66 results on '"Fairbrother DH"'
Search Results
2. Gas-Phase Functionalization of Phytoglycogen Nanoparticles and the Role of Reagent Structure in the Formation of Self-Limiting Hydrophobic Shells.
- Author
-
Phillips SG, Lankone AR, O'Hagan SS, Ganji N, and Fairbrother DH
- Subjects
- Esterification, Starch chemistry, Gases chemistry, Solubility, Polysaccharides chemistry, Surface Properties, Hydrophobic and Hydrophilic Interactions, Nanoparticles chemistry
- Abstract
A suite of acyl chloride structural isomers (C
6 H11 OCl) was used to effect gas-phase esterification of starch-based phytoglycogen nanoparticles (PhG NPs). The surface degree of substitution (DS) was quantified using X-ray photoelectron spectroscopy, while the overall DS was quantified using1 H NMR spectroscopy. Gas-phase modification initiates at the NP surface, with the extent of surface and overall esterification determined by both the reaction time and the steric footprint of the acyl chloride reagent. The less sterically hindered acyl chlorides diffuse fully into the NP interior, while the branched isomers are restricted to the near-surface region and form self-limiting hydrophobic shells, with shell thicknesses decreasing with increasing steric footprint. These differences in substitution were also reflected in the solubility of the NPs, with water solubility systematically decreasing with increasing DS. The ability to separately control both the surface and overall degree of functionalization and thereby form thin hydrophobic shells has significant implications for the development of polysaccharide-based biopolymers as nanocarrier delivery systems.- Published
- 2024
- Full Text
- View/download PDF
3. Electrostatics Control Nanoparticle Interactions with Model and Native Cell Walls of Plants and Algae.
- Author
-
Jeon SJ, Hu P, Kim K, Anastasia CM, Kim HI, Castillo C, Ahern CB, Pedersen JA, Fairbrother DH, and Giraldo JP
- Subjects
- Static Electricity, Cellulose metabolism, Plants metabolism, Pectins metabolism, Cell Wall metabolism, Arabidopsis metabolism, Nanoparticles
- Abstract
A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae ( Choleochaete ). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (-46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (-8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10
-9 ) and acoustic mass density (313.3 ± 63.3 ng cm-2 ) for the positively charged CDs than negative and neutral counterparts ( p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+ -induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact.- Published
- 2023
- Full Text
- View/download PDF
4. Role of Phosphorus Type and Biodegradable Polymer on Phosphorus Fate and Efficacy in a Plant-Soil System.
- Author
-
Sigmon LR, Vaidya SR, Thrasher C, Mahad S, Dimkpa CO, Elmer W, White JC, and Fairbrother DH
- Subjects
- Agriculture, Polymers, Fertilizers, Soil, Phosphorus
- Abstract
Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.
- Published
- 2023
- Full Text
- View/download PDF
5. Solvent-free bottom-up patterning of zeolitic imidazolate frameworks.
- Author
-
Miao Y, Lee DT, de Mello MD, Ahmad M, Abdel-Rahman MK, Eckhert PM, Boscoboinik JA, Fairbrother DH, and Tsapatsis M
- Abstract
Patterning metal-organic frameworks (MOFs) at submicrometer scale is a crucial yet challenging task for their integration in miniaturized devices. Here we report an electron beam (e-beam) assisted, bottom-up approach for patterning of two MOFs, zeolitic imidazolate frameworks (ZIF), ZIF-8 and ZIF-67. A mild pretreatment of metal oxide precursors with linker vapor leads to the sensitization of the oxide surface to e-beam irradiation, effectively inhibiting subsequent conversion of the oxide to ZIFs in irradiated areas, while ZIF growth in non-irradiated areas is not affected. Well-resolved patterns with features down to the scale of 100 nm can be achieved. This developer-free, all-vapor phase technique will facilitate the incorporation of MOFs in micro- and nanofabrication processes., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
6. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures.
- Author
-
Yu JC, Abdel-Rahman MK, Fairbrother DH, and McElwee-White L
- Abstract
Focused electron beam-induced deposition (FEBID) and focused ion beam-induced deposition (FIBID) are direct-write fabrication techniques that use focused beams of charged particles (electrons or ions) to create 3D metal-containing nanostructures by decomposing organometallic precursors onto substrates in a low-pressure environment. For many applications, it is important to minimize contamination of these nanostructures by impurities from incomplete ligand dissociation and desorption. This spotlight on applications describes the use of ultra high vacuum surface science studies to obtain mechanistic information on electron- and ion-induced processes in organometallic precursor candidates. The results are used for the mechanism-based design of custom precursors for FEBID and FIBID.
- Published
- 2021
- Full Text
- View/download PDF
7. Biodegradation of Functionalized Nanocellulose.
- Author
-
Frank BP, Smith C, Caudill ER, Lankone RS, Carlin K, Benware S, Pedersen JA, and Fairbrother DH
- Subjects
- Carboxylic Acids, Hydrogels, Cellulose, Polymers
- Abstract
Nanocellulose has attracted widespread interest for applications in materials science and biomedical engineering due to its natural abundance, desirable physicochemical properties, and high intrinsic mineralizability (i.e., complete biodegradability). A common strategy to increase dispersibility in polymer matrices is to modify the hydroxyl groups on nanocellulose through covalent functionalization, but such modification strategies may affect the desirable biodegradation properties exhibited by pristine nanocellulose. In this study, cellulose nanofibrils (CNFs) functionalized with a range of esters, carboxylic acids, or ethers exhibited decreased rates and extents of mineralization by anaerobic and aerobic microbial communities compared to unmodified CNFs, with etherified CNFs exhibiting the highest level of recalcitrance. The decreased biodegradability of functionalized CNFs depended primarily on the degree of substitution at the surface of the material rather than within the bulk. This dependence on surface chemistry was attributed not only to the large surface area-to-volume ratio of nanocellulose but also to the prerequisite surface interaction by microorganisms necessary to achieve biodegradation. Results from this study highlight the need to quantify the type and coverage of surface substituents in order to anticipate their effects on the environmental persistence of functionalized nanocellulose.
- Published
- 2021
- Full Text
- View/download PDF
8. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms.
- Author
-
Duraj-Thatte AM, Manjula-Basavanna A, Courchesne ND, Cannici GI, Sánchez-Ferrer A, Frank BP, Van't Hag L, Cotts SK, Fairbrother DH, Mezzenga R, and Joshi NS
- Subjects
- Biodegradation, Environmental, Bioengineering, Escherichia coli genetics, Escherichia coli metabolism, Proteins chemistry, Solvents, Tensile Strength, Biofilms, Plastics chemistry, Water chemistry
- Abstract
Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.
- Published
- 2021
- Full Text
- View/download PDF
9. Electron beam induced modification of ZIF-8 membrane permeation properties.
- Author
-
Miao Y, Lee DT, Dorneles de Mello M, Abdel-Rahman MK, Corkery P, Boscoboinik JA, Fairbrother DH, and Tsapatsis M
- Subjects
- Particle Size, Carbon Dioxide chemistry, Electrons, Imidazoles chemistry, Metal-Organic Frameworks chemistry, Methane chemistry, Nitrogen chemistry
- Abstract
Modification of the gas permeation properties of ZIF-8 membranes using electron beam irradiation is reported. 3.8 and 3.2 fold enhancements in ideal selectivity for CO2/N2 and CO2/CH4 can be achieved with less than 1 min exposure time.
