35 results on '"Felmy AR"'
Search Results
2. Unraveling Gibbsite Transformation Pathways into LiAl-LDH in Concentrated Lithium Hydroxide.
- Author
-
Graham TR, Hu JZ, Zhang X, Dembowski M, Jaegers NR, Wan C, Bowden M, Lipton AS, Felmy AR, Clark SB, Rosso KM, and Pearce CI
- Abstract
Gibbsite (α-Al(OH)
3 ) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li+ , in part because of the intrinsic structural similarities in the quasi-2D octahedral Al3+ frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral ( Td ) aluminate anions (Al(OH)4 - ) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires in situ techniques that can distinguish Al3+ in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously. Here, we examine this transformation in partially deuterated LiOH solutions, using multinuclear, magic angle spinning, and high field nuclear magnetic resonance spectroscopy (27 Al and6 Li MAS NMR), with supporting X-ray diffraction and scanning electron microscopy. In situ27 Al MAS NMR captured the emergence and decline of metastable aluminate ions, consistent with dissolution of gibbsite and formation of LiAl-LDH by precipitation. High field, ex situ6 Li NMR of the the progressively reacted solids resolved an Oh Li+ resonance that narrowed during the transformation. This is likely due to increasing local order in LiAl-LDH, correlating well with observations in high field, ex situ27 Al MAS NMR spectra, where a comparatively narrow LiAl-LDH Oh 27 Al resonance emerges upfield of gibbsite resonances. No intermediate pentahedral Al3+ is resolvable. Quantification of aluminate ion concentrations suggests a prominent role for the solution pathway in this system, a finding that could help improve strategies for manipulating Al3+ concentrations in complex caustic waste streams, such as those being proposed to treat the high-level nuclear waste stored at the U.S. Department of Energy's Hanford Nuclear Reservation in Washington State, USA.- Published
- 2019
- Full Text
- View/download PDF
3. In Situ 27 Al NMR Spectroscopy of Aluminate in Sodium Hydroxide Solutions above and below Saturation with Respect to Gibbsite.
- Author
-
Graham TR, Dembowski M, Martinez-Baez E, Zhang X, Jaegers NR, Hu J, Gruszkiewicz MS, Wang HW, Stack AG, Bowden ME, Delegard CH, Schenter GK, Clark AE, Clark SB, Felmy AR, Rosso KM, and Pearce CI
- Abstract
Aluminum hydroxide (Al(OH)
3 , gibbsite) dissolution and precipitation processes in alkaline environments play a commanding role in aluminum refining and nuclear waste processing, yet mechanistic aspects underlying sluggish kinetics during crystallization have remained obscured due to a lack of in situ probes capable of isolating incipient ion pairs. At a molecular level Al is cycling between tetrahedral ( Td ) coordination in solution to octahedral ( Oh ) in the solid. We explored dissolution of Al(OH)3 that was used to produce variably saturated aluminate (Al(OH)4 - )-containing solutions under alkaline conditions (pH >13) with in situ27 Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy, and interrogated the results with ab initio molecular dynamics (AIMD) simulations complemented with chemical shift calculations. The collective results highlight the overall stability of the solvation structure for Td Al in the Al(OH)4 - oxyanion as a function of both temperature and Al concentration. The observed chemical shift did not change significantly even when the Al concentration in solution became supersaturated upon cooling and limited precipitation of the octahedral Al(OH)3 phase occurred. However, subtle changes in Al(OH)4 - speciation correlated with the dissolution/precipitation reaction were found. AIMD-informed chemical shift calculations indicate that measurable perturbations should begin when the Al(OH)4 - ···Na+ distance is less than 6 Å, increasing dramatically at shorter distances, coinciding with appreciable changes to the electrostatic interaction and reorganization of the Al(OH)4 - solvation shell. The integrated findings thus suggest that, under conditions incipient to and concurrent with gibbsite crystallization, nominally expected contact ion pairs are insignificant and instead medium-range (4-6 Å) solvent-separated Al(OH)4 - ···Na+ pairs predominate. Moreover, the fact that these medium-range interactions bear directly on resulting gibbsite characteristics was demonstrated by detailed microscopic and X-ray diffraction analysis and by progressive changes in the fwhm of the Oh resonance, as measured by in situ NMR. Sluggish gibbsite crystallization may arise from the activation energy associated with disrupting this robust medium-range ion pair interaction.- Published
- 2018
- Full Text
- View/download PDF
4. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.
