233 results on '"Fausto Sirotti"'
Search Results
2. Spin/valley pumping of resident electrons in WSe2 and WS2 monolayers
- Author
-
Cedric Robert, Sangjun Park, Fabian Cadiz, Laurent Lombez, Lei Ren, Hans Tornatzky, Alistair Rowe, Daniel Paget, Fausto Sirotti, Min Yang, Dinh Van Tuan, Takashi Taniguchi, Bernhard Urbaszek, Kenji Watanabe, Thierry Amand, Hanan Dery, and Xavier Marie
- Subjects
Science - Abstract
Optical excitation of transition metal dichalcogenide monolayers mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here, the authors demonstrate efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers.
- Published
- 2021
- Full Text
- View/download PDF
3. Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics
- Author
-
Federico Pressacco, Davide Sangalli, Vojtěch Uhlíř, Dmytro Kutnyakhov, Jon Ander Arregi, Steinn Ymir Agustsson, Günter Brenner, Harald Redlin, Michael Heber, Dmitry Vasilyev, Jure Demsar, Gerd Schönhense, Matteo Gatti, Andrea Marini, Wilfried Wurth, and Fausto Sirotti
- Subjects
Science - Abstract
Abstract Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
- Published
- 2021
- Full Text
- View/download PDF
4. Author Correction: Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics
- Author
-
Federico Pressacco, Davide Sangalli, Vojtěch Uhlíř, Dmytro Kutnyakhov, Jon Ander Arregi, Steinn Ymir Agustsson, Günter Brenner, Harald Redlin, Michael Heber, Dmitry Vasilyev, Jure Demsar, Gerd Schönhense, Matteo Gatti, Andrea Marini, Wilfried Wurth, and Fausto Sirotti
- Subjects
Science - Published
- 2023
- Full Text
- View/download PDF
5. Protected surface state in stepped Fe (0 18 1)
- Author
-
Manuel Izquierdo, Piero Torelli, Jun Fujii, Giancarlo Panaccione, Ivana Vobornik, Giorgio Rossi, and Fausto Sirotti
- Subjects
Medicine ,Science - Abstract
Abstract Carbon (C) surface segregation from bulk stabilizes the Fe(0 18 1) vicinal surface by forming a c(3 $$\sqrt{2}$$ 2 × $$\sqrt{2}$$ 2 reconstruction with C zig-zag chains oriented at 45° with respect to the iron surface steps. The iron surface electronic states as measured by high resolution ARPES at normal emission with polarized synchrotron radiation split in two peaks that follow distinct energy dispersion curves. One peak follows the dispersion of the carbon superstructure and is photoexcited only when the polarization vector is parallel to the steps, the second peak disperses similarly to the pristine Fe(0 0 1) surface. Such surface electronic structure is robust as it persists even after coating with an Ag overlayer. The robustness of this surface electronic structure and its similarity with that of the clean Fe(0 0 1) surface make this system of interest for magnetic and spintronic properties such as magneto tunnel junctions based on Fe/MgO interface.
- Published
- 2017
- Full Text
- View/download PDF
6. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission
- Author
-
Federico Pressacco, Vojtěch Uhlíř, Matteo Gatti, Alessandro Nicolaou, Azzedine Bendounan, Jon Ander Arregi, Sheena K. K. Patel, Eric E. Fullerton, Damjan Krizmancic, and Fausto Sirotti
- Subjects
Crystallography ,QD901-999 - Abstract
We use time-resolved X-ray photoelectron spectroscopy to probe the electronic and magnetization dynamics in FeRh films after ultrafast laser excitations. We present experimental and theoretical results which investigate the electronic structure of FeRh during the first-order phase transition, identifying a clear signature of the magnetic phase. We find that a spin polarized feature at the Fermi edge is a fingerprint of the magnetic status of the system that is independent of the long-range ferromagnetic alignment of the magnetic domains. We use this feature to follow the phase transition induced by a laser pulse in a pump-probe experiment and find that the magnetic transition occurs in less than 50 ps and reaches its maximum in 100 ps.
- Published
- 2018
- Full Text
- View/download PDF
7. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes
- Author
-
Yongfeng Tong, Tingming Jiang, Azzedine Bendounan, Makri Nimbegondi Kotresh Harish, Angelo Giglia, Stefan Kubsky, Fausto Sirotti, Luca Pasquali, Srinivasan Sampath, and Vladimir A. Esaulov
- Subjects
copper ,nickel ,palladium ,reactivity ,selenol ,selenophene ,self-assembly ,thiol ,thiophene ,Technology ,Chemical technology ,TP1-1185 ,Science ,Physics ,QC1-999 - Abstract
This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.
- Published
- 2016
- Full Text
- View/download PDF
8. Superconducting Thick-Films From a Y-Ba-Cu-O Precursor
- Author
-
Maurizio Sacchi, Fausto Sirotti, Bruno Morten, and Maria Prudenziati
- Subjects
thick film ,super conduction ,high temperature superconductors. ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
We have prepared screen-printed films of the Y-Ba-Cu-O compound starting from a spray-pyrolysis precursor powder. BeO ceramic substrates are confirmed to be inert with respect to the film up to about 1000ºC. Electrical properties of oxygen annealed films are investigated, evidencing excellent superconducting behaviour, both in terms of Tc(≃91K) and Jc (>102 A.cm-2 at 77 K).
- Published
- 1991
- Full Text
- View/download PDF
9. A Photoemission Analysis of Gold on Silicon Regarding the Initial Stages of Nanowire Metal-Catalyzed Vapor–Liquid–Solid Growth
- Author
-
Djawhar Ferrah, José Penuelas, Frédéric Boudaa, Claude Botella, Mathieu Silly, Fausto Sirotti, and Geneviève Grenet
- Subjects
General Energy ,Physical and Theoretical Chemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
10. Surface photovoltage dynamics at passivated silicon surfaces: influence of substrate doping and surface termination
- Author
-
Debora Pierucci, Mathieu G. Silly, Heloise Tissot, Philippe Hollander, Fausto Sirotti, Francois Rochet, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), UCCS Équipe Catalyse Supramoléculaire, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Physical and Theoretical Chemistry ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
We have monitored the temporal evolution of the band bending at controlled silicon surfaces after a fs laser pump excitation. Time-resolved surface photo-voltage (SPV) experiments were performed using time resolved photoemission spectroscopy with time resolution of about 30 ns. To disentangle the influence of doping and surface termination on SPV dynamics, we compare the results obtained on two surface terminations: the water saturated (H,OH)-Si(001) surface and the thermally oxidized Si(001) one. The SPV dynamics were explored as a function of laser fluence and as a function of time for the two surface terminations at given doping levels. The return to equilibrium involves a characteristic time in the 0.1 μs to 10 μs range, depending on the surface termination and bulk doping. Exploring several laser fluences, different SPV regimes were found for the two surface terminations at given doping levels. For low laser fluence the SPV dynamic follows the commonly accepted thermionic model. At higher fluence, the SPV signal reaches a saturation value, and if the fluence is further increased, the decay time of the SPV increases and can no longer be explained by a thermionic model alone.
- Published
- 2022
- Full Text
- View/download PDF
11. Spin/valley pumping of resident electrons in WSe2 and WS2 monolayers
- Author
-
Hanan Dery, Thierry Amand, Lei Ren, Takashi Taniguchi, Daniel Paget, Xavier Marie, Fausto Sirotti, Dinh Van Tuan, Bernhard Urbaszek, Alistair Rowe, Sangjun Park, Min Yang, Kenji Watanabe, Laurent Lombez, Hans Tornatzky, Fabian Cadiz, Cedric Robert, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Physique de la Matière Condensée (PMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical and Computer Engineering, University of Rochester [USA], International Center for Materials Nanoarchitectonics (WPI-MANA), Research Center for Functional Materials, National Institute for Materials Science (NIMS), Department of Physics, ANR-18-CE24-0011,SpinCat,Cathodoluminescence résolue en spin dans des matériaux 2D et des héterostructures de van der Waals(2018), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)
- Subjects
Photoluminescence ,Materials science ,Science ,Physics::Optics ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Electron ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Optical pumping ,Condensed Matter::Materials Science ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Spin (physics) ,Circular polarization ,Condensed Matter - Materials Science ,Multidisciplinary ,Condensed Matter - Mesoscale and Nanoscale Physics ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Transition metal dichalcogenide monolayers ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Condensed Matter::Strongly Correlated Electrons ,Trion ,Atomic physics ,0210 nano-technology ,Excitation - Abstract
Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light. Optical excitation of transition metal dichalcogenide monolayers mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here, the authors demonstrate efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers.
- Published
- 2021
- Full Text
- View/download PDF
12. Imaging Seebeck drift of excitons and trions in MoSe2 monolayers
- Author
-
Bo Han, Alistair Rowe, Sangjun Park, Laurent Lombez, Kenji Watanabe, Takashi Taniguchi, Xavier Marie, Caroline Boule, Daniel Paget, Cedric Robert, Fabian Cadiz, Fausto Sirotti, Bernhard Urbaszek, Laboratoire de Physique de la Matière Condensée, and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Photoluminescence ,Materials science ,Exciton ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Molecular physics ,Condensed Matter::Materials Science ,0103 physical sciences ,General Materials Science ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Condensed Matter::Quantum Gases ,Condensed Matter - Materials Science ,Condensed Matter::Other ,Mechanical Engineering ,Relaxation (NMR) ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Temperature gradient ,Mechanics of Materials ,Quasiparticle ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Halo ,Trion ,[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] ,0210 nano-technology ,Excitation - Abstract
Hyperspectral imaging at cryogenic temperatures is used to investigate exciton and trion propagation in MoSe$_2$ monolayers encapsulated with hexagonal boron nitride (hBN). Under a tightly focused, continuous-wave laser excitation, the spatial distribution of neutral excitons and charged trions strongly differ at high excitation densities. Remarkably, in this regime the trion distribution develops a halo shape, similar to that previously observed in WS2 monolayers at room temperature and under pulsed excitation. In contrast, the exciton distribution only presents a moderate broadening without the appereance of a halo. Spatially and spectrally resolved luminescence spectra reveal the buildup of a significant temperature gradient at high excitation power, that is attributed to the energy relaxation of photoinduced hot carriers. We show, via a numerical resolution of the transport equations for excitons and trions, that the halo can be interpreted as thermal drift of trions due to a Seebeck term in the particle current. The model shows that the difference between trion and exciton profiles is simply understood in terms of the very different lifetimes of these two quasiparticles.