- Published
- 2021
- Full Text
- View/download PDF
10. Influence of polymer type and carbon nanotube properties on carbon nanotube/polymer nanocomposite biodegradation.
- Author
-
Frank BP, Goodwin DG Jr, Bohutskyi P, Phan DC, Lu X, Kuwama L, Bouwer EJ, and Fairbrother DH
- Subjects
- Biodegradation, Environmental, Polymers, Nanocomposites, Nanotubes, Carbon
- Abstract
The interaction of anaerobic microorganisms with carbon nanotube/polymer nanocomposites (CNT/PNC) will play a major role in determining their persistence and environmental fate at the end of consumer use when these nano-enabled materials enter landfills and encounter wastewater. Motivated by the need to understand how different parameters (i.e., polymer type, microbial phenotype, CNT characteristics) influence CNT/PNC biodegradation rates, we have used volumetric biogas measurements and kinetic modeling to study biodegradation as a function of polymer type and CNT properties. In one set of experiments, oxidized multiwall carbon nanotubes (O-MWCNTs) with a range of CNT loadings 0-5% w/w were incorporated into poly-ε-caprolactone (PCL) and polyhydroxyalkanoates (PHA) matrices and subjected to biodegradation by an anaerobic microbial community. For each CNT/PNC, complete polymer biodegradation was ultimately observed, although the rate of biodegradation was inhibited above certain critical CNT loadings dependent upon the polymer type. Higher loadings of pristine MWCNTs were needed to decrease the rate of polymer biodegradation compared to O-MWCNTs, an effect ascribed principally to differences in CNT dispersion within the polymer matrices. Above certain CNT loadings, a CNT mat of similar shape to the initial PNC was formed after polymer biodegradation, while below this threshold, CNT aggregates fragmented in the media. In situations where biodegradation was rapid, methanogen growth was disproportionately inhibited compared to the overall microbial community. Analysis of the results obtained from this study indicates that the inhibitory effect of CNTs on polymer biodegradation rate is greatest under conditions (i.e., polymer type, microbial phenotype, CNT dispersion) where biodegradation of the neat polymer is slowest. This new insight provides a means to predict the environmental fate, persistence, and transformations of CNT-enabled polymer materials., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
11. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes.
- Author
-
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG Jr, Durkin DP, and Fairbrother DH
- Subjects
- Adsorption, Humans, Oxides chemistry, Oxides metabolism, Oxygen chemistry, Surface Properties, Water Pollutants, Chemical chemistry, Water Pollutants, Chemical pharmacology, Nanotubes, Carbon chemistry, Oxygen metabolism, Water Pollutants, Chemical metabolism
- Abstract
Carbon nanotubes (CNTs) have unique physical and chemical properties that drive their use in a variety of commercial and industrial applications. CNTs are commonly oxidized prior to their use to enhance dispersion in polar solvents by deliberately grafting oxygen-containing functional groups onto CNT surfaces. In addition, CNT surface oxides can be unintentionally formed or modified after CNTs are released into the environment through exposure to reactive oxygen species and/or ultraviolet irradiation. Consequently, it is important to understand the impact of CNT surface oxidation on the environmental fate, transport, and toxicity of CNTs. In this review, we describe the specific role of oxygen-containing functional groups on the important environmental behaviors of CNTs in aqueous media (e.g., colloidal stability, adsorption, and photochemistry) as well as their biological impact. We place special emphasis on the value of systematically varying and quantifying surface oxides as a route to identifying quantitative structure-property relationships. The role of oxygen-containing functional groups in regulating the efficacy of CNT-enabled water treatment technologies and the influence of surface oxides on other carbon-based nanomaterials are also evaluated and discussed.
- Published
- 2020
- Full Text
- View/download PDF
12. Unveiling the Synergistic Role of Oxygen Functional Groups in the Graphene-Mediated Oxidation of Glutathione.
- Author
-
Wang Y, Basdogan Y, Zhang T, Lankone RS, Wallace AN, Fairbrother DH, Keith JA, and Gilbertson LM
- Subjects
- Density Functional Theory, Oxidation-Reduction, Glutathione chemistry, Graphite chemistry, Oxygen chemistry
- Abstract
This is the first report of an atomic-scale direct oxidation mechanism of the thiol group in glutathione (GSH) by epoxides on graphene oxide (GO) at room temperature. The proposed reaction mechanism is determined using a coupled experimental and computational approach; active sites for the reaction are determined through examination of GO surface chemistry changes before and after exposure to GSH, and density functional theory (DFT) calculations determine the reaction barriers for the possible GO-GSH reaction schemes. The findings build on the previously established catalytic mechanism of GSH oxidation by graphenic nanocarbon surfaces and importantly identify the direct reaction mechanism which becomes important in low-oxygen environments. Experimental results suggest epoxides as the active sites for the reaction with GSH, which we confirm using DFT calculations of reaction barriers and further identify a synergism between the adjacent epoxide and hydroxyl groups on the GO surface. The direct oxidation mechanism at specific oxygen sites offers insight into controlling GO chemical reactivity through surface chemistry manipulations. This insight is critical for furthering our understanding of GO oxidative stress pathways in cytotoxicity as well as for providing rational material design for GO applications that can leverage this reaction.
- Published
- 2020
- Full Text
- View/download PDF
13. UV-Vis quantification of hydroxyl radical concentration and dose using principal component analysis.
- Author
-
Lankone RS, Deline AR, Barclay M, and Fairbrother DH
- Abstract
Hydroxyl radicals (∙OH) are powerful oxidizing species formed naturally in the environment or artificially produced to destroy contaminants in water treatment facilities. Their short lifetime and high reactivity, however, present a significant challenge to quantifying their concentration in solution. Herein, we developed a novel method to accurately measure the steady-state ∙OH concentration and total ∙OH dose produced during the UV photolysis of hydrogen peroxide (H
2 O2 ) by monitoring the loss of salicylic acid (SA). This information can be acquired using only benchtop UV-Vis spectroscopy, thus expanding measurement capabilities of resource-limited laboratories by eliminating the need for sophisticated instrumentation. To improve the precision with which the rate of SA loss was measured compared to previous methods, we applied principal component analysis (PCA) to fit the UV-Vis spectra collected during SA exposure to ∙OH. For our experimental conditions consisting of 12 mL solutions composed of ≤ 100 mM H2 O2 and 0.07 mM SA, the steady-state ∙OH concentration throughout the complete photolysis of H2 O2 was 1.33 × 10-11 M ± 1.14 × 10-12 M. This represents more than a ten-fold improvement in reducing the uncertainty of the measurement, with respect to narrowing the 95 % confidence interval, compared to a previous method that employed matrix analysis to process the spectra. Furthermore, the variance of the measured ∙OH concentrations was reduced by a factor of 100 compared to previous methods. Using PCA, the limit-of-detection and limit-of-quantitation for ∙OH are 5.33 × 10-13 M and 1.23 × 10-12 M, respectively. By developing quantitative relationships among ∙OH concentration, H2 O2 concentration, and UV exposure time, we also show how to calculate the equivalent exposure to ∙OH generated in natural aquatic environments by indirect photolysis. Finally, we use this methodology to demonstrate that the presence of suspended carbonaceous nanoparticles at concentrations as high as 300 ppm does not affect ∙OH concentration., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
14. Surface Curvature and Aminated Side-Chain Partitioning Affect Structure of Poly(oxonorbornenes) Attached to Planar Surfaces and Nanoparticles of Gold.
- Author
-
Rahnamoun A, Deline A, Zienkiewicz J, Bei R, Zheng Z, Rosenzweig Z, Fairbrother DH, and Hernandez R
- Abstract
Cationic amphiphilic polymers are often used to coat nanoparticles as they increase chemical stability in solution and exhibit membrane disruption activities. Among these, poly(oxonorbornenes) (PONs) are tunable membrane disruptors. They can be constructed with either one amine-terminated side chain and one hydrophobic alkyl side chain (PON-50) or two amine-terminated side chains (PON-100) on each repeat unit and can then be conjugated to gold nanoparticles using O-(2-carboxyethyl)-O'-(2-mercaptoethyl) heptaethylene glycol (HEG) spacers. While the amine content and membrane disruption activity of PONs can be controlled, the detailed structural properties of PONs conjugated to gold nanoparticles remain less understood. To address this, we performed molecular dynamics simulations of PON-50 and PON-100 to determine the nonbonded energies of PON structures as a function of amine composition. We found increasing energetic stabilization with decreasing amine composition. These results were consistent with experimental observations obtained with X-ray photoelectron spectroscopy (XPS) in which PON-100 was found to have the lowest conjugation efficiency to gold surfaces out of a range of PON amination ratios. Computationally obtained energetics suggest that replacing the aliphatic amine groups with aromatic amine groups can reverse this behavior and lead to more stable PON structures with increasing amine content. We also found that the curvature of the gold nanoparticle surface affects interactions between the surface and the amine groups of PON-50. Increasing curvature decreased these interactions, resulting in a smaller effective footprint of the HEG-PON-50 structure.