- Author
-
Qafoku O, Pearce CI, Neumann A, Kovarik L, Zhu M, Ilton ES, Bowden ME, Resch CT, Arey BW, Arenholz E, Felmy AR, and Rosso KM
- Subjects
- Iron, Oxidation-Reduction, Washington, Chromium, Silicates
- Abstract
Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but Fe
TOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of FeTOTAL , exhibits minimal reactivity with TcO4 - and CrO4 2- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II)SORBED > 8% clay Fe(II)LABILE ); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.- Published
- 2017
- Full Text
- View/download PDF
5. In Situ Natural Abundance 17 O and 25 Mg NMR Investigation of Aqueous Mg(OH) 2 Dissolution in the Presence of Supercritical CO 2 .
- Author
-
Hu MY, Deng X, Thanthiriwatte KS, Jackson VE, Wan C, Qafoku O, Dixon DA, Felmy AR, Rosso KM, and Hu JZ
- Subjects
- Carbon Sequestration, Magnetic Resonance Spectroscopy, Solubility, Carbon Dioxide chemistry, Water chemistry
- Abstract
We report an in situ high-pressure NMR capability that permits natural abundance
17 O and25 Mg NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO2 fluid (scCO2 ). The dissolution of Mg(OH)2 (brucite) in a multiphase water/scCO2 fluid at 90 atm pressure and 50 °C was studied in situ, with relevance to geological carbon sequestration.17 O NMR spectra allowed identification and distinction of various fluid species including dissolved CO2 in the H2 O-rich phase, scCO2 , aqueous H2 O, and HCO3 - . The widely separated spectral peaks for various species can all be observed both dynamically and quantitatively at concentrations as low as 20 mM. Measurement of the concentrations of these individual species also allows an in situ estimate of the hydrogen ion concentration, or pCH + values, of the reacting solutions. The concentration of Mg2+ can be observed by natural abundance25 Mg NMR at a concentration as low as 10 mM. Quantum chemistry calculations of the NMR chemical shifts on cluster models aided in the interpretation of the experimental results. Evidence for the formation of polymeric Mg2+ clusters at high concentrations in the H2 O-rich phase, a possible critical step needed for magnesium carbonate formation, was found.- Published
- 2016
- Full Text
- View/download PDF
6. Dynamics of Magnesite Formation at Low Temperature and High pCO2 in Aqueous Solution.
- Author
-
Qafoku O, Dixon DA, Rosso KM, Schaef HT, Bowden ME, Arey BW, and Felmy AR
- Subjects
- Atmosphere chemistry, Magnesium Hydroxide chemistry, Microscopy, Electron, Scanning, Solutions, Thermogravimetry, X-Ray Diffraction, Carbon Dioxide chemistry, Cold Temperature, Magnesium chemistry, Partial Pressure
- Abstract
Magnesite precipitation from aqueous solution, despite conditions of supersaturation, is kinetically hindered at low temperatures for reasons that remain poorly understood. The present study examines the products of Mg(OH)2 reaction in solutions saturated with supercritical CO2 at high pressures (90 and 110 atm) and low temperatures (35 and 50 °C). Solids characterization combined with in situ solution analysis reveal that the first reaction products are the hydrated carbonates hydromagnesite and nesquehonite, appearing simultaneously with brucite dissolution. Magnesite is not observed until it comprises a minor product at 7 days reaction at 50 °C. Complete transition to magnesite as the sole product at 35 °C (135 days) and at a faster rate at 50 °C (56 days) occurs as the hydrated carbonates slowly dissolve under the slightly acidic conditions generated at high pCO2. Such a reaction progression at high pCO2 suggests that over long term the hydrated Mg-carbonates functioned as intermediates in magnesite formation. These findings highlight the importance of developing a better understanding of the processes expected to occur during CO2 storage. They also support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of CO2 sequestration on geological formations at long time scale.
- Published
- 2015
- Full Text
- View/download PDF
7. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide.