- Published
- 2021
- Full Text
- View/download PDF
13. Subpicosecond metamagnetic phase transition driven by non-equilibrium electron dynamics
- Author
-
Federico Pressacco, Davide Sangalli, Vojtěch Uhlíř, Dmytro Kutnyakhov, Jon Ander Arregi, Steinn Ymir Agustsson, Günter Brenner, Harald Redlin, Michael Heber, Dmitry Vasilyev, Jure Demsar, Gerd Schönhense, Matteo Gatti, Andrea Marini, Wilfried Wurth, and Fausto Sirotti
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter::Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,0103 physical sciences ,FOS: Physical sciences ,010306 general physics ,01 natural sciences ,3. Good health ,010305 fluids & plasmas - Abstract
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
- Published
- 2021
- Full Text
- View/download PDF
14. Impact of ex-PAN carbon fibers thermal treatment on the mechanical behavior of C/SiC composites and on the fiber/matrix coupling
- Author
-
C. Fellah, James Braun, Fausto Sirotti, Cédric Sauder, M.-H. Berger, Laboratoire des Technologies des Matériaux EXtrêmes (LTMEx), Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département des Matériaux pour le Nucléaire (DMN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre des Matériaux (CDM), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Centre des Matériaux (MAT), and MINES ParisTech - École nationale supérieure des mines de Paris
- Subjects
Materials science ,Interface/Interphase ,Microstructural analysis ,Materials Science (miscellaneous) ,02 engineering and technology ,Thermal treatment ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Ceramic matrix composite ,Microstructure ,01 natural sciences ,0104 chemical sciences ,Chemistry ,Polymerization ,Chemistry (miscellaneous) ,Materials Chemistry ,Texture (crystalline) ,Fiber ,Ceramic-matrix composites (CMCs) ,Composite material ,0210 nano-technology ,High-resolution transmission electron microscopy ,QD1-999 ,Damage tolerance - Abstract
International audience; Ceramic matrix composites reinforced by external polymerization of acrylonitrile (ex-PAN) carbon fibers with pyrocarbon (PyC) interphase are attractive materials for thermomechanical applications. Nevertheless, C/SiC composites suffer from a low damage tolerance. A 1600°C thermal pretreatment of the carbon fibers led to an improvement of the mechanical properties of the composites. Even if this heat treatment was seen to modify the fiber microstructure and texture, the changes were not sufficient to explain the observed improvements. The consequences of the thermal treatment on carbon fibers were studied by high resolution transmission electron microscopy and physicochemical analyses. The fiber/matrix debonding was also apprehended by analyzing the interfacial regions of C/SiC composites. The key role of the fiber surface structure on the fiber/matrix (F/M) coupling was highlighted. The microstructural reorganization of the heat-treated fibers surfaces induces a high F/M bonding strength and leads to better damage tolerance for the C/SiC composites.
- Published
- 2021
- Full Text
- View/download PDF
15. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy
- Author
-
François Rochet, Rabah Benbalagh, Fabrice Bournel, Ahmed Naitabdi, Giorgia Olivieri, Anthony Boucly, Robert Fagiewicz, Jean-Jacques Gallet, Fausto Sirotti, Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Oxide ,Nanoparticle ,chemistry.chemical_element ,02 engineering and technology ,Atmospheric temperature range ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Nanomaterial-based catalyst ,0104 chemical sciences ,Chemical state ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,Catalytic oxidation ,Chemical engineering ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Platinum ,ComputingMilieux_MISCELLANEOUS - Abstract
The investigation of nanocatalysts under ambient pressure by X-ray photoelectron spectroscopy gives access to a wealth of information on their chemical state under reaction conditions. Considering the paradigmatic CO oxidation reaction, a strong synergistic effect on CO catalytic oxidation was recently observed on a partly dewetted ZnO(0001)/Pt(111) single crystal surface. In order to bridge the material gap, we have examined whether this inverse metal/oxide catalytic effect could be transposed on supported ZnPt nanocatalysts deposited on rutile TiO2(110). Synchrotron radiation near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) operated at 1 mbar of O2 : CO mixture (4 : 1) was used at a temperature range between room temperature and 450 K. To tackle the complexity of the problem, we have also studied the catalytic activity of nanoparticles (NPs) of the same size, consisting of pure Pt and Zn nanoparticles (NPs), for which, moreover, NAP-XPS studies are a novelty. The comparative approach shows that the CO oxidation process is markedly different for the pure Pt and pure Zn NPs. For pure Pt NPs, CO poisoned the metallic surfaces at low temperature at the onset of CO2 evolution. In contrast, the pure Zn NPs first oxidize into ZnO, and trap carbonates at low temperature. Then they start to release CO2 in the gas phase, at a critical temperature, while continuously producing it. The pure Zn NPs are also immune to support encapsulation. The bimetallic nanoparticle borrows some of its characteristics from its two parent metals. In fact, the ZnPt NP, although produced by the sequential deposition of platinum and zinc, is platinum-terminated below the temperature onset of CO oxidation and poisoned by CO. Above the CO oxidation onset, the nanoparticle becomes Zn-rich with a ZnO shell. Pure Pt and ZnPt NPs present a very similar activity towards CO oxidation, in contrast with what is reported in a single crystal study. The present study demonstrates the effectiveness of NAP-XPS in the study of complex catalytic processes at work on nanocatalysts under near-ambient pressures, and highlights once more the difficulty of transposing single crystal surface observations to the case of nanoobjects.
- Published
- 2018
- Full Text
- View/download PDF
16. Time resolved resonant photoemission study of energy level alignment at donor/acceptor interfaces
- Author
-
Andrea Goldoni, Fausto Sirotti, Alberto Morgante, Tommaso Pincelli, Maddalena Pedio, G. Panaccione, A. Cossaro, Mathieu G. Silly, S. Cichoň, Roberto Costantini, Alberto Verdini, Martina Dell'Angela, Marco Caputo, Costantini, Roberto, Pincelli, T., Cossaro, A., Verdini, A., Goldoni, A., Cichoň, S., Caputo, M., Pedio, M., Panaccione, G., Silly, M. G., Sirotti, F., Morgante, A., and Dell'Angela, M.
- Subjects
Materials science ,Picosecond dynamics ,genetic structures ,Photoemission spectroscopy ,Photoelectron spectroscopy ,Pumping (laser) ,Ultrafast lasers ,Donor/acceptor interface ,Energy level alignment ,Organic photovoltaic devices ,Resonant photoemission ,X ray photoemission spectroscopy ,Physics::Optics ,General Physics and Astronomy ,Ultrafast laser ,02 engineering and technology ,Photovoltaic effect ,010402 general chemistry ,01 natural sciences ,Electron spectroscopy ,Physical and Theoretical Chemistry ,business.industry ,Organic photovoltaic device ,Photoelectric effect ,Picosecond dynamic ,021001 nanoscience & nanotechnology ,Acceptor ,0104 chemical sciences ,Dipole ,Picosecond ,Femtosecond ,Optoelectronics ,Atomic physics ,0210 nano-technology ,business - Abstract
The knowledge of the picosecond dynamics of the energy level alignment between donor and acceptor materials in organic photovoltaic devices under working conditions is a challenge for fundamental material research. We measured by means of time-resolved Resonant X-ray Photoemission Spectroscopy (RPES) the energy level alignment in ZnPc/C 60 films. We employed 800 nm femtosecond laser pulses to pump the system simulating sunlight excitation and X-rays from the synchrotron as a probe. We measured changes in the valence bands due to pump induced modifications of the interface dipole. Our measurements prove the feasibility of time-resolved RPES with high repetition rate sources.
- Published
- 2017
- Full Text
- View/download PDF
17. A photoemission spectroscopy study of the initial oxidation of epitaxial fcc and bcc Fe films grown on Cu(100)
- Author
-
Renato de Mendonça, Fausto Sirotti, Mathieu G. Silly, M. D. Martins, and Waldemar A. A. Macedo
- Subjects
Materials science ,Photoemission spectroscopy ,Metals and Alloys ,Analytical chemistry ,Oxide ,02 engineering and technology ,Surfaces and Interfaces ,Substrate (electronics) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Catalysis ,Crystallography ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,chemistry ,Materials Chemistry ,Thin film ,0210 nano-technology ,Molecular beam epitaxy - Abstract
The initial oxidation of Fe is a fundamental issue due to its importance for corrosion and catalysis. In this study, we investigate the initial oxidation of epitaxial fcc and bcc Fe thin films grown on a Cu(100) substrate at room temperature. Fe thin films deposited with two different thicknesses on Cu(100) were prepared by molecular beam epitaxy in order to obtain the fcc Fe(100) and bcc Fe(110) surfaces. The structures and the chemical composition of the Fe films were evaluated by LEED and photoelectron spectroscopy, using the facilities at the TEMPO beamline of the Synchrotron SOLEIL. The Fe 2p and O 1s high-resolution spectra were collected during oxidation at a constant O 2 pressure in order to build the kinetic curves, which are discussed taking into account the Fromhold-Cook theory. Our result revealed the different initial oxidation kinetics of the films and showed that bcc Fe(110) surface has a much higher reactivity with O 2 than the fcc Fe(100). The Fe 2p peak analysis suggests the formation of Fe 1 − x O and an Fe 3 + -rich oxide on the bcc Fe(110) surface and Fe 1 − x O on the fcc Fe(100) surface.