- Published
- 2020
- Full Text
- View/download PDF
15. Photochemical Transformations of Carbon Dots in Aqueous Environments.
- Author
-
Frank BP, Sigmon LR, Deline AR, Lankone RS, Gallagher MJ, Zhi B, Haynes CL, and Fairbrother DH
- Subjects
- Luminescence, Nitrogen, Sunlight, Water, Carbon, Quantum Dots
- Abstract
The unique physicochemical and luminescent properties of carbon dots (CDs) have motivated research efforts toward their incorporation into commercial products. Increased use of CDs will inevitably lead to their release into the environment where their fate and persistence will be influenced by photochemical transformations, the nature of which is poorly understood. This knowledge gap motivated the present investigation of the effects of direct and indirect photolysis on citric and malic acid-based CDs. Our results indicate that natural sunlight will rapidly and non-destructively photobleach CDs into optically inactive carbon nanoparticles. We demonstrate that after photobleaching,
• OH exposure degrades CDs in a two-step process that will span several decades in natural waters. The first step, occurring over several years of• OH exposure, involves depolymerization of the CD structure, characterized by volatilization of over 60% of nascent carbon atoms and the oxidation of nitrogen atoms into nitro groups. This is followed by a slower oxidation of residual carbon atoms first into carboxylic acids and then volatile carbon species, while nitrogen atoms are oxidized into nitrate ions. Considered alongside related CD studies, our findings suggest that the environmental behavior of CDs will be strongly influenced by the molecular precursors used in their synthesis.- Published
- 2020
- Full Text
- View/download PDF
16. Identifying and Rationalizing the Differing Surface Reactions of Low-Energy Electrons and Ions with an Organometallic Precursor.
- Author
-
Thorman RM, Matsuda SJ, McElwee-White L, and Fairbrother DH
- Abstract
Surface reactions of electrons and ions with physisorbed organometallic precursors are fundamental processes in focused electron and ion beam-induced deposition (FEBID and FIBID, respectively) of metal-containing nanostructures. Markedly different surface reactions occur upon exposure of nanometer-scale films of (η
5 -Cp)Fe(CO)2 Re(CO)5 to low-energy electrons (500 eV) compared to argon ions (860 eV). Electron-induced surface reactions are initiated by electronic excitation and fragmentation of (η5 -Cp)Fe(CO)2 Re(CO)5 , causing half of the CO ligands to desorb. Residual CO ligands decompose under further electron irradiation. In contrast, Ar+ -induced surface reactions proceed by an ion-molecule momentum/energy transfer process, causing the desorption of all CO ligands without significant ion-induced precursor desorption. This initial decomposition step is followed by ion-induced sputtering of the deposited atoms. The fundamental insights derived from this study can be used not only to rationalize the composition of deposits made by FEBID and FIBID but also to inform the choice of a charged particle deposition strategy and the design of new precursors for these emerging nanofabrication tools.- Published
- 2020
- Full Text
- View/download PDF
17. Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering.
- Author
-
Lankone RS, Ruggiero E, Goodwin DG Jr, Vilsmeier K, Mueller P, Pulbere S, Challis K, Bi Y, Westerhoff P, Ranville J, Fairbrother DH, Sung LP, and Wohlleben W
- Abstract
Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering., Competing Interests: Declaration of competing interest The authors declare the following financial interest/personal relationship which may be considered as potential competing interest: ER, WW, KB, PM, SP, are employees of BASF, a company that produces and markets nanomaterials.
- Published
- 2020
18. Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber.
- Author
-
Lankone RS, Challis K, Pourzahedi L, Durkin DP, Bi Y, Wang Y, Garland MA, Brown F, Hristovski K, Tanguay RL, Westerhoff P, Lowry G, Gilbertson LM, Ranville J, and Fairbrother DH
- Abstract
Commercially available lumber, pressure-treated with micronized copper azole (MCA), has largely replaced other inorganic biocides for residential wood treatment in the USA, yet little is known about how different outdoor environmental conditions impact the release of ionic, nano-scale, or larger (micron-scale) copper from this product. Therefore, we weathered pressure treated lumber for 18 months in five different climates across the continental United States. Copper release was quantified every month and local weather conditions were recorded continuously to determine the extent to which local climate regulated the release of copper from this nano-enabled product during its use phase. Two distinct release trends were observed: In cooler, wetter climates release occurred primarily during the first few months of weathering, as the result of copper leaching from surface/near-surface areas. In warmer, drier climates, less copper was initially released due to limited precipitation. However, as the wood dried and cracked, the exposed copper-bearing surface area increased, leading to increased copper release later in the product lifetime. Single-particle-ICP-MS results from laboratory prepared MCA-wood leachate solutions indicated that a) the predominant form of released copper passed through a filter smaller than 0.45 micrometers and b) released particles were largely resistant to dissolution over the course of 6 wks. Toxicity Characteristic Leaching Procedure (TCLP) testing was conducted on nonweathered and weathered MCA-wood samples to simulate landfill conditions during their end-of-life (EoL) phase and revealed that MCA wood released <10% of initially embedded copper. Findings from this study provide data necessary to complete a more comprehensive evaluation of the environmental and human health impacts introduced through release of copper from pressure treated lumber utilizing life cycle assessment (LCA)., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
19. Next-Generation Complex Metal Oxide Nanomaterials Negatively Impact Growth and Development in the Benthic Invertebrate Chironomus riparius upon Settling.
- Author
-
Niemuth NJ, Curtis BJ, Hang MN, Gallagher MJ, Fairbrother DH, Hamers RJ, and Klaper RD
- Subjects
- Animals, Geologic Sediments, Invertebrates, Metals, Oxides, Chironomidae, Nanostructures, Water Pollutants, Chemical
- Abstract
Most studies of nanomaterial environmental impacts have focused on relatively simple first-generation nanomaterials, including metals or metal oxides (e.g., Ag, ZnO) for which dissolution largely accounts for toxicity. Few studies have considered nanomaterials with more complex compositions, such as complex metal oxides, which represent an emerging class of next-generation nanomaterials used in commercial products at large scales. Importantly, many nanomaterials are not colloidally stable in aqueous environments and will aggregate and settle, yet most studies use pelagic rather than benthic-dwelling organisms. Here we show that exposure of the model benthic species Chironomus riparius to lithium cobalt oxide (Li
x Co1- x O2 , LCO) and lithium nickel manganese cobalt oxide (Lix Niy Mnz Co1- y- z O2 , NMC) at 10 and 100 mg·L-1 caused 30-60% declines in larval growth and a delay of 7-25 d in adult emergence. A correlated 41-48% decline in larval hemoglobin concentration and related gene expression changes suggest a potential adverse outcome pathway. Metal ions released from nanoparticles do not cause equivalent impacts, indicating a nanospecific effect. Nanomaterials settled within 2 days and indicate higher cumulative exposures to sediment organisms than those in the water column, making this a potentially realistic environmental exposure. Differences in toxicity between NMC and LCO indicate compositional tuning may reduce material impact.- Published
- 2019
- Full Text
- View/download PDF
20. Design, Synthesis, and Evaluation of CF 3 AuCNR Precursors for Focused Electron Beam-Induced Deposition of Gold.
- Author
-
Carden WG, Thorman RM, Unlu I, Abboud KA, Fairbrother DH, and McElwee-White L
- Abstract
The Au(I) complexes CF
3 AuCNMe (1a) and CF3 AuCNt Bu (1b) were investigated as Au(I) precursors for focused electron beam-induced deposition (FEBID) of metallic gold. Both 1a and 1b are sufficiently volatile for sublimation at 125 ± 1 mTorr in the temperature range of roughly 40-50 °C. Electron impact mass spectra of 1a-b show gold-containing ions resulting from fragmenting the CF3 group and the CNR ligand, whereas in negative chemical ionization of 1a-b, the major fragment results from dealkylation of the CNR ligand. Steady-state depositions from 1a in an Auger spectrometer produce deposits with a similar gold content to the commercial precursor Me2 Au(acac) (3) deposited under the same conditions, while the gold content from 1b is less. These results enable us to suggest the likely fate of the CF3 and CNR ligands during FEBID.- Published
- 2019
- Full Text
- View/download PDF
21. β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water.