- Author
-
Loring JS, Chen J, Bénézeth P, Qafoku O, Ilton ES, Washton NM, Thompson CJ, Martin PF, McGrail BP, Rosso KM, Felmy AR, and Schaef HT
- Abstract
Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 μmol/m(2). Above this concentration and up to 76 μmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 μmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.
- Published
- 2015
- Full Text
- View/download PDF
8. Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats.
- Author
-
Batuk ON, Conradson SD, Aleksandrova ON, Boukhalfa H, Burakov BE, Clark DL, Czerwinski KR, Felmy AR, Lezama-Pacheco JS, Kalmykov SN, Moore DA, Myasoedov BF, Reed DT, Reilly DD, Roback RC, Vlasova IE, Webb SM, and Wilkerson MP
- Subjects
- Chernobyl Nuclear Accident, Colorado, New Jersey, New Mexico, Plutonium chemistry, Russia, Spectrometry, X-Ray Emission, Ukraine, Uranium chemistry, Washington, Plutonium analysis, Soil Pollutants, Radioactive analysis, Uranium analysis
- Abstract
The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and μm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.
- Published
- 2015
- Full Text
- View/download PDF
9. Structures and energetics of (MgCO3)n clusters (n ≤ 16).
- Author
-
Chen M, Jackson VE, Felmy AR, and Dixon DA
- Abstract
There is significant interest in the role of carbonate minerals for the storage of CO2 and the role of prenucleation clusters in their formation. Global minima for (MgCO3)n (n ≤ 16) structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. The most stable isomers for (MgCO3)n (n < 5) are approximately 2-dimensional. Mg can be bonded to one or two O atoms of a CO3(2-), and the 1-O bonding scheme is more favored as the cluster becomes larger. The average C-Mg coordination number increases as the cluster size increases, and at n = 16, the average C-Mg coordination number was calculated to be 5.2. The normalized dissociation energy to form monomers increases as n increases. At n = 16, the normalized dissociation energy is calculated to be 116.2 kcal/mol, as compared to the bulk value of 153.9 kcal/mol. The adiabatic reaction energies for the recombination reactions of (MgO)n clusters and CO2 to form (MgCO3)n were calculated. The exothermicity of the normalized recombination energy ⟨RE⟩CO2 decreases as n increases and converged to the experimental bulk limit rapidly. The normalized recombination energy ⟨RE⟩CO2 was calculated to be -52.2 kcal/mol for the monomer and -30.7 kcal/mol for n = 16, as compared to the experimental value of -27.9 kcal/mol for the solid phase reaction. Infrared spectra for the lowest energy isomers were calculated, and absorption bands in the previous experimental infrared studies were assigned with our density functional theory predictions. The (13)C, (17)O, and (25) Mg NMR chemical shifts for the clusters were predicted. The results provide insights into the structural and energetic transitions from nanoclusters of (MgCO3)n to the bulk and the spectroscopic properties of clusters for their experimental identification.
- Published
- 2015
- Full Text
- View/download PDF
10. Prediction of the pKa's of aqueous metal ion +2 complexes.
- Author
-
Jackson VE, Felmy AR, and Dixon DA
- Abstract
Aqueous metal ions play an important role in many areas of chemistry. The acidities of [Be(H2O)4](2+), [M(H2O)6](2+), M = Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+), and [M(H2O)n](2+), M = Ca(2+) and Sr(2+), n = 7 and 8, complexes have been predicted using density functional theory, second-order Møller-Plesset perturbation theory (MP2), and coupled cluster CCSD(T) theory in the gas phase. pKa's in aqueous solution were predicted by using self-consistent reaction field (SCRF) calculations with different solvation models. The most common binding motif of the majority of the metal +2 complexes is coordination number (CN) 6, with each hexaaquo cluster having reasonably high symmetry for the best arrangement of the water molecules in the first solvation shell. Be(2+) is tetracoordinated, but a second solvation shell of 8 waters is needed to predict the pKa. The Ca(2+) and Sr(2+) aquo clusters have a coordination number of 7 or 8 as found in terms of the energy of the reaction M(H2O)7(2+) + H2O → M(H2O)8(2+) and the pKa values. The calculated geometries are in reasonable agreement with experiment. The SCRF calculations with the conductor-like screening model (COSMO), and the conductor polarized continuum model (CPCM) using COSMO-RS radii, consistently agree best with experiment at the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels of theory. The CCSD(T) level provides the most accurate pKa's, and the MP2 level also provides reliable predictions. Our predictions were used to elucidate the properties of metal +2 ion complexes. The pKa predictions provide confirmation of the size of the first solvation shell sizes. The calculations show that it is still difficult to predict pKa's using this cluster/implicit solvent approach to better than 1 pKa unit.