- Published
- 2017
- Full Text
- View/download PDF
18. Protected surface state in stepped Fe (0 18 1)
- Author
-
Jun Fujii, Piero Torelli, Fausto Sirotti, Giancarlo Panaccione, Manuel Izquierdo, Giorgio Rossi, Ivana Vobornik, CNR Istituto Officina dei Materiali (IOM), Consiglio Nazionale delle Ricerche [Roma] (CNR), Istituto Officina dei Materiali-CNR (IOM), Laboratory TASC, INFM-CNR, Synchrotron SOLEIL (SSOLEIL), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Science ,Synchrotron radiation ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Electronic structure ,engineering.material ,01 natural sciences ,Molecular physics ,Article ,Overlayer ,Electronic states ,Coating ,0103 physical sciences ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Multidisciplinary ,Spintronics ,021001 nanoscience & nanotechnology ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,engineering ,Medicine ,0210 nano-technology ,Vicinal - Abstract
Carbon (C) surface segregation from bulk stabilizes the Fe(0 18 1) vicinal surface by forming a c(3$$\sqrt{2}$$ 2 × $$\sqrt{2}$$ 2 reconstruction with C zig-zag chains oriented at 45° with respect to the iron surface steps. The iron surface electronic states as measured by high resolution ARPES at normal emission with polarized synchrotron radiation split in two peaks that follow distinct energy dispersion curves. One peak follows the dispersion of the carbon superstructure and is photoexcited only when the polarization vector is parallel to the steps, the second peak disperses similarly to the pristine Fe(0 0 1) surface. Such surface electronic structure is robust as it persists even after coating with an Ag overlayer. The robustness of this surface electronic structure and its similarity with that of the clean Fe(0 0 1) surface make this system of interest for magnetic and spintronic properties such as magneto tunnel junctions based on Fe/MgO interface.
- Published
- 2017
- Full Text
- View/download PDF
19. Pump−probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL
- Author
-
Nathan Beaulieu, Christine Boeglin, Bharati Tudu, Jan Lüning, Marie Agnes Tordeux, Damjan Krizmancic, Gregory Malinowski, Nicolas Jaouen, L. Stebel, Marina Tortarolo, Giuseppe Cautero, Maurizio Sacchi, Christian Chauvet, Tom Ferté, Jean Paul Ricaud, Horia Popescu, Michel Hehn, Victor Lopez-Flores, Federico Pressacco, Philippe Hollander, Cédric Baumier, Nicolas Bergeard, Mathieu G. Silly, Franck Fortuna, Renaud Delaunay, Fausto Sirotti, Debora Pierucci, R. Sergo, Silly, M. G., Ferte, T., Tordeux, M. A., Pierucci, D., Beaulieu, N., Chauvet, C., Pressacco, Flavio, Sirotti, F., Popescu, H., Lopez-Flores, V., Tortarolo, M., Sacchi, M., Jaouen, N., Hollander, P., Ricaud, J. P., Bergeard, N., Boeglin, C., Tudu, B., Delaunay, R., Luning, J., Malinowski, G., Hehn, M., Baumier, C., Fortuna, F., Krizmancic, D., Stebel, L., Sergo, R., Cautero, G., Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire de photonique et de nanostructures (LPN), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Croissance et propriétés de systèmes hybrides en couches minces (INSP-E8), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratorio TASC (IOM CNR), Consiglio Nazionale delle Ricerche (CNR), Elettra Sincrotrone Trieste, IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron Soleil, ligne TEMPO, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Nuclear and High Energy Physics ,Ciencias Físicas ,Analytical chemistry ,Synchrotron radiation ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,time-resolved spectroscopy ,law.invention ,TIME-RESOLVED SPECTROSCOPY ,Optics ,law ,pump-probe experiments ,0103 physical sciences ,010306 general physics ,Instrumentation ,Radiation ,Chemistry ,business.industry ,Synchrotron Radiation Source ,Pulse duration ,021001 nanoscience & nanotechnology ,Laser ,Synchrotron ,Astronomía ,PUMP/PROBE EXPERIMENTS ,Beamline ,Femtosecond ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,pump-probe experiment ,Time-resolved spectroscopy ,0210 nano-technology ,business ,CIENCIAS NATURALES Y EXACTAS - Abstract
The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump–probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump–probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump–probe experiments compared and discussed. Fil: Silly, Mathieu G.. Synchrotron Soleil; Francia Fil: Ferte, Tom. Synchrotron Soleil; Francia Fil: Tordeux, Marie Agnes. Synchrotron Soleil; Francia Fil: Pierucci, Debora. Synchrotron Soleil; Francia Fil: Beaulieu, Nathan. Synchrotron Soleil; Francia Fil: Chauvet, Christian. Synchrotron Soleil; Francia Fil: Pressacco, Federico. Synchrotron Soleil; Francia Fil: Sirotti, Fausto. Synchrotron Soleil; Francia Fil: Popescu, Horia. Synchrotron Soleil; Francia Fil: Lopez Flores, Victor. Synchrotron Soleil; Francia Fil: Tortarolo, Marina del Carmen. Synchrotron Soleil; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sacchi, Maurizio. Universite de Paris Vi. Institut des Nanosciences de Paris; Francia Fil: Jaouen, Nicolas. Synchrotron Soleil; Francia Fil: Hollander, Philippe. Synchrotron Soleil; Francia Fil: Ricaud, Jean Paul. Synchrotron Soleil; Francia Fil: Bergeard, Nicolas. Synchrotron Soleil; Francia Fil: Boeglin, Christine. Synchrotron Soleil; Francia Fil: Tudu, Bharati. Synchrotron Soleil; Francia Fil: Delaunay, Renaud. Universite de Paris VI; Francia Fil: Luning, Jan. Universite de Paris VI; Francia Fil: Malinowski, Gregory. Synchrotron Soleil; Francia Fil: Hehn, Michel. Synchrotron Soleil; Francia Fil: Baumier, Cedric. Université Paris Sud; Francia Fil: Fortuna, Franck. Université Paris Sud; Francia Fil: Krizmancic, Damjan. Elettra - Synchrotron Light Laboratory; Italia Fil: Stebel, Luigi. Elettra - Synchrotron Light Laboratory; Italia Fil: Sergo, Rudi. Elettra - Synchrotron Light Laboratory; Italia Fil: Cautero, Giuseppe. Elettra - Synchrotron Light Laboratory; Italia
- Published
- 2017
- Full Text
- View/download PDF
20. Electronic coupling in the F4-TCNQ/single-layer GaSe heterostructure
- Author
-
Julien Chaste, Evangelos Papalazarou, Abdelkarim Ouerghi, Luca Perfetti, Mahmoud Eddrief, Mathieu G. Silly, Lama Khalil, Emmanuel Lhuillier, Debora Pierucci, Fausto Sirotti, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Croissance et propriétés de systèmes hybrides en couches minces (INSP-E8), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), ANR-10-LABX-0035,Nano-Saclay,Paris-Saclay multidisciplinary Nano-Lab(2010), ANR-17-CE24-0030,RhomboG,Propriétés electroniques de couches minces de graphite rhombohedrique(2017), ALBA Synchrotron light source [Barcelone], Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and MagicValley
- Subjects
[PHYS]Physics [physics] ,Valence (chemistry) ,Materials science ,Physics and Astronomy (miscellaneous) ,Photoemission spectroscopy ,Fermi level ,Binding energy ,Doping ,Heterojunction ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Band offset ,symbols.namesake ,Nanoelectronics ,0103 physical sciences ,symbols ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology - Abstract
International audience; Hybrid heterostructures, made of organic molecules adsorbed on two-dimensional metal monochalcogenide, generally unveil interfacial effects that improve the electronic properties of the single constitutive layers. Here, we investigate the interfacial electronic characteristics of the F4-TCNQ/single-layer GaSe heterostructure. A sharp F4-TCNQ/GaSe interface has been obtained and characterized by x-ray photoemission spectroscopy. We demonstrate that a high electron transfer from 1TL GaSe into the adsorbed F4-TCNQ molecules takes place, thereby yielding a reduction in the excess negative charge density of GaSe. Additionally, the direct band-structure determination of the heterostructure has been carried out using angle-resolved photoemission spectroscopy, shedding light on essential features such as doping and band offset at the interface. Our results indicate that the buried 1TL GaSe below the F4-TCNQ layer exhibits a robust inversion of the valence dispersion at the Γ point, forming a Mexican-hat-shaped dispersion with 120 ± 10 meV of depth. Our experiments also reveal that F4-TCNQ can significantly tune the electronic properties of 1TL GaSe by shifting the band offset of about 0.16 eV toward lower binding energies with respect to the Fermi level, which is a key feature for envisioning its applications in nanoelectronics.
- Published
- 2019
- Full Text
- View/download PDF
21. Interplay between Structural and Electronic Properties in 1,4,5,8-Naphthalenetetracarboxylic Dianhydride Films on Cu(100)
- Author
-
Azzedine Bendounan, Hamid Oughaddou, François Nicolas, Fausto Sirotti, Vladimir A. Esaulov, Yongfeng Tong, and Stefan Kubsky
- Subjects
Materials science ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,XANES ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Naphthalenetetracarboxylic dianhydride ,chemistry.chemical_compound ,Crystallography ,General Energy ,Semiconductor ,X-ray photoelectron spectroscopy ,chemistry ,Covalent bond ,Chemisorption ,0103 physical sciences ,Molecule ,Physical and Theoretical Chemistry ,Thin film ,010306 general physics ,0210 nano-technology ,business - Abstract
Using various surface science techniques, we have studied the properties of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) thin films on a Cu(100) surface. STM investigations suggest the high mobility of the NTCDA molecules over the surface, leading to the formation of large and well-ordered islands. In line with LEED results, two typical domains with different molecular orientations and brick-wall-like structure are revealed in the STM images. On the other hand, a fingerprint of covalent bonding at the NTCDA/Cu interface is obtained from the core level shifts measured by high-resolution XPS. As a consequence, a charge transfer process develops at the interface and enables a total filling of the π*-like lowest unoccupied orbital, which is the signature of the semiconductor character of the NTCDA layer. The carbon K-edge NEXAFS data confirm the chemisorption nature of the interaction between NTCDA and the Cu(100) surface and indicate an evolution from a flat-lying orientation of NTCDA at 1 ML to a ...