- Author
-
Alzate-Sánchez DM, Ling Y, Li C, Frank BP, Bleher R, Fairbrother DH, Helbling DE, and Dichtel WR
- Abstract
Organic contaminants at low concentrations, known as micropollutants, are a growing threat to water resources. Implementing novel adsorbents capable of removing micropollutants during packed-bed adsorption is desirable for rapid water purification and other efficient separations. We previously developed porous polymers based on cyclodextrins that demonstrated rapid uptake and high affinity for dozens of micropollutants (MPs) in batch experiments. However, these polymers are typically produced as powders with irregular particle size distributions in the range of tens of micrometers. In this powdered form, cyclodextrin polymers cannot be implemented in packed-bed adsorption processes because the variable particle sizes yield insufficient porosity packing and consequently generate high back-pressure. Here we demonstrate a facile approach to remove micropollutants from water in a continuous manner by polymerizing cyclodextrin polymer networks onto cellulose microcrystals to provide a core/shell structure. Batch adsorption experiments demonstrate rapid pollutant uptake and high accessibility of the cyclodextrins on the adsorbent. Similarly, column experiments demonstrate rapid uptake of a model pollutant with minimal back-pressure, demonstrating potential for use in packed-bed adsorption processes. Furthermore, the pollutant-saturated columns were regenerated using methanol and reused three times with almost no change in performance. Column experiments conducted with a mixture of 15 micropollutants at environmentally relevant concentrations demonstrated that removal was determined by the affinity of each micropollutant for cyclodextrin polymers. The cyclodextrin polymer grafted onto cellulose microcrystals is more resistant to both anaerobic and aerobic biodegradation as compared to cyclodextrins and unmodified cellulose crystals, presumably due to the aromatic cross-linkers, demonstrating persistence. Collectively, the findings from this study demonstrate a general strategy to incorporate novel cyclodextrin adsorbents onto cellulose substrates to enable rapid and efficient removal of micropollutants during packed-bed adsorption as well as their promising long-term stability and regeneration capabilities.
- Published
- 2019
- Full Text
- View/download PDF
22. The role of the dihedral angle and excited cation states in ionization and dissociation of mono-halogenated biphenyls; a combined experimental and theoretical coupled cluster study.
- Author
-
Barclay M, Bjornsson R, Cipriani M, Terfort A, Fairbrother DH, and Ingólfsson O
- Abstract
We present a combined theoretical and experimental study on the ionization and primary fragmentation channels of the mono-halogenated biphenyls; 2-chlorobiphenyl, 2-bromobiphenyl and 2-iodobiphenyl. The ionization energies (IEs) of the 2-halobiphenyls and the appearance energies (AEs) of the principal fragments are determined through electron impact ionization, while quantum mechanical calculations at the coupled cluster level of theory are used to elucidate the observed processes and the associated dynamics. The primary fragmentation channels are the direct loss of the halogen upon ionization, the loss of the respective hydrogen halides (HX) as well as loss of the hydrogen halide and an additional hydrogen. We find that the dihedral angle strongly influences the relative potential energy of the neutral and the cation on their respective ground state surfaces, an effect caused by the strong influence of the nuclear motion on the conjugation between the phenyl rings. For the principal dissociative ionization channels from the mono-halogenated biphenyls we reason that these can not be described as statistical decay from the ground state cation, but must rather be understood as direct, state-selective processes from specific excited cationic states characterized through local ionization of either the halogenated or the non-substituted phenyl ring.
- Published
- 2019
- Full Text
- View/download PDF
23. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution.
- Author
-
Brown RP, Gallagher MJ, Fairbrother DH, and Rosenzweig Z
- Subjects
- Cadmium chemistry, Chemistry Techniques, Synthetic, Luminescence, Models, Molecular, Molecular Conformation, Nanotechnology, Solutions, Stearic Acids chemistry, Indium chemistry, Phosphines chemistry, Quantum Dots chemistry, Sulfides chemistry, Zinc Compounds chemistry
- Abstract
This study advances the chemical research community toward the goal of replacing toxic cadmium-containing quantum dots (QDs) with environmentally benign InP QDs. The InP QD synthesis uniquely combines the previously reported use of InP magic-sized clusters (MSCs) as a single-source precursor for indium and phosphorus to form InP QDs, with zinc incorporation and subsequent ZnS shelling, to form InPZn/ZnS QDs with luminescence properties comparable to those of commonly used cadmium-containing luminescent QDs. The resulting InPZn/ZnS QDs have an emission quantum yield of about 50% across a broad range of emission peak wavelengths and emission peaks averaging 50 nm fwhm. The emission peak wavelength can be easily tuned by varying the Zn/In ratio in the reaction mixture. The strategy of using zinc stearate to tune the emission properties is advantageous as it does not lead to a loss of emission quantum yield or emission peak broadening. Although the initial optical properties of InP and InPZn/ZnS QDs are promising, thermal stability measurements of InPZn QDs show significant degradation in the absence of a shell compared to the CdSe QDs particularly at increased temperature in the presence of oxygen, which is indicative of thermal oxidation. There is no significant difference in the degradation rate of InP QDs made from molecular precursors and from MSCs. Additionally, the emission intensity and quantum yield of InPZn/ZnS QDs when purified and diluted in organic solvents under ambient conditions decrease significantly compared to those of CdSe/ZnS QDs. This indicates instability of the ZnS shell when prepared by common literature methods. This must be improved to realize high-quality, robust Cd-free QDs with the capability of replacing CdSe QDs in QD technologies.
- Published
- 2018
- Full Text
- View/download PDF
24. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.
- Author
-
Phan DC, Goodwin DG Jr, Frank BP, Bouwer EJ, and Fairbrother DH
- Subjects
- Aerobiosis, Biodegradation, Environmental, Nanocomposites, Nanotubes, Carbon, Polymers metabolism
- Abstract
The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20 days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation., (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
25. Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation.
- Author
-
Zhi B, Cui Y, Wang S, Frank BP, Williams DN, Brown RP, Melby ES, Hamers RJ, Rosenzweig Z, Fairbrother DH, Orr G, and Haynes CL
- Abstract
As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C
18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.- Published
- 2018
- Full Text
- View/download PDF
26. Structure-Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles.
- Author
-
Zheng Z, Saar J, Zhi B, Qiu TA, Gallagher MJ, Fairbrother DH, Haynes CL, Lienkamp K, and Rosenzweig Z
- Subjects
- Dynamic Light Scattering, Microscopy, Electron, Transmission, Norbornanes chemistry, Structure-Activity Relationship, Amines chemistry, Gold chemistry, Metal Nanoparticles chemistry
- Abstract
The article describes the interactions between poly (oxonorbornenes) (PONs)-coated gold nanoparticles (AuNPs) with phospholipid vesicles and shows that the strength of these interactions strongly depends on the molecular structure of PONs, specifically their amine/alkyl side chain ratio. PONs, which are a recently introduced class of cationic polyelectrolytes, can be systematically varied to control the amine/alkyl ratio and to explore how the chemical character of cationic polyelectrolytes affects their interactions and the interactions of their nanoparticle conjugates with model membranes. Our study shows that increasing the amine/alkyl ratio by copolymerization of diamine and 1:1 amine/butyl oxonorbornene monomers impacts the availability of PONs amine/ammonium functional groups to interact with phospholipid membranes, the PONs surface coverage on AuNPs, and the membrane disruption activity of free PONs and PONs-AuNPs. The study makes use of transmission electron microscopy, UV-vis spectroscopy, dynamic light scattering, thermogravimetric analysis, fluorescamine assay, ζ-potential measurements, and X-ray photoelectron spectroscopy measurements to characterize the PONs-AuNPs' size, size distribution, aggregation state, surface charge, and PONs surface coverage. The study also makes use of real-time fluorescence measurements of fluorescent liposomes before and during exposure to free PONs and PONs-AuNPs to determine the membrane disruption activity of free PONs and PONs-AuNPs. As commonly observed with cationic polyelectrolytes, both free PONs and PONs-AuNPs display significant membrane disruption activity. Under conditions where the amine/alkyl ratio in PONs maximizes PONs surface coverage, the membrane disruption activity of PONs-AuNPs is about 10-fold higher than the membrane disruption activity of the same free PONs. This is attributed to the increased local concentration of ammonium ions when PONs-AuNPs interact with the liposome membranes. In contrast, the hydrophobicity of amine-rich PONs, which are made for example from diamine oxonorbornene monomers, is significantly reduced. This leads to a significant reduction of PON surface coverage on AuNPs and in turn to a significant decrease in membrane disruption.