- Published
- 2015
- Full Text
- View/download PDF
11. Ab initio thermodynamic model for magnesium carbonates and hydrates.
- Author
-
Chaka AM and Felmy AR
- Subjects
- Carbon Dioxide chemistry, Diffusion, Hydrogen Bonding, Magnesium chemistry, Magnesium Hydroxide chemistry, Magnesium Oxide chemistry, Oxygen chemistry, Temperature, Thermodynamics, Vibration, Carbonates chemistry, Models, Chemical, Water chemistry
- Abstract
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
- Published
- 2014
- Full Text
- View/download PDF
12. In situ study of CO₂ and H₂O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide.
- Author
-
Loring JS, Ilton ES, Chen J, Thompson CJ, Martin PF, Bénézeth P, Rosso KM, Felmy AR, and Schaef HT
- Abstract
Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this study, in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy were used to investigate the swelling/shrinkage and H2O/CO2 sorption of Na(+)-exchanged montmorillonite, Na-SWy-2, as the clay is exposed to variably hydrated supercritical CO2 (scCO2) at 50 °C and 90 bar. Measured d001 values increased in stepwise fashion and sorbed H2O concentrations increased continuously with increasing percent H2O saturation in scCO2, closely following previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show H2O and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types of H2O and CO2 with distinct chemical environments. Based on the absorbance of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, the sorbed CO2 concentration increases dramatically at sorbed H2O concentrations from 0 to 4 mmol/g. Sorbed CO2 then sharply decreases as sorbed H2O increases from 4 to 10 mmol/g. With even higher sorbed H2O concentrations as saturation of H2O in scCO2 was approached, the concentration of sorbed CO2 decreased asymptotically. Two models, one involving space filling and the other a heterogeneous distribution of integral hydration states, are discussed as possible mechanisms for H2O and CO2 intercalations in montmorillonite. The swelling/shrinkage of montmorillonite could affect solid volume, porosity, and permeability of shales. Consequently, the results may aid predictions of shale caprock integrity in large-scale GCS as well as methane transmissivity in enhanced gas recovery operations.
- Published
- 2014
- Full Text
- View/download PDF
13. Structures and stabilities of (MgO)n nanoclusters.
- Author
-
Chen M, Felmy AR, and Dixon DA
- Abstract
Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.
- Published
- 2014
- Full Text
- View/download PDF
14. Automated high-pressure titration system with in situ infrared spectroscopic detection.
- Author
-
Thompson CJ, Martin PF, Chen J, Benezeth P, Schaef HT, Rosso KM, Felmy AR, and Loring JS
- Abstract
A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO2 (scCO2) to generate an infrared calibration curve and determine the solubility of water in CO2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO2 hydration, and ATR measurements provided insights into competitive residency of water and CO2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg2SiO4) in water-bearing scCO2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO2, a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the forsterite began to dissolve. However, after approximately 2.5 h, the trend reversed, and a carbonate precipitate began to form on the forsterite surface, exposing dramatic chemical changes in the thin-water film. Collectively, these applications illustrate how the high-pressure IR titration system can provide molecular-level information about the interactions between variably wet scCO2 and minerals relevant to underground storage of CO2 (geologic carbon sequestration). The apparatus could also be utilized to study high-pressure interfacial chemistry in other areas such as catalysis, polymerization, food processing, and oil and gas recovery.