- Published
- 2017
- Full Text
- View/download PDF
22. Tunable Doping in Hydrogenated Single Layered Molybdenum Disulfide
- Author
-
Carl H. Naylor, Mathieu G. Silly, Abdelkarim Ouerghi, Zeineb Ben Aziza, Yannick J. Dappe, Julien E. Rault, Adrian Balan, Hugo Henck, Debora Pierucci, Patrick Le Fèvre, François Bertran, A. T. Charlie Johnson, Fausto Sirotti, Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Philadelphia], University of Pennsylvania, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Groupe Modélisation et Théorie (GMT), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, University of Pennsylvania [Philadelphia], Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Service de physique de l'état condensé (SPEC - UMR3680), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
spectroscopy ,Materials science ,Hydrogen ,Photoemission spectroscopy ,Analytical chemistry ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,Angle-resolved photoemission spectroscopy ,doping ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,n and p doped MoS 2 ,chemistry.chemical_compound ,Monolayer ,General Materials Science ,Spectroscopy ,Molybdenum disulfide ,defects ,atomic hydrogenation ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,Doping ,General Engineering ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,chemistry ,Chemical physics ,electronic properties ,Density functional theory ,0210 nano-technology - Abstract
Structural defects in the molybdenum disulfide (MoS2) monolayer are widely known for strongly altering its properties. Therefore, a deep understanding of these structural defects and how they affect MoS2 electronic properties is of fundamental importance. Here, we report on the incorporation of atomic hydrogen in mono-layered MoS2 to tune its structural defects. We demonstrate that the electronic properties of single layer MoS2 can be tuned from the intrinsic electron (n) to hole (p) doping via controlled exposure to atomic hydrogen at room temperature. Moreover, this hydrogenation process represents a viable technique to completely saturate the sulfur vacancies present in the MoS2 flakes. The successful incorporation of hydrogen in MoS2 leads to the modification of the electronic properties as evidenced by high resolution X-ray photoemission spectroscopy and density functional theory calculations. Micro-Raman spectroscopy and angle resolved photoemission spectroscopy measurements show the high quality of the hydrogenated MoS2 confirming the efficiency of our hydrogenation process. These results demonstrate that the MoS2 hydrogenation could be a significant and efficient way to achieve tunable doping of transition metal dichalcogenides (TMD) materials with non-TMD elements., 15 pages, 6 figures + SI 3 pages 3 figures. Pre-print published with the authorization of ACS Publications
- Published
- 2017
- Full Text
- View/download PDF
23. Real-Time X-ray Photoemission Spectroscopy Study of Si(001)-2×1 Exposed to Water Vapor: Adsorption Kinetics, Fermi Level Positioning, and Electron Affinity Variations
- Author
-
François Rochet, Ahmed Naitabdi, Jean-Jacques Gallet, Debora Pierucci, Fabrice Bournel, Fausto Sirotti, Mathieu G. Silly, Heloise Tissot, Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Service de Médecine Nucléaire [CHRU Nancy], Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Laboratoire de Réactivité de Surface (LRS), Institut des Nanosciences de Paris (INSP), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon ,Photoemission spectroscopy ,Chemistry ,Fermi level ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Atomic layer deposition ,symbols.namesake ,General Energy ,Adsorption ,Electron affinity ,symbols ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,Spectroscopy ,Water vapor - Abstract
The great advantage of X-ray photoemission spectroscopy, when performed in real time, e.g., during the reaction of a gas with a surface, is the possibility of monitoring in a single experiment both the chemical aspects (adsorption kinetics, bond formation) and the physical ones (Fermi level positioning, variations in the electron affinity). In the present study we examine the reaction of water with Si(001)-2×1 at room temperature in real time not only because water, ubiquitous in (ultra) high-vacuum systems, is the main source of surface defects controlling the surface Fermi level, but also because water-saturated silicon may become an interesting starting surface in the atomic layer deposition of dielectrics on silicon. The question of water adsorption on silicon Si(001)-2×1 is renewed under the following four perspectives: (1) We propose an original kinetic analysis of the water uptake using an integrated form of the precursor model differential equations, underlying a dependence on pressure. (2) We per...
- Published
- 2016
- Full Text
- View/download PDF
24. Evidence of direct electronic band gap in two-dimensional van der Waals indium selenide crystals
- Author
-
Federico Bisti, Jihene Zribi, Julien E. Rault, Abhay Shukla, Christine Giorgetti, Debora Pierucci, Julien Chaste, Jean-Christophe Girard, Fausto Sirotti, Abdelkarim Ouerghi, Luca Perfetti, François Bertran, Patrick Le Fèvre, Hugo Henck, Evangelos Papalazarou, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE24-0030,RhomboG,Propriétés electroniques de couches minces de graphite rhombohedrique(2017)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Photoemission spectroscopy ,Scanning tunneling spectroscopy ,FOS: Physical sciences ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Electronic structure ,01 natural sciences ,symbols.namesake ,Effective mass (solid-state physics) ,Condensed Matter::Superconductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,021001 nanoscience & nanotechnology ,Brillouin zone ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,symbols ,Direct and indirect band gaps ,van der Waals force ,0210 nano-technology - Abstract
Metal mono-chalcogenide compounds offer a large variety of electronic properties depending on chemical composition, number of layers and stacking-order. Among them, the InSe has attracted much attention due to the promise of outstanding electronic properties, attractive quantum physics, and high photo-response. Metal mono-chalcogenide compounds offer a large variety of electronic properties depending on chemical composition, number of layers and stacking-order. Among them, the InSe has attracted much attention due to the promise of outstanding electronic properties, attractive quantum physics, and high photo-response. Precise experimental determination of the electronic structure of InSe is sorely needed for better understanding of potential properties and device applications. Here, combining scanning tunneling spectroscopy (STS) and two-photon photoemission spectroscopy (2PPE), we demonstrate that InSe exhibits a direct band gap of about 1.25 eV located at the Gamma point of the Brillouin zone (BZ). STS measurements underline the presence of a finite and almost constant density of states (DOS) near the conduction band minimum (CBM) and a very sharp one near the maximum of the valence band (VMB). This particular DOS is generated by a poorly dispersive nature of the top valence band, as shown by angle resolved photoemission spectroscopy (ARPES) investigation. technologies. In fact, a hole effective mass of about m/m0 = -0.95 gammaK direction) was measured. Moreover, using ARPES measurements a spin-orbit splitting of the deeper-lying bands of about 0.35 eV was evidenced. These findings allow a deeper understanding of the InSe electronic properties underlying the potential of III-VI semiconductors for electronic and photonic
- Published
- 2019
- Full Text
- View/download PDF
25. Influence of the carbon interface on the mechanical behavior of SiC/SiC composites
- Author
-
James Braun, Cédric Sauder, C. Fellah, M.-H. Berger, Fausto Sirotti, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Centre des Matériaux (CDM), Mines Paris - PSL (École nationale supérieure des mines de Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Composite number ,chemistry.chemical_element ,02 engineering and technology ,Adhesion ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Carbon layer ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,0104 chemical sciences ,chemistry ,Mechanics of Materials ,Ceramics and Composites ,Fiber ,Sic fiber ,Composite material ,0210 nano-technology ,Carbon ,ComputingMilieux_MISCELLANEOUS - Abstract
SiC/SiC composites reinforced with 3rd generation SiC fibers (Hi-Nicalon S and Tyranno SA3 fibers) are promising candidates for thermomechanical applications in high technology industries. Both composites exhibited a pseudo-ductile mechanical behavior but the HNS/PyC/SiC composite reaches higher failure strains than TSA3/PyC/SiC ones. The mechanical behavior of SiC/SiC composites is linked to the way PyC is bonded to the fiber surface. Analyses have shown that these interactions and the Fiber/Matrix debonding behavior depend strongly on the nature of the carbon on the SiC fiber surface, which is different according to the SiC fiber. In order to understand the mechanism governing the chemical adhesion at the PyC/SiC fiber interface, the formation, the chemistry and the structure of the surface carbon layer were studied. Understanding the origin of this carbon has allowed elucidating the local interaction mechanisms of the studied SiC/SiC composites.
- Published
- 2020
- Full Text
- View/download PDF
26. Valence band inversion and spin-orbit effects in the electronic structure of monolayer GaSe
- Author
-
Chaoyu Chen, Debora Pierucci, Kai Xiao, Emmanuel Lhuillier, Maria C. Asensio, Mina Yoon, Julien Chaste, Vladimir I. Fal'ko, José Avila, Samuel Magorrian, Hugo Henck, Mathieu G. Silly, Viktor Zólyomi, Mahmoud Eddrief, Zeineb Ben Aziza, Fausto Sirotti, Abdelkarim Ouerghi, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), University of Manchester [Manchester], Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Center for Nanophase Materials Sciences [Oak Ridge] (CNMS), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Croissance et propriétés de systèmes hybrides en couches minces (INSP-E8), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay
- Subjects
Physics ,Valence (chemistry) ,Photoluminescence ,Photoemission spectroscopy ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,National Graphene Institute ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,0103 physical sciences ,ResearchInstitutes_Networks_Beacons/national_graphene_institute ,Direct and indirect band gaps ,Density functional theory ,010306 general physics ,0210 nano-technology ,Luminescence - Abstract
Two-dimensional monochalcogenides (MX) have been identified as a unique and promising class of layered materials in recent years. The valence band of single-layer MX, as predicted by theory, is inverted into a bow-shaped (often referred to as an inverted sombrero) and relatively flat dispersion, which is expected to give rise to strongly correlated effects. The inversion leads to an indirect band gap, which is consistent with photoluminescence (PL) experiments, but PL provides no direct evidence of the band inversion in the valence band. Here we demonstrate for a hexagonal MX crystal, gallium selenide (GaSe), using a combination of angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), that the valence band of monolayer (ML) GaSe exhibits a robust inversion of the valence dispersion at the \ensuremath{\Gamma} point forming a bow-shaped dispersion with a depth of 120 \ifmmode\pm\else\textpm\fi{} 10 meV between the double valence band maximum along the \ensuremath{\Gamma}$K$ direction. We also demonstrate that the deeper-lying bands detected in the ARPES spectrum are consistent with DFT calculations only if spin-orbit coupling is considered. The presented ARPES evidence that spin-orbit coupling leads to the splitting of two fourfold-degenerate states into four Kramers doublets is of significance for PL measurements, as the change in energy of the second highest valence state at the \ensuremath{\Gamma} point has a measurable effect on the PL energies in high-energy luminescence. We predict the optical absorption coefficients for the principal transitions in ML GaSe using a four-band $\mathbf{k}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbf{p}$ model parametrized from first-principles theory with spin-orbit effects considered.