- Published
- 2018
- Full Text
- View/download PDF
27. Electron induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 , a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID).
- Author
-
Unlu I, Spencer JA, Johnson KR, Thorman RM, Ingólfsson O, McElwee-White L, and Fairbrother DH
- Abstract
Electron-induced surface reactions of (η
5 -C5 H5 )Fe(CO)2 Mn(CO)5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η5 -C5 H5 )Fe(CO)2 Mn(CO)5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η5 -C5 H5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η5 -C5 H5 )Fe(CO)2 Mn(CO)5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.- Published
- 2018
- Full Text
- View/download PDF
28. Low energy electron-induced decomposition of (η 5 -Cp)Fe(CO) 2 Mn(CO) 5 , a potential bimetallic precursor for focused electron beam induced deposition of alloy structures.
- Author
-
Thorman RM, Unlu I, Johnson K, Bjornsson R, McElwee-White L, Fairbrother DH, and Ingólfsson O
- Abstract
The production of alloyed nanostructures presents a unique problem in focused electron beam induced deposition (FEBID). Deposition of such structures has historically involved the mixing of two or more precursor gases in situ or via multiple channel gas injection systems, thereby making the production of precise, reproducible alloy compositions difficult. Promising recent efforts to address this problem have involved the use of multi-centred, heterometallic FEBID precursor species. In this vein, we present here a study of low-energy electron interactions with cyclopentadienyl iron dicarbonyl manganese pentacarbonyl ((η
5 -Cp)Fe(CO)2 Mn(CO)5 ), a bimetallic species with a polyhapto ligand (Cp) and seven terminal carbonyl ligands. Gas phase studies and coupled cluster calculations of observed low-energy electron-induced reactions were conducted in order to predict the performance of this precursor in FEBID. In dissociative electron attachment, we find single CO loss and cleavage of the Fe-Mn bond, leading to the formation of [Mn(CO)5 ]- , to be the two dominant channels. Contributions through further CO loss from the intact core and the formation of [Mn(CO)4 ]- are minor channels. In dissociative ionization (DI), the fragmentation is significantly more extensive and the DI spectra are dominated by fragments formed through the loss of 5 and 6 CO ligands, and fragments formed through cleavage of the Fe-Mn bond accompanied by substantial CO loss. The gas phase fragmentation channels observed are discussed in relation to the underlying processes and their energetics, and in context to related surface studies and the likely performance of this precursor in FEBID.- Published
- 2018
- Full Text
- View/download PDF
29. Electron interactions with the heteronuclear carbonyl precursor H 2 FeRu 3 (CO) 13 and comparison with HFeCo 3 (CO) 12 : from fundamental gas phase and surface science studies to focused electron beam induced deposition.
- Author
-
P RKT, Weirich P, Hrachowina L, Hanefeld M, Bjornsson R, Hrodmarsson HR, Barth S, Fairbrother DH, Huth M, and Ingólfsson O
- Abstract
In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H
2 FeRu3 (CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3 (CO)12 , metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2 FeRu3 (CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2 FeRu3 (CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2 FeRu3 (CO)13 as compared to the structurally similar HFeCo3 (CO)12 .- Published
- 2018
- Full Text
- View/download PDF
30. Biodegradation of Carbon Nanotube/Polymer Nanocomposites using a Monoculture.
- Author
-
Goodwin DG Jr, Boyer I, Devahif T, Gao C, Frank BP, Lu X, Kuwama L, Gordon TB, Wang J, Ranville JF, Bouwer EJ, and Fairbrother DH
- Subjects
- Biodegradation, Environmental, Polymers, Pseudomonas aeruginosa, Nanocomposites, Nanotubes, Carbon
- Abstract
The biodegradation rates of carbon nanotube (CNT)/ polymer nanocomposites (PNCs) containing poly-ε-caprolactone (PCL) were investigated using Pseudomonas aeruginosa, a microorganism commonly found in the environment. CNT/PCL nanocomposite mass loss profiles revealed that the rate of PCL matrix biodegradation decreased systematically as the CNT loading increased from 0.1 to 10% w/w. Addition of even a low CNT loading (<1% w/w) caused the CNT/PCL biodegradation rate constant to decrease by more than 50%. Similar trends in biodegradation rate were observed for both pristine and oxidized multiwall CNTs embedded in PCL. During PCL matrix biodegradation, CNT accumulation was observed at the surface of CNT/PCL nanocomposites and single particle inductively coupled-mass spectrometry experiments revealed no measurable CNT release to the culture fluid. Experimental data indicated that biodegradation proceeded as a result of biofilm formation on the CNT/PCL nanocomposites and decreased as a function of CNT loading due to the cytotoxicity of CNTs toward P. aeruginosa and the physical barrier presented by the surface-accumulated CNTs to the underlying PCL substrate. As the CNT loading in the CNT/PCL nanocomposites increased, the microbial proliferation of planktonic cells in the surrounding media also decreased as did the biodegradation rate of PCL samples present in the same reactors. Results from this study demonstrate that the inclusion of CNTs into polymer matrices could increase the environmental persistence of polymers in lakes, landfills, and surface waters.
- Published
- 2018
- Full Text
- View/download PDF
31. Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
- Author
-
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingólfsson O, and Gölzhäuser A
- Abstract
The determination of the negative ion yield of 2'-chloro-1,1'-biphenyl (2-Cl-BP), 2'-bromo-1,1'-biphenyl (2-Br-BP) and 2'-iodo-1,1'-biphenyl (2-I-BP) upon dissociative electron attachment (DEA) at an electron energy of 0 eV revealed cross section values that were more than ten times higher for iodide loss from 2-I-BP than for the other halogenides from the respective biphenyls (BPs). Comparison with dissociative ionization mass spectra shows that the ratio of the efficiency of electron impact ionization induced fragmentation of 2-I-BP, 2-Br-BP, and 2-Cl-BP amounts to approximately 1:0.7:0.6. Inspired by these results, self-assembled monolayers (SAMs) of the respective biphenyl-4-thiols, 2-Cl-BPT, 2-Br-BPT, 2-I-BPT as well as BPT, were grown on a Au(111) substrate and exposed to 50 eV electrons. The effect of electron irradiation was investigated by X-ray photoelectron spectroscopy (XPS), to determine whether the high relative DEA cross section for iodide loss from 2-I-BPT as compared to 2-Br-BP and 2-Cl-BP is reflected in the cross-linking efficiency of SAMs made from these materials. Such sensitization could reduce the electron dose needed for the cross-linking process and may thus lead to a significantly faster conversion of the respective SAMs into carbon nanomembranes (CNMs) without the need for an increased current density. XPS data support the notation that DEA sensitization may be used to achieve more efficient electron-induced cross-linking of SAMs, revealing more than ten times faster cross-linking of 2-I-BPT SAMs compared to those made from the other halogenated biphenyls or from native BPT at the same current density. Furthermore, the transfer of a freestanding membrane onto a TEM grid and the subsequent investigation by helium ion microscopy (HIM) verified the existence of a mechanically stable CNM created from 2-I-BPT after exposure to an electron dose as low as 1.8 mC/cm
2 . In contrast, SAMs made from BPT, 2-Cl-BPT and 2-Br-BPT did not form stable CNMs after a significantly higher electron dose of 9 mC/cm2 .- Published
- 2017
- Full Text
- View/download PDF
32. Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition.
