1. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons
- Author
-
Braasch, Ingo, Gehrke, Andrew R, Smith, Jeramiah J, Kawasaki, Kazuhiko, Manousaki, Tereza, Pasquier, Jeremy, Amores, Angel, Desvignes, Thomas, Batzel, Peter, Catchen, Julian, Berlin, Aaron M, Campbell, Michael S, Barrell, Daniel, Martin, Kyle J, Mulley, John F, Ravi, Vydianathan, Lee, Alison P, Nakamura, Tetsuya, Chalopin, Domitille, Fan, Shaohua, Wcisel, Dustin, Cañestro, Cristian, Sydes, Jason, Beaudry, Felix EG, Sun, Yi, Hertel, Jana, Beam, Michael J, Fasold, Mario, Ishiyama, Mikio, Johnson, Jeremy, Kehr, Steffi, Lara, Marcia, Letaw, John H, Litman, Gary W, Litman, Ronda T, Mikami, Masato, Ota, Tatsuya, Saha, Nil Ratan, Williams, Louise, Stadler, Peter F, Wang, Han, Taylor, John S, Fontenot, Quenton, Ferrara, Allyse, Searle, Stephen MJ, Aken, Bronwen, Yandell, Mark, Schneider, Igor, Yoder, Jeffrey A, Volff, Jean-Nicolas, Meyer, Axel, Amemiya, Chris T, Venkatesh, Byrappa, Holland, Peter WH, Guiguen, Yann, Bobe, Julien, Shubin, Neil H, Di Palma, Federica, Alföldi, Jessica, Lindblad-Toh, Kerstin, and Postlethwait, John H
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Human Genome ,Animals ,Evolution ,Molecular ,Female ,Fishes ,Genome ,Humans ,Karyotype ,Models ,Genetic ,Organ Specificity ,Sequence Analysis ,DNA ,Transcriptome ,Medical and Health Sciences ,Developmental Biology ,Agricultural biotechnology ,Bioinformatics and computational biology - Abstract
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
- Published
- 2016