- Published
- 2018
- Full Text
- View/download PDF
27. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy
- Author
-
Nicolas Chauvin, Jose Penuelas, Nicholas Blanchard, Fausto Sirotti, Philippe Regreny, Geneviève Grenet, Jeanne Becdelievre, Claude Botella, Xin Guan, Romain Bachelet, Guillaume Saint-Girons, Michel Gendry, Benjamin Meunier, X. Jaurand, A. Benali, Mathieu G. Silly, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre Technologique des Microstructures (CTµ), Université de Lyon-Université de Lyon, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), INL - Spectroscopies et Nanomatériaux (INL - S&N), and Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Materials science ,Scanning electron microscope ,Nanowire ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Epitaxy ,01 natural sciences ,X-ray photoelectron spectroscopy ,0103 physical sciences ,General Materials Science ,Vapor–liquid–solid method ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electron diffraction ,Transmission electron microscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.
- Published
- 2016
- Full Text
- View/download PDF
28. Commissioning of a multi-beamline femtoslicing facility at SOLEIL
- Author
-
Jan Lüning, Marie Agnes Tordeux, Thierry Moreno, Pascale Prigent, Erik Elkaim, Paul Morin, Emmanuelle Jal, Amor Nadji, Pierre Fertey, Tom Ferté, Mathieu G. Silly, François Polack, Jean Paul Ricaud, Pascale Roy, Philippe Hollander, M. E. Couprie, Sylvain Ravy, Jean Blaise Brubach, Marie Labat, Olivier Marcouillé, Alessandra Ciavardini, Claire Laulhé, Amina Taleb, Fausto Sirotti, Nicolas Hubert, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen], Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
- Subjects
Nuclear and High Energy Physics ,Terahertz radiation ,Synchrotron radiation ,02 engineering and technology ,Photon energy ,01 natural sciences ,7. Clean energy ,law.invention ,Optics ,law ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,Physics ,Radiation ,business.industry ,021001 nanoscience & nanotechnology ,Laser ,Beamline ,Femtosecond ,0210 nano-technology ,business ,Ultrashort pulse ,Storage ring - Abstract
The investigation of ultrafast dynamics, taking place on the few to sub-picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X-ray free-electron lasers (XFELs), providing very intense X-ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub-picosecond pulsed X-ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY-II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub-picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X-ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing-induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.
- Published
- 2018
- Full Text
- View/download PDF
29. Mechanical stress dependence of the Fermi level pinning on an oxidized silicon surface
- Author
-
Steve Arscott, Fausto Sirotti, Alistair Rowe, Fabian Cadiz, Azzedine Bendounan, Lucio Martinelli, Heng Li, Laboratoire de Physique de la Matière Condensée (LPMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Nano and Microsystems - IEMN (NAM6 - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), A c k n o w l e d g m e n t s :This work was partially financed by the French Agence Nationale de la Recherche, contract ANR-17-CE24-0005. The authors thank F.Rochet for useful discussions., ANR-17-CE24-0005,TRAMP,Propriétés électromécaniques nouvelles des nanostructures de silicium induites par des pièges électroniques(2017), Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Université Polytechnique Hauts-de-France (UPHF)-Institut supérieur de l'électronique et du numérique (ISEN), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut supérieur de l'électronique et du nunérique (ISEN)-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Centro de Energia Nuclear na Agricultura
- Subjects
Silicon ,X-ray photoelectron spectroscopy ,Materials science ,Mechanical stress ,Nanowire ,General Physics and Astronomy ,chemistry.chemical_element ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Interface defect ,Stress (mechanics) ,Crystal ,Condensed Matter::Materials Science ,[SPI]Engineering Sciences [physics] ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Compression (geology) ,Surface Fermi level pinning ,ComputingMilieux_MISCELLANEOUS ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Surfaces, Coatings and Films ,Compressive strength ,chemistry ,Tension (geology) ,Raman spectroscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Deformation (engineering) ,0210 nano-technology - Abstract
A combination of micro-Raman spectroscopy and micro-XPS (X-ray photo-electron spectroscopy) mapping on statically deflected p-type silicon cantilevers is used to study the mechanical stress dependence of the Fermi level pinning at an oxidized silicon (001) surface. With uniaxial compressive and tensile stress applied parallel to the $\langle$110$\rangle$ crystal direction, the observations are relevant to the electronic properties of strain-silicon nano-devices with large surface-to-volume ratios such as nanowires and nanomembranes. The surface Fermi level pinning is found to be even in applied stress, a fact that may be related to the symmetry of the Pb$_0$ silicon/oxide interface defects. For stresses up to 160 MPa, an increase in the pinning energy of 0.16 meV/MPa is observed for compressive stress, while for tensile stress it increases by 0.11 meV/MPa. Using the bulk, valence band deformation potentials the reduction in surface band bending in compression (0.09 meV/MPa) and in tension (0.13 meV/MPa) can be estimated., Comment: 5 pages, 5 figures plus Supplementary Material
- Published
- 2018
- Full Text
- View/download PDF
30. Interface dipole and band bending in the hybrid p−n heterojunction MoS2/GaN(0001)
- Author
-
Carl H. Naylor, Hugo Henck, Julien E. Rault, Mathieu G. Silly, Fabrice Oehler, Julien Brault, A. T. Charlie Johnson, Patrick Le Fèvre, François Bertran, Stéphane Berciaud, Olivia Zill, Stéphane Collin, Abdelkarim Ouerghi, Noelle Gogneau, Fausto Sirotti, Zeineb Ben Aziza, Debora Pierucci, and Emmanuel Lhuillier
- Subjects
Materials science ,Photoemission spectroscopy ,business.industry ,Fermi level ,Angle-resolved photoemission spectroscopy ,Heterojunction ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Materials Science ,symbols.namesake ,Dipole ,Band bending ,Condensed Matter::Superconductivity ,Monolayer ,symbols ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business - Abstract
Hybrid heterostructures based on bulk GaN and two-dimensional (2D) materials offer novel paths toward nanoelectronic devices with engineered features. Here, we study the electronic properties of a mixed-dimensional heterostructure composed of intrinsic n-doped MoS2 flakes transferred on p-doped GaN(0001) layers. Based on angle-resolved photoemission spectroscopy (ARPES) and high resolution x-ray photoemission spectroscopy (HR-XPS), we investigate the electronic structure modification induced by the interlayer interactions in MoS2/GaN heterostructure. In particular, a shift of the valence band with respect to the Fermi level for MoS2/GaN heterostructure is observed, which is the signature of a charge transfer from the 2D monolayer MoS2 to GaN. The ARPES and HR-XPS revealed an interface dipole associated with local charge transfer from the GaN layer to the MoS2 monolayer. Valence and conduction band offsets between MoS2 and GaN are determined to be 0.77 and −0.51eV, respectively. Based on the measured work functions and band bendings, we establish the formation of an interface dipole between GaN and MoS2 of 0.2 eV.
- Published
- 2017
- Full Text
- View/download PDF
31. Correlation between structure, electronic properties, and magnetism in CoxGd1−x thin amorphous films
- Author
-
M. Izquierdo, E. Fonda, Fausto Sirotti, N. Bergeard, and Alexandra Mougin
- Subjects
Amorphous metal ,Materials science ,Magnetism ,Magnetic circular dichroism ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Amorphous solid ,Crystallography ,Ferrimagnetism ,0103 physical sciences ,Sensitivity (control systems) ,Thin film ,010306 general physics ,0210 nano-technology ,Electronic properties - Abstract
Correlation between structure, electronic properties, and magnetism in ${\mathrm{Co}}_{x}{\mathrm{Gd}}_{1\ensuremath{-}x}$ thin amorphous films was investigated. The thickness averaged properties of covered thin films are consistent with those of in-depth homogeneous amorphous alloys. In spite of that, x-ray magnetic circular dichroism (XMCD) and photoemission measurements on as-grown films have shown signatures consistent with a lateral gradient composition and a Gd surfactant effect. A tendency of Gd atoms to migrate to the surface followed by an oxidation down to 8 \AA{} has been evidenced. Our results further demonstrate the extreme sensitivity of the magnetic properties of ferrimagnetic alloys to their structure and local concentration.
- Published
- 2017
- Full Text
- View/download PDF
32. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures
- Author
-
Christophe David, Debora Pierucci, Mina Yoon, Hugo Henck, Mahmoud Eddrief, Zeineb Ben Aziza, Kai Xiao, Mathieu G. Silly, Fausto Sirotti, Abdelkarim Ouerghi, Jean-Christophe Girard, Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Center for Nanophase Materials Sciences [Oak Ridge] (CNMS), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, The University of Tennessee [Knoxville], Croissance et propriétés de systèmes hybrides en couches minces (INSP-E8), Institut des Nanosciences de Paris (INSP), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Band gap ,Photoemission spectroscopy ,Scanning tunneling spectroscopy ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,law.invention ,symbols.namesake ,law ,0103 physical sciences ,010306 general physics ,Electronic band structure ,ComputingMilieux_MISCELLANEOUS ,Condensed Matter::Quantum Gases ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Condensed matter physics ,Graphene ,Materials Science (cond-mat.mtrl-sci) ,Heterojunction ,021001 nanoscience & nanotechnology ,Quantum dot ,symbols ,van der Waals force ,0210 nano-technology - Abstract
Two-dimensional (2D) materials have recently been the focus of extensive research. By following a similar trend as graphene, other 2D materials including transition metal dichalcogenides (MX2) and metal mono-chalcogenides (MX) show great potential for ultrathin nanoelectronic and optoelectronic devices. Despite the weak nature of interlayer forces in semiconducting MX materials, their electronic properties are highly dependent on the number of layers. Using scanning tunneling microscopy and spectroscopy (STM/STS), we demonstrate the tunability of the quasiparticle energy gap of few layered gallium selenide (GaSe) directly grown on a bilayer graphene substrate by molecular beam epitaxy (MBE). Our results show that the band gap is about 3.50 +/-0.05 eV for single-tetralayer (1TL), 3.00 +/-0.05 eV for bi-tetralayer (2TL) and 2.30 +/-0.05 eV for tri-tetralayer (3TL). This band gap evolution of GaSe, in particularly the shift of the valence band with respect to the Fermi level, was confirmed by angle-resolved photoemission spectroscopy (ARPES) measurements and our theoretical calculations. Moreover, we observed a charge transfer in GaSe/graphene van der Waals (vdW) heterostructure using ARPES. These findings demonstrate the high impact on the GaSe electronic band structure and electronic properties that can be obtained by the control of 2D materials layer thickness and the graphene induced doping.