- Author
-
Spencer JA, Barclay M, Gallagher MJ, Winkler R, Unlu I, Wu YC, Plank H, McElwee-White L, and Fairbrother DH
- Abstract
The ability of electrons and atomic hydrogen (AH) to remove residual chlorine from PtCl
2 deposits created from cis -Pt(CO)2 Cl2 by focused electron beam induced deposition (FEBID) is evaluated. Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDS) measurements as well as thermodynamics calculations support the idea that electrons can remove chlorine from PtCl2 structures via an electron-stimulated desorption (ESD) process. It was found that the effectiveness of electrons to purify deposits greater than a few nanometers in height is compromised by the limited escape depth of the chloride ions generated in the purification step. In contrast, chlorine atoms can be efficiently and completely removed from PtCl2 deposits using AH, regardless of the thickness of the deposit. Although AH was found to be extremely effective at chemically purifying PtCl2 deposits, its viability as a FEBID purification strategy is compromised by the mobility of transient Pt-H species formed during the purification process. Scanning electron microscopy data show that this results in the formation of porous structures and can even cause the deposit to lose structural integrity. However, this phenomenon suggests that the use of AH may be a useful strategy to create high surface area Pt catalysts and may reverse the effects of sintering. In marked contrast to the effect observed with AH, densification of the structure was observed during the postdeposition purification of PtCx deposits created from MeCpPtMe3 using atomic oxygen (AO), although the limited penetration depth of AO restricts its effectiveness as a purification strategy to relatively small nanostructures.- Published
- 2017
- Full Text
- View/download PDF
33. Environmental Processes at the Solid-Liquid Interface: What Constitutes New Physical Insights?
- Author
-
Fairbrother DH and Geiger FM
- Published
- 2017
- Full Text
- View/download PDF
34. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.
- Author
-
Shi W, Li J, Polsen ES, Oliver CR, Zhao Y, Meshot ER, Barclay M, Fairbrother DH, Hart AJ, and Plata DL
- Abstract
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O
2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O2 , and this effect was mitigated by high H2 concentrations and not due to water vapor (as confirmed in O2 -free water addition experiments), supporting the importance of O2 specifically. Further characterization of the interface between the Fe catalyst and Al2 O3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O2 and H2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.- Published
- 2017
- Full Text
- View/download PDF
35. Resonantly Enhanced Nonlinear Optical Probes of Oxidized Multiwalled Carbon Nanotubes at Supported Lipid Bilayers.
- Author
-
McGeachy AC, Olenick LL, Troiano JM, Lankone RS, Melby ES, Kuech TR, Ehimiaghe E, Fairbrother DH, Pedersen JA, and Geiger FM
- Subjects
- Oxidation-Reduction, Fluorescent Dyes chemistry, Lipid Bilayers chemistry, Nanotubes, Carbon chemistry
- Abstract
With production of carbon nanotubes surpassing billions of tons per annum, concern about their potential interactions with biological systems is growing. Herein, we utilize second harmonic generation spectroscopy, sum frequency generation spectroscopy, and quartz crystal microbalance with dissipation monitoring to probe the interactions between oxidized multiwalled carbon nanotubes (O-MWCNTs) and supported lipid bilayers composed of phospholipids with phosphatidylcholine head groups as the dominant component. We quantify O-MWCNT attachment to supported lipid bilayers under biogeochemically relevant conditions and discern that the interactions occur without disrupting the structural integrity of the lipid bilayers for the systems probed. The extent of O-MWCNT sorption was far below a monolayer even at 100 mM NaCl and was independent of the chemical composition of the supported lipid bilayer.
- Published
- 2017
- Full Text
- View/download PDF
36. Diffusing Colloidal Probes of kT-Scale Biomaterial-Cell Interactions.
- Author
-
Duncan GA, Gerecht S, Fairbrother DH, and Bevan MA
- Subjects
- Cell Line, Tumor, Dextrans, Diffusion, Humans, Hyaluronic Acid, Polyethylene Glycols, Serum Albumin, Bovine, Surface Properties, Biocompatible Materials, Cell Communication, Colloids chemistry
- Abstract
In the optimization of applied biomaterials, measurements of their interactions with cell surfaces are important to understand their influence on specific and nonspecific cell surface adhesion, internalization pathways, and toxicity. In this study, a novel approach using dark field video microscopy with combined real-time particle and cell tracking allows the trajectories of biomaterial-coated colloids to be monitored in relation to their distance from cell perimeters. Dynamic and statistical mechanical analyses enable direct measurement of colloid-cell surface association lifetimes and interaction potentials mediated by biomaterials. Our analyses of colloidal transport showed polyethylene glycol (PEG) and bovine serum albumin (BSA) lead to net repulsive interactions with cell surfaces, while dextran and hyaluronic acid (HA) lead to reversible and irreversible association to the cell surface, respectively. Our results demonstrate how diffusing colloidal probes can be used for nonobtrusive, sensitive measurements of biomaterial-cell surface interactions important to therapeutics, diagnostics, and tissue engineering.
- Published
- 2016
- Full Text
- View/download PDF
37. Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: A Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures.
- Author
-
Spencer JA, Wu YC, McElwee-White L, and Fairbrother DH
- Abstract
Using mechanistic data from surface science studies on electron-induced reactions of organometallic precursors, cis-Pt(CO)2Cl2 (1) was designed specifically for use in focused electron beam induced deposition (FEBID) of Pt nanostructures. Electron induced decomposition of adsorbed 1 under ultrahigh vacuum (UHV) conditions proceeds through initial CO loss as determined by in situ X-ray photoelectron spectroscopy and mass spectrometry. Although the Pt-Cl bonds remain intact during the initial decomposition step, larger electron doses induce removal of the residual chloride through an electron-stimulated desorption process. FEBID structures created from cis-Pt(CO)2Cl2 under steady state deposition conditions in an Auger spectrometer were determined to be PtCl2, free of carbon and oxygen. Coupled with the electron stimulated removal of chlorine demonstrated in the UHV experiments, the Auger deposition data establish a route to FEBID of pure Pt. Results from this study demonstrate that structure-activity relationships can be used to design new precursors specifically for FEBID.
- Published
- 2016
- Full Text
- View/download PDF
38. Diffusing colloidal probes of cell surfaces.
- Author
-
Duncan GA, Fairbrother DH, and Bevan MA
- Subjects
- Breast Neoplasms, Cell Line, Tumor, Diffusion, Humans, Silicon Dioxide, Surface Properties, Colloids chemistry, Epithelial Cells cytology, Molecular Probes chemistry, Polyethylene Glycols chemistry
- Abstract
Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties.
- Published
- 2016
- Full Text
- View/download PDF
39. Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles.
- Author
-
Reed RB, Zaikova T, Barber A, Simonich M, Lankone R, Marco M, Hristovski K, Herckes P, Passantino L, Fairbrother DH, Tanguay R, Ranville JF, Hutchison JE, and Westerhoff PK
- Subjects
- Animals, Detergents pharmacology, Embryo, Nonmammalian drug effects, Escherichia coli drug effects, Light, Time Factors, Zebrafish embryology, Anti-Infective Agents pharmacology, Environment, Metal Nanoparticles toxicity, Silver pharmacology, Textiles, Water Pollutants, Chemical toxicity
- Abstract
For textiles containing nanosilver, we assessed benefit (antimicrobial efficacy) in parallel with potential to release nanosilver (impact) during multiple life cycle stages. The silver loading and method of silver attachment to the textile highly influenced the silver release during washing. Multiple sequential simulated household washing experiments for fabric swatches in deionized water with or without detergent showed a range of silver release. The toxicity of washing experiment supernatants to zebrafish (Danio rerio) embryos was negligible, with the exception of the very highest Ag releases (∼1 mg/L Ag). In fact, toxicity tests indicated that residual detergent exhibited greater adverse response than the released silver. Although washing the fabrics did release silver, it did not affect their antimicrobial efficacy, as demonstrated by >99.9% inhibition of E. coli growth on the textiles, even for textiles that retained as little as 2 μg/g Ag after washing. This suggests that very little nanosilver is required to control bacterial growth in textiles. Visible light irradiation of the fabrics reduced the extent of Ag release for textiles during subsequent washings. End-of-life experiments using simulated landfill conditions showed that silver remaining on the textile is likely to continue leaching from textiles after disposal in a landfill.
