1. High focusing efficiency in subdiffraction focusing metalens
- Author
-
Zhuang Ze-Peng, Chen Rui, Fan Zhi-Bin, Pang Xiao-Ning, and Dong Jian-Wen
- Subjects
metalens ,subdiffraction focusing ,vector beam ,optimization ,Physics ,QC1-999 - Abstract
Vector beams with phase modulation in a high numerical aperture system are able to break through the diffraction limit. However, the implementation of such a device requires a combination of several discrete bulky optical elements, increasing its complexity and possibility of the optical loss. Dielectric metalens, an ultrathin and planar nanostructure, has a potential to replace bulky optical elements, but its optimization with full-wave simulations is time-consuming. In this paper, an accurate and efficient theoretical model of planar metalens is developed. Based on this model, a twofold optimization scheme is proposed for optimizing the phase profile of metalenses so as to achieve subdiffraction focusing with high focusing efficiency. Then, a metalens that enables to simultaneously generate radially polarized beam (RPB) and modulate its phase under the incidence of x-polarized light with the wavelength of 532 nm is designed. Full-wave simulations show that the designed metalens of NA = 0.95 can achieve subdiffraction focusing (FWHM = 0.429λ) with high transmission efficiency (77.6%) and focusing efficiency (17.2%). Additionally, superoscillation phenomenon is found, leading to a compromise between the subdiffraction spot and high efficiency. The proposed method may provide an accurate and efficient way to achieve sub-wavelength imaging with the expected performances, which shows a potential application in super-resolution imaging.
- Published
- 2019
- Full Text
- View/download PDF