- Published
- 2017
- Full Text
- View/download PDF
33. Low-energy electronic excitations and band-gap renormalization in CuO
- Author
-
Jean-Pascal Rueff, Roberto Verbeni, Ari-Pekka Honkanen, Fausto Sirotti, Francesco Sottile, James M. Ablett, Ali Al-Zein, Kari O. Ruotsalainen, Lucia Reining, C. Rödl, Simo Huotari, Department of Physics, and Helsinki In Vivo Animal Imaging Platform (HAIP)
- Subjects
Renormalization ,Theoretical physics ,Low energy ,Materials science ,Condensed matter physics ,Band gap ,0103 physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,114 Physical sciences ,01 natural sciences - Abstract
Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d-d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material. Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d-d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material. Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d-d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material.
- Published
- 2017
- Full Text
- View/download PDF
34. The passivating effect of cadmium in PbS/CdS colloidal quantum dots probed by nm-scale depth profiling
- Author
-
Pip C J, Clark, Hanna, Radtke, Atip, Pengpad, Andrew I, Williamson, Ben F, Spencer, Samantha J O, Hardman, Marina A, Leontiadou, Darren C J, Neo, Simon M, Fairclough, Andrew A R, Watt, Igor, Pis, Silvia, Nappini, Federica, Bondino, Elena, Magnano, Karsten, Handrup, Karina, Schulte, Mathieu G, Silly, Fausto, Sirotti, and Wendy R, Flavell
- Abstract
Achieving control of the surface chemistry of colloidal quantum dots (CQDs) is essential to fully exploit their properties in solar cells, but direct measurement of the chemistry and electronic structure in the outermost atomic layers is challenging. Here we probe the surface oxidation and passivation of cation-exchanged PbS/CdS core/shell CQDs with sub nm-scale precision using synchrotron-radiation-excited depth-profiling photoemission. We investigate the surface composition of the topmost 1-2.5 nm of the CQDs as a function of depth, for CQDs of varying CdS shell thickness, and examine how the surface changes after prolonged air exposure. We demonstrate that the Cd is localized at the surface of the CQDs. The surface-localized products of oxidation are identified, and the extent of oxidation quantified. We show that oxidised sulfur species are progressively eliminated as Cd replaces Pb at the surface. A sub-monolayer surface 'decoration' of Cd is found to be effective in passivating the CQDs. We show that the measured energy-level alignments at PbS/CdS colloidal quantum dot surfaces differ from those expected on the basis of bulk band offsets, and are strongly affected by the oxidation products. We develop a model for the passivating action of Cd. The optimum shell thickness (of around 0.1 nm, previously found to give maximised power conversion efficiency in PbS/CdS solar cells) is found to correspond to a trade-off between the rate of oxidation and the introduction of a surface barrier to charge transport.
- Published
- 2017
35. Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)
- Author
-
Haikel Sediri, Noelle Gogneau, Mahdi Hajlaoui, Abhay Shukla, E. Velez-Fort, Abdelkarim Ouerghi, Yannick J. Dappe, Rachid Belkhou, Mathieu G. Silly, Fausto Sirotti, Debora Pierucci, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Groupe Modélisation et Théorie (GMT), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), The authors thank the French National Research Agency (ANR) SUPERTRAMP project and LABEX NanoSaclay for funding., ANR-11-BS04-0019,SUPERTRAMP,Au delà du graphène: Dopage, supraconductivité et transitions de phase en 2D(2011), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
bilayer ,Bernal stacking ,Materials science ,off-axis silicon carbide ,Superlattice ,Electrostatic force microscope ,Angle-resolved photoemission spectroscopy ,Nanotechnology ,7. Clean energy ,band gap opening ,law.invention ,epitaxial graphene layer ,law ,monolayer ,Monolayer ,General Materials Science ,Electrical and Electronic Engineering ,[PHYS]Physics [physics] ,business.industry ,Graphene ,Bilayer ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,electronic properties ,Optoelectronics ,business ,Bilayer graphene ,Graphene nanoribbons - Abstract
International audience; The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on (112 — 0) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/ electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on (112 — 0) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal–semiconductor graphene.
- Published
- 2014
- Full Text
- View/download PDF
36. Dissociation of Ethoxysilane and Methoxysilane on Si(001)-2 × 1 and Si(111)-7 × 7 at Room Temperature: A Comparative Study Using Synchrotron Radiation Photoemission
- Author
-
Mathieu G. Silly, François Rochet, Debora Pierucci, Fausto Sirotti, Jean-Jacques Gallet, Fabrice Bournel, Heloise Tissot, Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Materials science ,Silicon ,Synchrotron radiation ,chemistry.chemical_element ,Dissociation (chemistry) ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Crystallography ,General Energy ,Monomer ,Adsorption ,chemistry ,X-ray photoelectron spectroscopy ,Alkoxy group ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Alkyl - Abstract
International audience; The adsorption of tetraethoxysilane and tetramethoxysilane (TEOS, Si[OC2H5]4 and TMOS, Si[OCH3]4) on the Si(001)-2 × 1 and Si(111)-7 × 7 surface at 300 K was studied by synchrotron radiation X-ray photoelectron spectroscopy (XPS). On Si(001)-2 × 1, and for both alkoxysilanes, two adsorption regimes are present. The initial one corresponds to the full dissociation via Si–O bond breaking that leads to the grafting of ethoxy moieties and the release of a silicon monomer. This regime is superseded by a second mechanism involving the breaking of C–O bonds leading to the attachment of alkyl moieties to the surface. We propose that C–O bond breaking occurs on the silicon monomers produced during the initial regime. On Si(111)-7 × 7, although the surface reconstruction is different from that of Si(001), we observe the same products as those seen on Si(001)-2 × 1 and the same trends (Si–O bond breaking predominates over C–O bond breaking at low coverage).
- Published
- 2014
- Full Text
- View/download PDF
37. Charge Transfer and Energy Level Alignment at the Interface between Cyclopentene-Modified Si(001) and Tetracyanoquinodimethane
- Author
-
Anzar Khaliq, Mathieu G. Silly, Fabrice Bournel, Debora Pierucci, Jean-Jacques Gallet, Fausto Sirotti, Heloise Tissot, François Rochet, Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon ,Chemistry ,Fermi level ,chemistry.chemical_element ,Substrate (electronics) ,Photochemistry ,Acceptor ,Tetracyanoquinodimethane ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,symbols.namesake ,General Energy ,X-ray photoelectron spectroscopy ,Monolayer ,symbols ,[CHIM]Chemical Sciences ,Cyclopentene ,Physical and Theoretical Chemistry - Abstract
International audience; We examine how the electronic structure (via synchrotron radiation XPS, UPS, and NEXAFS) and the molecular orientation (via NEXAFS) of a strong acceptor molecule, tetracyanoquinodimethane (TCNQ), change as a function of thickness when it is deposited on the cyclopentene-covered Si(001)-2×1 substrate. XPS shows that the monomolecular cyclopentene layer acts as an efficient chemical protective barrier. All spectroscopies indicate that anionic TCNQ is formed at (sub)monolayer coverage. However, the transfer should only concern those CN moieties pointing toward the Silicon surface. At higher thicknesses, neutral TCNQ is observed. We do not observe the upward bending of the silicon bands associated with electron transfer from the substrate to the acceptor molecular that one would expect for an unpinned Fermi level interface. In fact, donor levels are likely created within the cyclopentene layer or at its interface with silicon. The formation of TCNQ– is associated with a strong increase in the work function. The attained value (∼5.7 eV) is independent of the work function of the cyclopentene-modified Si(001) surface (that varies with Si doping), in agreement with the integral charge transfer model. Therefore, ultrathin layers of TCNQ can be used to improve the hole-injection properties of this alkene-modified silicon surface.