- Published
- 2016
- Full Text
- View/download PDF
40. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.
- Author
-
Thorman RM, Kumar T P R, Fairbrother DH, and Ingólfsson O
- Abstract
Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (<100 eV) secondary electrons generated by interactions of the primary beam with the substrate. These low-energy electrons are abundant both inside and outside the area of the primary electron beam and are associated with reactions causing incomplete ligand dissociation from FEBID precursors. As it is not possible to directly study the effects of secondary electrons in situ in FEBID, other means must be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface studies on adsorbed precursor molecules can provide information on surface speciation and identify species desorbing from a substrate during electron irradiation under conditions more representative of FEBID. Comparing gas phase and surface science studies allows for insight into the primary deposition mechanisms for individual precursors; ideally, this information can be used to design future FEBID precursors and optimize deposition conditions. In this review, we give a summary of different low-energy electron-induced fragmentation processes that can be initiated by the secondary electrons generated in FEBID, specifically, dissociative electron attachment, dissociative ionization, neutral dissociation, and dipolar dissociation, emphasizing the different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.
- Published
- 2015
- Full Text
- View/download PDF
41. Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes.
- Author
-
Goodwin DG Jr, Marsh KM, Sosa IB, Payne JB, Gorham JM, Bouwer EJ, and Fairbrother DH
- Subjects
- Anti-Infective Agents chemistry, Biofilms, Environment, Nanocomposites, Oxidation-Reduction, Nanotubes, Carbon microbiology, Pseudomonas aeruginosa physiology
- Abstract
In many environmental scenarios, the fate and impact of polymer nanocomposites (PNCs) that contain carbon nanotubes (CNT/PNCs) will be influenced by their interactions with microorganisms, with implications for antimicrobial properties and the long-term persistence of PNCs. Using oxidized single-wall (O-SWCNTs) and multi-wall CNTs (O-MWCNTs), we explored the influence that CNT loading (mass fraction≤0.1%-10%) and type have on the initial interactions of Pseudomonas aeruginosa with O-CNT/poly(vinyl alcohol) (PVOH) nanocomposites containing well-dispersed O-CNTs. LIVE/DEAD staining revealed that, despite oxidation, the inclusion of O-SWCNTs or O-MWCNTs caused PNC surfaces to exhibit antimicrobial properties. The fraction of living cells deposited on both O-SWCNT and O-MWCNT/PNC surfaces decreased exponentially with increasing CNT loading, with O-SWCNTs being approximately three times more cytotoxic on a % w/w basis. Although not every contact event between attached microorganisms and CNTs led to cell death, the cytotoxicity of the CNT/PNC surfaces scaled with the total contact area that existed between the microorganisms and CNTs. However, because the antimicrobial properties of CNT/PNC surfaces require direct CNT-microbe contact, dead cells were able to shield living cells from the cytotoxic effects of CNTs, allowing biofilm formation to occur on CNT/PNCs exposed to Pseudomonas aeruginosa for longer time periods.
- Published
- 2015
- Full Text
- View/download PDF
42. Photochemical transformation of graphene oxide in sunlight.
- Author
-
Hou WC, Chowdhury I, Goodwin DG Jr, Henderson WM, Fairbrother DH, Bouchard D, and Zepp RG
- Subjects
- Carbon Dioxide chemistry, Kinetics, Photochemistry, Water chemistry, Graphite chemistry, Oxides chemistry, Sunlight
- Abstract
Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.
- Published
- 2015
- Full Text
- View/download PDF
43. Electron induced surface reactions of organometallic metal(hfac)₂ precursors and deposit purification.
- Author
-
Rosenberg SG, Barclay M, and Fairbrother DH
- Abstract
The elementary processes associated with electron beam-induced deposition (EBID) and post-deposition treatment of structures created from three metal(II)(hfac)2 organometallic precursors (metal = Pt, Pd, Cu; hfac = CF3C(O)CHC(O)CF3) have been studied using surface analytical techniques. Electron induced reactions of adsorbed metal(II)(hfac)2 molecules proceeds in two stages. For comparatively low electron doses (doses <1 × 10(17) e(-)/cm(2)) decomposition of the parent molecules leads to loss of carbon and oxygen, principally through the formation of carbon monoxide. Fluorine and hydrogen atoms are also lost by electron stimulated C-F and C-H bond cleavage, respectively. Collectively, these processes are responsible for the loss of a significant fraction (≥ 50%) of the oxygen and fluorine atoms, although most (>80%) of the carbon atoms remain. As a result of these various transformations the reduced metal atoms become encased in an organic matrix that is stabilized toward further electron stimulated carbon or oxygen loss, although fluorine and hydrogen can still desorb in the second stage of the reaction under the influence of sustained electron irradiation as a result of C-F and C-H bond cleavage, respectively. This reaction sequence explains why EBID structures created from metal(II)(hfac)2 precursors in electron microscopes contain reduced metal atoms embedded within an oxygen-containing carbonaceous matrix. Except for the formation of copper fluoride from Cu(II)(hfac)2, because of secondary reactions between partially reduced copper atoms and fluoride ions, the chemical composition of EBID films and behavior of metal(II)(hfac)2 precursors was independent of the transition metal's chemical identity. Annealing studies of EBID structures created from Pt(II)(hfac)2 suggest that the metallic character of deposited Pt atoms could be increased by using post deposition annealing or elevated substrate temperatures (>25 °C) during deposition. By exposing EBID structures created from Cu(II)(hfac)2 to atomic oxygen followed by atomic hydrogen, organic contaminants could be abated without annealing.
- Published
- 2014
- Full Text
- View/download PDF
44. Very small "window of opportunity" for generating CO oxidation-active Au(n) on TiO2.
- Author
-
Tang X, Schneider J, Dollinger A, Luo Y, Wörz AS, Judai K, Abbet S, Kim YD, Ganteför GF, Fairbrother DH, Heiz U, Bowen KH, and Proch S
- Abstract
Recent research in heterogeneous catalysis, especially on size-selected model systems under UHV conditions and also in realistic catalytic environments, has proved that it is necessary to think in terms of the exact number of atoms when it comes to catalyst design. This is of utmost importance if the amount of noble metal, gold in particular, is to be reduced for practical reactions like CO oxidation. Here it is shown that on TiO2 only Au6 and Au7 clusters are active for CO oxidation which holds for the single crystal, thin films, and titania clusters deposited on HOPG. Size-selected cluster deposition and TPD methods have been employed to investigate the CO oxidation activity of Aun/TiO2 systems which are compared to recent results reported by Lee et al. to form a consistent picture in which only two species can be regarded as "active". The efficiency of investigated Aun/(TiO2)93/HOPG composite materials is attributed to carbon-assisted oxygen spillover from gold to support particles and across grain boundaries.
- Published
- 2014
- Full Text
- View/download PDF
45. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.
- Author
-
Yang J, Bitter JL, Smith BA, Fairbrother DH, and Ball WP
- Subjects
- Hydrogen-Ion Concentration, Osmolar Concentration, Oxidation-Reduction, Oxygen chemistry, Porosity, Surface Properties, Water Pollutants, Chemical chemistry, Nanotubes, Carbon chemistry, Organic Chemicals chemistry, Silicon Dioxide chemistry, Water chemistry
- Abstract
This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (<4 mg/L of dissolved organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.
