalacturonanes (HG), un des composants majeurs de la paroi primaire des plantes dicotylédones, sont constituées d'acides galacturoniques (α-D GalA) liés en 1,4, qui peuvent être méthylestérifiés. Les HG sont modifiés par des enzymes telles que les pectine-méthylestérases (PME), les polygalacturonases (PG) et pectine-pectate lyases (PLL), qui contrôlent respectivement leur degré de méthylestérification (DM) et de polymérisation (DP). Alors que les enzymes de plantes permettent une régulation fine de la structure des pectines de la paroi lors du développement, celles de pathogènes sont impliquées dans la dégradation de celle-ci lors de l'infection. Elles sont par ailleurs codées par des familles multigéniques, ce qui questionne les raisons d'une telle abondance. Ainsi, pour comprendre leurs spécificités biochimiques, des isoformes de Verticillium dahliae (VdPME1, VdPG2 et VdPelB) et d'Arabidopsis thaliana (PGLR, ADPG2) ont été exprimées et caractérisées. VdPME1 déméthylestérifie les pectines de façon processive à pH 7, ce qui peut être relié au potentiel électrostatique de surface de la protéine, et créé des substrats préférentiels pour VdPG2, une endo-polygalacturonase. VdPelB présente des caractéristiques biochimiques intermédiaires entre une PNL et une PL : elle est plus active à pH alcalin et agit préférentiellement sur des pectines de fort DM en présence de calcium. La structure 3D de la protéine, ré’solue à 1,2 Å par diffraction au rayon X, permet de confirmer les particularités structurales de VdPelB en regard d'enzymes fongiques. PGLR et ADPG2, qui présentent un patron d'expression similaire dans les racines d'Arabidopsis, produisent des oligogalacturonides (OGs) distincts. Afin de comprendre ces différences de mode d'action, les structures 3D des protéines ont été déterminées à 1.3 (PGLR) et 2.03Å (ADPG2). Si les deux enzymes présentent une structure caractéristique des pectinases et un site actif conservé, la séquence particulière de leurs sous-sites, peut expliquer leurs différences de processivité. Ces structures de PG, les premières obtenues chez les plantes, permettent de comprendre leur diversité fonctionnelle ainsi que les différences majeures avec les enzymes de phytopathogènes