1. Microwave Breast Sensing via Deep Learning for Tumor Spatial Localization by Probability Maps
- Author
-
Marijn Borghouts, Michele Ambrosanio, Stefano Franceschini, Maria Maddalena Autorino, Vito Pascazio, and Fabio Baselice
- Subjects
microwave imaging ,neural networks ,tumor localization ,breast cancer ,early detection ,biomedical engineering ,Technology ,Biology (General) ,QH301-705.5 - Abstract
Background: microwave imaging (MWI) has emerged as a promising modality for breast cancer screening, offering cost-effective, rapid, safe and comfortable exams. However, the practical application of MWI for tumor detection and localization is hampered by its inherent low resolution and low detection capability. Methods: this study aims to generate an accurate tumor probability map directly from the scattering matrix. This direct conversion makes the probability map independent of specific image formation techniques and thus potentially complementary to any image formation technique. An approach based on a convolutional neural network (CNN) is used to convert the scattering matrix into a tumor probability map. The proposed deep learning model is trained using a large realistic numerical dataset of two-dimensional (2D) breast slices. The performance of the model is assessed through visual inspection and quantitative measures to assess the predictive quality at various levels of detail. Results: the results demonstrate a remarkably high accuracy (0.9995) in classifying profiles as healthy or diseased, and exhibit the model’s ability to accurately locate the core of a single tumor (within 0.9 cm for most cases). Conclusion: overall, this research demonstrates that an approach based on neural networks (NN) for direct conversion from scattering matrices to tumor probability maps holds promise in advancing state-of-the-art tumor detection algorithms in the MWI domain.
- Published
- 2023
- Full Text
- View/download PDF