1. The Hamburg/ESO R-process Enhanced Star survey (HERES) XI. The highly $r$-process-enhanced star CS 29497-004
- Author
-
Hill, V., Christlieb, N., Beers, T. C., Barklem, P. S., Kratz, K. -L., Nordström, B., Pfeiffer, B., and Farouqi, K.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with Teff = 5013K and [Fe/H]=-2.85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise, high-resolution (R~75000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other 25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled Solar System second peak r-process-element abundance pattern. We confirm our previous detection of Th, and demonstrate that this star does not exhibit an "actinide boost". Uranium is also detected (log e(U) =-2.20+/-0.30), albeit with a large measurement error that hampers its use as a precision cosmo-chronometer. Combining the various elemental chronometer pairs that are available for this star, we derive a mean age of 12.2+/-3.7 Gyr using the theoretical production ratios from waiting-point approximation models (Kratz et al. 2007). We further explore the high-entropy wind model (Farouqi et al. 2010) production ratios arising from different neutron richness of the ejecta (Y_e), and derive an age of 13.7+/-4.4 Gyr for a best-fitting Y_e=0.447. The U/Th nuclei-chronometer is confirmed to be the most resilient to theoretical production ratios and yields an age of 16.5+:-6.6 Gyr. Lead (Pb) is also tentatively detected in CS 29497-004, at a level compatible with a scaled Solar r-process, or with the theoretical expectations for a pure r-process in this star., Comment: 24 pages, 15 figures, accepted in Astronomy and Astrophysics
- Published
- 2016
- Full Text
- View/download PDF