- Published
- 2014
- Full Text
- View/download PDF
38. Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures
- Author
-
Abdelkarim Ouerghi, Emiliano Pallecchi, Mounib Bahri, Fausto Sirotti, Gilles Patriarche, Mathieu G. Silly, E. Velez-Fort, and Abhay Shukla
- Subjects
Materials science ,Photoemission spectroscopy ,business.industry ,Graphene ,Heteroatom ,Physics::Optics ,Nanotechnology ,Substrate (electronics) ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,law.invention ,Condensed Matter::Materials Science ,Electron diffraction ,law ,Physics::Atomic and Molecular Clusters ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,Physics::Chemical Physics ,Electrical and Electronic Engineering ,business ,Bilayer graphene ,Graphene nanoribbons ,Graphene oxide paper - Abstract
In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. The ability to dope graphene with electron-donor nitrogen heteroatoms is highly important for modulating electrical properties of graphene. Here we demonstrate a transfer-free method to directly grow large area quasi free-standing N-doped graphene bilayers on an insulating substrate (Si3N4). Electron-bombardment heating under nitrogen flux results in simultaneous growth of N-doped graphene and a Si3N4 layer on the SiC surface. The decoupling of N-doped graphene from the substrate and the presence of Si3N4 are identified by X-ray photoemission spectroscopy and low-energy electron diffraction. The substitution of nitrogen atoms in the graphene planes was confirmed using high resolution X-ray photoemission spectroscopy which reveals several atomic configurations for the nitrogen atoms: Graphitic-like, pyridine-like, and pyrroliclike. Furthermore, we demonstrated for the first time that N-doped graphene could be used to efficiently probe oxygen molecules via nitrogen atom defects. Open image in new window
- Published
- 2014
- Full Text
- View/download PDF
39. Benzaldehyde on Water-Saturated Si(001): Reaction with Isolated Silicon Dangling Bonds versus Concerted Hydrosilylation
- Author
-
Mathieu G. Silly, Stefan Kubsky, Fausto Sirotti, Stéphane Carniato, Jean-Jacques Gallet, Ahmed Naitabdi, Fabrice Bournel, François Rochet, Heloise Tissot, Debora Pierucci, Daniel Laumann, Ulrich Köhler, Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Réactivité de Surface (LRS), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Service de Médecine Nucléaire [CHRU Nancy], Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Meteorologisches Observatorium Hohenpeißenberg (MOHp), and Deutscher Wetterdienst [Offenbach] (DWD)
- Subjects
Silicon ,Hydrosilylation ,Radical ,Dangling bond ,chemistry.chemical_element ,Photochemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Benzaldehyde ,chemistry.chemical_compound ,General Energy ,chemistry ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry - Abstract
Despite strong similarities due to the common presence of silicon monohydrides and isolated silicon dangling bonds (silicon radicals), the water-saturated Si(001)-2 × 1 surface and the hydrogen-ter...
- Published
- 2014
- Full Text
- View/download PDF
40. Ultrafast Dynamics of Magnetic Domain Structures Probed by Coherent Free-Electron Laser Light
- Author
-
Emanuele Pedersoli, C. M. Günther, Rolf Treusch, Fausto Sirotti, Nathan Beaulieu, Gregory Malinowski, Maya Kiskinova, A. Al-Shemmary, Hans Peter Oepen, Bastian Pfau, Philippe Zeitoun, Stefan Eisebitt, Stefan Düsterer, Nicolas Jaouen, S. Schleitzer, Boris Vodungbo, K. Li, C. von Korff Schmising, S. Schaffert, Michael Schneider, Harald Redlin, Felix Büttner, Flavio Capotondi, Bharati Tudu, Horia Popescu, Leonard Müller, Victor Lopez-Flores, Jan Geilhufe, Julien Gautier, J. Bach, Christian Gutt, Gerhard Grübel, Jan Lüning, Robert Frömter, Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Technische Universität Berlin (TU), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Helmholtz-Zentrum Berlin), Helmholtz-Zentrum Berlin, Paul Scherrer Institute (PSI), NEST-INFM (INFM), Istituto Nazionale di Fisica Nucleare (INFN), Institut für Angewandte Physik [Hamburg] (IAngPh), Universität Hamburg (UHH), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Nuclear and High Energy Physics ,Magnetic domain ,Magnetism ,Astrophysics::High Energy Astrophysical Phenomena ,02 engineering and technology ,01 natural sciences ,law.invention ,Optics ,law ,0103 physical sciences ,ddc:530 ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Magnetic circular dichroism ,business.industry ,Scattering ,Free-electron laser ,021001 nanoscience & nanotechnology ,Laser ,Atomic and Molecular Physics, and Optics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Physics::Accelerator Physics ,Atomic physics ,0210 nano-technology ,business ,Ultrashort pulse ,Fermi Gamma-ray Space Telescope - Abstract
Synchrotron radiation news 26(6), 27 - 32 (2013). doi:10.1080/08940886.2013.850384, The free-electron laser (FEL) sources FLASH in Hamburg, LCLS at Stanford, and FERMI in Trieste provide XUV to soft X-ray radiation (FLASH and FERMI) or soft to hard X-ray radiation (LCLS) with unprecedented parameters in terms of ultrashort pulse length, high photon flux, and coherence. These properties make FELs ideal tools for studying ultrafast dynamics in matter on a previously unaccessible level. This paper first reviews results obtained at FEL sources during the last few years in the field of magnetism research. We start with pioneering experiments at FLASH demonstrating the feasibility of magnetic scattering at FELs [1, 2], then present pump–probe scattering experiments [3, 4] as well as the first FEL magnetic imaging experiments [5], and finally discuss a limitation of the scattering methods due to a quenching of the magnetic scattering signal by high-fluence FEL pulses [6]. All of the presented experiments exploit the X-ray magnetic circular dichroism effect [7, 8] to obtain element-specific magnetic scattering contrast, as known from synchrotron experiments [9–12]., Published by Taylor & Francis, Philadelphia, Pa.
- Published
- 2013
- Full Text
- View/download PDF
41. (Invited) Physical and Electrical Properties of Scaled Gate Stacks on Si/Passivated In0.53Ga0.47As
- Author
-
Debora Pierucci, Mathieu G. Silly, Chiara Marchiori, Stefan Abel, Fausto Sirotti, M. El Kazzi, Lukas Czornomaz, M. Sousa, J. Fompeyrine, and Emanuele Uccelli
- Subjects
Materials science ,business.industry ,Transistor ,Electrical engineering ,Gate stack ,Capacitance ,Instability ,law.invention ,Capacitor ,Characterization methods ,Stack (abstract data type) ,law ,Limit (music) ,Optoelectronics ,business - Abstract
In0.53Ga0.47As based capacitors and self-aligned transistors fabricated with HfO2/Al2O3/Si gate stacks in a gate-first process flow show promising electrical properties. With in-situ and ex-situ characterization methods, we review systematically the physical and chemical properties of the whole multilayered stack. Especially, critical instabilities which may potentially limit the achievement of sub-nanometer capacitance equivalent thickness and a low interface state density are described in detail. Finally we propose some alternative solutions to avoid the observed instability paths.
- Published
- 2013
- Full Text
- View/download PDF
42. Structure of an Amorphous Boron Carbide Film: An Experimental and Computational Approach
- Author
-
Anh Thy Bui, Christel Gervais, Patrick Weisbecker, Camille Pallier, Francis Teyssandier, Ă. Georges Chollon, Ă. Henry E. Fischer, Jean-Marc Leyssale, Lionel A. Truflandier, Fausto Sirotti, Laboratoire des Composites Thermostructuraux (LCTS), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Snecma-SAFRAN group-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie - UMR5182 (LC), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CNRS, Herakles (Safran group), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)
- Subjects
amorphous ceramics ,abă initio molecular dynamics ,Materials science ,General Chemical Engineering ,Neutron diffraction ,Analytical chemistry ,Ab initio ,chemistry.chemical_element ,02 engineering and technology ,Boron carbide ,01 natural sciences ,X-ray absorption ,chemical vapor deposition ,Carbide ,chemistry.chemical_compound ,neutron diffraction ,0103 physical sciences ,Materials Chemistry ,Magic angle spinning ,boron carbide ,010306 general physics ,Boron ,locală structure ,X-ray absorption spectroscopy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Crystallography ,Solid-state nuclear magnetic resonance ,chemistry ,solid-state NMR ,0210 nano-technology - Abstract
International audience; An amorphous boron carbide ceramic is prepared via hot wall chemical vapor deposition at 1000 °C using a BCl3/CH4/H2 mixture. Its elemental composition is assessed by electron probe microanalysis (EPMA) and its structure studied by Raman spectroscopy, transmission electron microscopy (TEM), both X-ray diffraction (XRD) and neutron diffraction, 11B magic angle spinning nuclear magnetic resonance (MAS NMR), X-ray absorption spectroscopy (XAS), and ab initio modeling. The atomic structure factor and pair distribution function derived from neutron diffraction data are compared to those deduced from an atomistic model obtained by a liquid quench ab initio molecular dynamics simulation. The good agreement between experimental data and simulation shows that the as-prepared material is essentially made of a random arrangement of icosahedra (B12, B11C, and B10C2) embedded in an amorphous matrix rich in trigonal (BC3 or BC2B) and tetrahedral (CB4) sites. The existence of trigonal boron environments is clearly confirmed by a peak at 50 ppm in both the experimental and simulated 11B MAS NMR spectra, as well as a 190.0 eV component in the XANES-B(1s) spectrum. The intericosahedral linear C–B–C chains observed in crystalline B4C are absent in the as-processed material. Free hexagonal carbon and B4C crystallites appear in the ceramic when heat-treated at 1300 °C/2 h/Ar, as evidenced by high-resolution TEM and Raman spectroscopy. Comparing the pair distribution functions of the heat-treated material with the crystalline B4C model allows confirming the apparition of C–B–C chains in the material. Indeed, two new peaks located at 1.42 and 2.35 Å can only be attributed to a first-neighbor distance between the B and C atoms in the chain and a second-neighbor distance between a chain-boron atom and an icosahedron-boron atom, respectively.
- Published
- 2013
- Full Text
- View/download PDF
43. Dynamique de l’aimantation étudiée par rayonnement synchrotron : vers l’électronique de demain
- Author
-
Nicholas B. Brookes, Jan Vogel, Fausto Sirotti, Alain Fontaine, Vojtech Uhlir, Stefania Pizzini, Vincent Cros, Marlio Bonfim, Julio C. Cezar, and Nicolas Rougemaille
- Subjects
0103 physical sciences ,02 engineering and technology ,General Medicine ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,01 natural sciences - Abstract
La course a la miniaturisation pour augmenter la densite de stockage de donnees en utilisant des nanostructures magnetiques, necessite de maitriser les processus de retournement de l’aimantation dans les materiaux. Grâce aux proprietes du rayonnement synchrotron, nous pouvons effectuer des images des domaines magnetiques dans des fils de 100 nm d’epaisseur, avec sensibilite a l’element chimique et une resolution temporelle de quelques dizaines de picosecondes. Les processus dynamiques de l’aimantation ont ete etudies pendant l’injection d’un courant suffisant pour deplacer les parois des domaines magnetiques par transfert de spin.
