1. Ultrasonic-assisted activated carbon separation removing bacterial endotoxin from salvia miltiorrhizae injection
- Author
-
Cunyu Li, Shuwan Tang, Yangyang Xu, Fangmei Liu, Mingming Li, Xinglei Zhi, and Yun Ma
- Subjects
Salvia miltiorrhizae injection ,Bacterial endotoxin ,Ultrasonic-assisted activated carbon separation ,Nanofiltration ,Anaphylaxis ,Chemistry ,QD1-999 ,Acoustics. Sound ,QC221-246 - Abstract
Ultrasonic-assisted activated carbon separation (UACS) was first employed to improve product quality by regulating adsorption rate and removing bacterial endotoxin from salvia miltiorrhizae injection. The adsorption rate was related to three variables: activated carbon dosage, ultrasonic power, and pH. With the increase of activated carbon dosage from 0.05 % to 1.0 %, the adsorption rates of salvianolic acids and bacterial endotoxin increased simultaneously. The adsorption rates at which bacteria endotoxins increased from 52.52 % to 97.16 % were much higher than salvianolic acids. As the ultrasonic power increased from 0 to 700 W, the adsorption rates of salvianolic acids on activated carbon declined to less than 10 %, but bacterial endotoxin increased to more than 87 %. As the pH increased from 2.00 to 8.00, the adsorption rate of salvianolic acid dropped whereas bacterial endotoxin remained relatively stable. On the basis of response surface methodology (RSM), the optimal separation conditions were established to be activated carbon dose of 0.70 %, ultrasonic power of 600 W, and pH of 7.90. The experimental adsorption rates of bacterial endotoxin were 94.15 %, which satisfied the salvia miltiorrhizae injection quality criterion. Meanwhile, salvianolic acids' adsorption rates were 1.92 % for tanshinol, 4.05 % for protocatechualdehyde, 2.21 % for rosmarinic acid, and 3.77 % for salvianolic acid B, all of which were much lower than conventional activated carbon adsorption (CACA). Salvianolic acids' adsorption mechanism on activated carbon is dependent on the component's molecular state. Under ideal separation conditions, the molecular states of the four salvianolic acids fall between 1.13 % and 6.60 %. The quality of salvia miltiorrhizae injection can be improved while maintaining injection safety by reducing the adsorption rates of salvianolic acids to less than 5 % by the use of ultrasound to accelerate the desorption mass transfer rate on the activated carbon surface. When activated carbon adsorption was used in the process of producing salvia miltiorrhizae injection, the pH of the solution was around 5.00, and the proportion of each component's molecular state was tanshinol 7.05 %, protocatechualdehyde 48.93 %, rosmarinic acid 13.79 %, and salvianolic acid B 10.28 %, respectively. The loss of useful components was evident, and the corresponding activated carbon adsorption rate ranged from 20.74 % to 41.05 %. The average variation rate in plasma His and IgE was significant (P 0.05). The ultrasonic at a power intensity of 60 W/L and the power density of 1.20 W/cm2 may resolve the separation contradiction between salvianolic acids and bacterial endotoxin, according to experiments conducted with UACS at different power intensities. According to this study, UACS has a lot of potential applications in the pharmaceutical manufacturing industry and may represent a breakthrough in the field of ultrasonic separation.
- Published
- 2024
- Full Text
- View/download PDF