- Published
- 2013
- Full Text
- View/download PDF
46. Anomalous silica colloid stability and gel layer mediated interactions.
- Author
-
Bitter JL, Duncan GA, Beltran-Villegas DJ, Fairbrother DH, and Bevan MA
- Abstract
Total internal reflection microscopy (TIRM) is used to measure SiO2 colloid ensembles over a glass microscope slide to simultaneously obtain interactions and stability as a function of pH (4-10) and NaCl concentration (0.1-100 mM). Analysis of SiO2 colloid Brownian height excursions yields kT-scale potential energy vs separation profiles, U(h), and diffusivity vs separation profiles, D(h), and determines whether particles are levitated or irreversibly deposited (i.e., stable). By including an impermeable SiO2 "gel layer" when fitting van der Waals, electrostatic, and steric potentials to measured net potentials, gel layers are estimated to be ~10 nm thick and display an ionic strength collapse. The D(h) results indicate consistent surface separation scales for potential energy profiles and hydrodynamic interactions. Our measurements and model indicate how SiO2 gel layers influence van der Waals (e.g., dielectric properties), electrostatics (e.g., shear plane), and steric (e.g., layer thickness) potentials to understand the anomalous high ionic strength and high pH stability of SiO2 colloids.
- Published
- 2013
- Full Text
- View/download PDF
47. Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6).
- Author
-
Rosenberg SG, Barclay M, and Fairbrother DH
- Abstract
Tungsten hexacarbonyl (W(CO)(6)) is frequently used as an organometallic precursor to create metal-containing nanostructures in electron beam induced deposition (EBID). However, the fundamental electron stimulated reactions responsible for both tungsten deposition and the incorporation of carbon and oxygen atom impurities remain unclear. To address this issue we have studied the effect of 500 eV incident electrons on nanometer thick films of W(CO)(6) under Ultra-High Vacuum (UHV) conditions. Results from X-ray Photoelectron Spectroscopy, Mass Spectrometry, and Infrared Spectroscopy reveal that the initial step involves electron stimulated desorption of multiple CO ligands from parent W(CO)(6) molecules and the formation of partially decarbonylated tungsten species (W(x)(CO)(y)). Subsequent electron interactions with these W(x)(CO)(y) species lead to ligand decomposition rather than further CO desorption, ultimately producing oxidized tungsten atoms incorporated in a carbonaceous matrix. The presence of co-adsorbed water during electron irradiation increased the extent of tungsten oxidation. The electron stimulated deposition cross-section of W(CO)(6) at an incident electron energy of 500 eV was calculated to be 6.50 × 10(-16) cm(-2). When considered collectively with findings from previous precursors (MeCpPtMe(3) and Pt(PF(3))(4)), results from the present study are consistent with the idea that the electron induced reactions in EBID are initiated by low energy secondary electrons generated by primary beam-substrate interactions, rather than by the primary beam itself.
- Published
- 2013
- Full Text
- View/download PDF
48. Detection of single walled carbon nanotubes by monitoring embedded metals.
- Author
-
Reed RB, Goodwin DG, Marsh KL, Capracotta SS, Higgins CP, Fairbrother DH, and Ranville JF
- Subjects
- Environmental Pollutants chemistry, Limit of Detection, Metals chemistry, Nanotubes, Carbon chemistry, Environmental Monitoring methods, Environmental Pollutants analysis, Metals analysis, Nanotubes, Carbon analysis
- Abstract
Detection of single walled carbon nanotubes (CNTs) was performed using single particle-inductively coupled plasma-mass spectrometry (spICPMS). Due to the ambiguities inherent in detecting CNTs by carbon analysis, particularly in complex environmental matrices, this study focuses on using trace catalytic metals intercalated in the CNT structure as proxies for the nanotubes. Using a suite of commercially available CNTs, the monoisotopic elements Co and Y were found to be the most effective for differentiation of particulate pulses from background. The small, variable, amount of trace metal in each CNT makes separation from instrumental background challenging; multiple cut-offs for determining CNT number concentration were investigated to maximize the number of CNTs detected and minimize the number of false positives in the blanks. In simple solutions the number of CNT pulses detected increased linearly with concentration in the ng L−1 range. However, analysis of split samples by both spICPMS and Nanoparticle Tracking Analysis (NTA) showed the quantification of particle number concentration by spICPMS to be several orders of magnitude lower than by NTA. We postulate that this is a consequence of metal content and/or size, caused by the presence of many CNTs that do not contain enough metal to be above the instrument detection limit, resulting in undercounting CNTs by spICPMS. However, since the detection of CNTs at low ng L−1 concentrations is not possible by other techniques, spICPMS is still a more sensitive technique for detecting the presence of CNTs in environmental, materials, or biological applications. To highlight the potential of spICPMS in environmental studies the release of CNTs from polymer nanocomposites into solution was monitored, showcasing the technique's ability to detect changes in released CNT concentrations as a function of CNT loading.
- Published
- 2013
- Full Text
- View/download PDF
49. Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter.
- Author
-
Smith B, Yang J, Bitter JL, Ball WP, and Fairbrother DH
- Subjects
- Adsorption, Electrolytes chemistry, Osmolar Concentration, Oxidation-Reduction, Surface Properties, Humic Substances analysis, Nanotubes, Carbon chemistry, Oxygen chemistry
- Abstract
The sorption properties of natural organic matter (NOM) with oxidized multiwalled carbon nanotubes (O-MWCNTs) in simple electrolytes has been studied, as well as the effect that NOM concentration, pH, and O-MWCNT surface chemistry have on CNT stability under environmentally relevant conditions. As O-MWCNT oxygen content increased, NOM sorption decreased in simple electrolytes for a common set of solution conditions. For each O-MWCNT, NOM sorption increased with increasing ionic strength and decreasing pH, although the sensitivity of NOM sorption to these water quality parameters increased as the O-MWCNT oxygen content increased. Collectively, these observations indicate that NOM sorption by O-MWCNTs is determined by favorable hydrophobic π-π interactions that are moderated by repulsive electrostatic forces between negatively charged carboxylic acid functional groups on the O-MWCNTs and NOM. Stability studies conducted in artificial groundwater revealed that CNT stability is influenced by both the NOM concentration and pH, but stability was largely independent of the O-MWCNT oxygen concentration. These findings contrast with the marked effect that surface oxygen has on CNT stability in simple electrolytes. Electrophoretic mobility measurements revealed that the stabilizing effects of adsorbed NOM are due to the introduction of steric repulsion between NOM-coated CNTs, rather than from changes to surface charge.
- Published
- 2012
- Full Text
- View/download PDF
50. Modification of low pressure membranes with carbon nanotube layers for fouling control.
- Author
-
Ajmani GS, Goodwin D, Marsh K, Fairbrother DH, Schwab KJ, Jacangelo JG, and Huang H
- Subjects
- Charcoal chemistry, Membranes, Artificial, Nanotubes, Carbon chemistry, Water Purification methods
- Abstract
Carbon nanotubes (CNTs) with different physiochemical properties were layered onto low pressure membranes and tested for antifouling properties using a natural surface water with high fouling potential. Membranes modified with the largest diameter pristine multi-walled CNTs (MWCNTs) were most effective in controlling membrane fouling, tripling the time it took for the membrane to become noticeably fouled at a CNT loading of 22 g/m(2). The differences in the structure of CNT layers were an important contributing factor for antifouling properties; scanning electron microscopy imaging showed that large diameter MWCNTs formed homogeneous porous layers across the membrane surface, while less effective, small diameter MWCNTs formed heterogeneous layers. Water quality analysis showed that CNT-membranes constructed with larger diameter CNTs were more effective at removing larger organic macromolecules responsible for fouling from feedwater compared to membranes made with smaller diameter CNTs. This reduced the concentration of foulants reaching the PVDF membrane and thus helped reduce membrane fouling. Beneficial for application, increased loadings of CNTs onto the membrane surface increased resistance to fouling while only slightly reducing the clean water permeability of the modified membranes. Overall, CNT layered membranes were shown to highly resist membrane fouling with potential applications in sustainable water treatment., (Copyright © 2012 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.