- Published
- 2013
- Full Text
- View/download PDF
44. Direct observation of the band structure in bulk hexagonal boron nitride
- Author
-
Matteo Gatti, Guillaume Cassabois, Yannick J. Dappe, Mathieu G. Silly, Francesco Sottile, José Avila, Debora Pierucci, Abdelkarim Ouerghi, Hugo Henck, Chaoyu Chen, Maria C. Asensio, Bernard Gil, Giorgia Fugallo, Fausto Sirotti, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Materials science ,Condensed matter physics ,Graphene ,Photoemission spectroscopy ,Fermi level ,Nanotechnology ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Substrate (electronics) ,Dielectric ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,law.invention ,symbols.namesake ,Transition metal ,law ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,symbols ,0210 nano-technology ,Electronic band structure - Abstract
International audience; A promising route towards nanodevice applications relies on the association of graphene and transition metal dichalcogenides with hexagonal boron nitride (h-BN). Due to its insulating nature, h-BN has emerged as a natural substrate and gate dielectric for graphene-based electronic devices. However, some fundamental properties of bulk h-BN remain obscure. For example, the band structure and the position of the Fermi level have not been experimentally resolved. Here, we report a direct observation of parabolic dispersions of h-BN crystals using high-resolution angle-resolved photoemission spectroscopy (ARPES). We find that h-BN exfoliation on epitaxial graphene enables overcoming the technical difficulties of using ARPES with insulating materials. We show trigonal warping of the intensity maps at constant energy. The valence-band maxima are located around the K points, 2.5 eV below the Fermi level, thus confirming the residual p-type character of typical h-BN.
- Published
- 2017
- Full Text
- View/download PDF
45. Stacking fault and defects in single domain multilayered hexagonal boron nitride
- Author
-
Fausto Sirotti, Bernard Gil, Mathieu G. Silly, Abdelkarim Ouerghi, Hugo Henck, Guillaume Cassabois, Debora Pierucci, Zeineb Ben Aziza, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Laboratoire Charles Coulomb (L2C), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Graphene ,Photoemission spectroscopy ,Stacking ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Crystallographic defect ,Molecular physics ,XANES ,law.invention ,Crystal ,Crystallography ,chemistry ,law ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Boron ,Stacking fault - Abstract
Two dimensional materials like graphene, transition metal dichalcogenides, and hexagonal boron nitride (h-BN) have attracted a keen interest over the past few years due to their possible integration in the next generation of nano-components. Here, we used high resolution X-ray photoemission spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) to perform a complete study of stacking configuration and identify sp3 crystal deformations of a single domain h-BN crystal. The AA′ stacking was found to best reproduce features in the experimental B and N K-edges. The NEXAFS also shows that the splitting of the 1s to π* peak in the B K-edge, recently predicted by density functional theory, may be accounted for by the presence of AB′ stacking faults. The presence of this stacking fault has, as a result, the introduction of point defects in the crystal such as boron atoms in a pyramidal or sp3 configuration. Interstitial nitrogen defects are also present in the crystal forming a N-N pair as expected for a p-type h-BN crystal.
- Published
- 2017
- Full Text
- View/download PDF
46. Chemical and kinetic insights into the Thermal Decomposition of an Oxide Layer on Si(111) from Millisecond Photoelectron Spectroscopy
- Author
-
Mathieu G. Silly, Fabrice Bournel, François Rochet, Fausto Sirotti, M. El Kazzi, Jean-Jacques Gallet, Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de la Matière Condensée (LPMC), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Silicon ,Science ,Oxide ,Nucleation ,chemistry.chemical_element ,02 engineering and technology ,Activation energy ,7. Clean energy ,01 natural sciences ,Article ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,Desorption ,0103 physical sciences ,010306 general physics ,Silicon oxide ,Multidisciplinary ,Thermal decomposition ,021001 nanoscience & nanotechnology ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,Chemical physics ,Medicine ,0210 nano-technology - Abstract
Despite thermal silicon oxide desorption is a basic operation in semiconductor nanotechnology, its detailed chemical analysis has not been yet realized via time-resolved photoemission. Using an advanced acquisition system and synchrotron radiation, heating schedules with velocities as high as 100 K.s−1 were implemented and highly resolved Si 2p spectra in the tens of millisecond range were obtained. Starting from a Si(111)-7 × 7 surface oxidized in O2 at room temperature (1.4 monolayer of oxygen), changes in the Si 2p spectral shape enabled a detailed chemical analysis of the oxygen redistribution at the surface and of the nucleation, growth and reconstruction of the clean silicon areas. As desorption is an inhomogeneous surface process, the Avrami formalism was adapted to oxide desorption via an original mathematical analysis. The extracted kinetic parameters (the Avrami exponent equal to ~2, the activation energy of ~4.1 eV and a characteristic frequency) were found remarkably stable within a wide (~110 K) desorption temperature window, showing that the Avrami analysis is robust. Both the chemical and kinetic information collected from this experiment can find useful applications when desorption of the oxide layer is a fundamental step in nanofabrication processes on silicon surfaces.
- Published
- 2017
- Full Text
- View/download PDF
47. Dynamics of magnetic domain walls and skyrmions studied by high resolution XMCD-PEEM microscopy
- Author
-
Stefania Pizzini, Jan Vogel, Nicolas Rougemaille, Fausto Sirotti, Julio Cesar, Dayane Chaves, Onur Mentes, Michael Foester, Lucia Aballe, Andrea Locatelli, and Olivier Boulle
- Published
- 2016
- Full Text
- View/download PDF
48. Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer
- Author
-
Ivana Vobornik, A. Bendounan, Fausto Sirotti, Gérald Dujardin, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara, Pranab Kumar Das, Andrew J. Mayne, and Sana Sadeddine
- Subjects
Physics ,Condensed Matter - Materials Science ,Multidisciplinary ,82D80 ,Condensed matter physics ,Silicon ,Physics::Instrumentation and Detectors ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,chemistry.chemical_element ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Article ,Dirac cone ,chemistry ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Layer (electronics) - Abstract
The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of "Equation missing" comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices.
- Published
- 2016
- Full Text
- View/download PDF
49. Electrolytic phototransistor based on graphene-MoS 2 van der Waals p-n heterojunction with tunable photoresponse
- Author
-
Abdelkarim Ouerghi, Adrian Balan, Carl H. Naylor, Emmanuel Lhuillier, Debora Pierucci, Hugo Henck, Mathieu G. Silly, A. T. Charlie Johnson, José Avila, Maria C. Asensio, Fausto Sirotti, Julien Chaste, Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), University of Pennsylvania [Philadelphia], Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Labex Matisse, ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and University of Pennsylvania
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Stacking ,Van der Waals heterostructures ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,law.invention ,symbols.namesake ,law ,photoconduction ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Photocurrent ,business.industry ,Graphene ,Photoconductivity ,Doping ,graphene ,Heterojunction ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,symbols ,Optoelectronics ,transistor electrolytic ,van der Waals force ,0210 nano-technology ,business ,Bilayer graphene ,MoS2 - Abstract
International audience; Van der Waals (vdW) heterostructures obtained by stacking 2D materials offer a promising route for next generation devices by combining different unique properties in completely new artificial materials. In particular, the vdW heterostructures combine high mobility and optical properties that can be exploited for optoelectronic devices. Since the p-n junction is one of the most fundamental units of optoelectronics, we propose an approach for its fabrication based on the intrinsic n doped MoS2 and the p doped bilayer graphene hybrid interfaces. We demonstrate the control of the photoconduction properties using electrolytic gating which ensures a low bias operation. We show that by finely choosing the doping value of each layer, the photoconductive properties of the hybrid system can be engineered to achieve magnitude and sign control of the photocurrent. Finally, we provide a simple phase diagram relating the photoconductive behavior with the chosen doping, which we believe can be very useful for the future design of the van der Waals based photodetectors.
- Published
- 2016
- Full Text
- View/download PDF
50. Epitaxy of SrTiO 3 on Silicon: The Knitting Machine Strategy
- Author
-
Claude Botella, Fausto Sirotti, Jaume Gazquez, Bruno Canut, Romain Bachelet, Mathieu G. Silly, Guillaume Saint-Girons, Philippe Regreny, Rahma Moalla, Geneviève Grenet, Lamis Louahadj, Jose Penuelas, Benjamin Meunier, Adrian Carretero-Genevrier, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Spectroscopies et Nanomatériaux (INL - S&N), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), European Commission, Agence Nationale de la Recherche (France), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
- Subjects
Fabrication ,Materials science ,Layer ,Silicon ,General Chemical Engineering ,chemistry.chemical_element ,Nanotechnology ,Growth ,02 engineering and technology ,Epitaxy ,Sr ,01 natural sciences ,0103 physical sciences ,Materials Chemistry ,Thin film ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Perovskite (structure) ,010302 applied physics ,business.industry ,Thin-films ,Oxides ,General Chemistry ,Interface ,021001 nanoscience & nanotechnology ,Amorphous solid ,Molecular-beam epitaxy ,Semiconductor ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Si ,0210 nano-technology ,business ,Stability ,Molecular beam epitaxy - Abstract
Saint-Girons, Guillaume et al., SrTiO3 (STO) crystalline layers grown on Si open unique perspectives for the monolithic integration of functional oxides in silicon-based devices, but their fabrication by molecular beam epitaxy (MBE) is challenging due to unwanted interfacial reactions. Here we show that the formation of single-crystal STO layers on Si by MBE at the moderate growth temperature imposed by these interface reactions results from the crystallization of a partially separated amorphous mixture of SrO and TiO2 activated by an excess of Sr. We identify the atomic pathway of this mechanism and show that it leads to an antiphase domain morphology. On the basis of these results, we suggest and test alternative STO growth strategies to avoid antiphase boundary formation and significantly improve the STO structural quality. The understanding provided by these results offers promising prospects to crystallize perovskite oxides on semiconductors at moderate temperature and circumvent the issue of parasitic interface reactions., This work was partly supported by the European projects SITOGA (STREP FP7, grant number 619456) and TIPS (ICT H2020, grant number 107347) as well as by the French ANR programs HIRIS and DIAMWAFEL.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.