- Published
- 2014
- Full Text
- View/download PDF
15. Identification of fragile microscopic structures during mineral transformations in wet supercritical CO2.
- Author
-
Arey BW, Kovarik L, Qafoku O, Wang Z, Hess NJ, and Felmy AR
- Abstract
This study examines the nature of highly fragile reaction products that form in low water content supercritical carbon dioxide (scCO2) using a combination of focus ion beam/scanning electron microscopy, confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates are fragile rosettes. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. Detailed microscopy analysis revealed that growth of the precipitates either followed a tip growth mechanism, with precipitates forming directly on the forsterite surface if the initial solid was nonporous (natural forsterite) or growth from the surface of the precipitates, where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. Identification of the mechanism of formation of hydrated/hydroxylated magnesium carbonate compound phases is a key factor in unraveling the impact of water recycling on mineral reactivity in low water content scCO2 solutions, which has received a great deal of attention as a result of the potential for CO2 to act as an atmospheric greenhouse gas. Techniques used here to examine these fragile structures are also used to examine a wide range of fragile material surfaces.
- Published
- 2013
- Full Text
- View/download PDF
16. CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements.
- Author
-
Rother G, Ilton ES, Wallacher D, Hauβ T, Schaef HT, Qafoku O, Rosso KM, Felmy AR, Krukowski EG, Stack AG, Grimm N, and Bodnar RJ
- Subjects
- Adsorption, Carbon Sequestration, Neutron Diffraction, Bentonite chemistry, Carbon Dioxide chemistry
- Abstract
Geologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO(2) densities of ≈ 0.15 g/cm(3), followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO(2) bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO(2) are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO(2) in the clay pores is relatively stable over a wide range of CO(2) pressures at a given temperature, indicating the formation of a clay-CO(2) phase. At the excess sorption maximum, increasing CO(2) sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.
- Published
- 2013
- Full Text
- View/download PDF
17. Rotor design for high pressure magic angle spinning nuclear magnetic resonance.
- Author
-
Turcu RV, Hoyt DW, Rosso KM, Sears JA, Loring JS, Felmy AR, and Hu JZ
- Abstract
High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low (1)H and (13)C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe(2+))(3)Si(2)O(5)(OH)(4)), in contact with liquid water in water-saturated supercritical CO(2) (scCO(2)) at 150 bar and 50°C. This mineral is relevant to the deep geologic disposal of CO(2), but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields., (Copyright © 2012 Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
18. Controls on soluble Pu concentrations in PuO2/magnetite suspensions.
- Author
-
Felmy AR, Moore DA, Pearce CI, Conradson SD, Qafoku O, Buck EC, Rosso KM, and Ilton ES
- Subjects
- Europium chemistry, Hydrogen-Ion Concentration, Iron chemistry, Neodymium chemistry, Oxidation-Reduction, Suspensions, Water Pollutants, Radioactive chemistry, Magnetite Nanoparticles chemistry, Oxides chemistry, Plutonium chemistry
- Abstract
Time-dependent reduction of PuO(2)(am) was studied over a range of pH values in the presence of aqueous Fe(II) and magnetite (Fe(3)O(4)) nanoparticles. At early time frames (up to 56 days) very little aqueous Pu was mobilized from PuO(2)(am), even though measured pH and redox potentials, coupled to equilibrium thermodynamic modeling, indicated the potential for significant reduction of PuO(2)(am) to relatively soluble Pu(III). Introduction of Eu(III) or Nd(III) to the suspensions as competitive cations to displace possible sorbed Pu(III) resulted in the release of significant concentrations of aqueous Pu. However, the similarity of aqueous Pu concentrations that resulted from the introduction of Eu(III)/Nd(III) to suspensions with and without magnetite indicated that the Pu was solubilized from PuO(2)(am), not from magnetite.
- Published
- 2012
- Full Text
- View/download PDF
19. High-level ab initio predictions of the energetics of mCO2·(H2O)n (n = 1-3, m = 1-12) clusters.
- Author
-
Thanthiriwatte KS, Duke JR, Jackson VE, Felmy AR, and Dixon DA
- Abstract
Electronic structure calculations at the correlated molecular orbital theory and density functional theory levels have been used to generate a reliable set of clustering energies for up to three water molecules in carbon dioxide clusters up to n = 12. The structures and energetics are dominated by Lewis acid-base interactions with hydrogen-bonding interactions playing a lesser energetic role. The actual binding energies are somewhat larger than might be expected. The correlated molecular orbital MP2 method and density functional theory with the ωB97X exchange-correlation functional provide good results for the energetics of the clusters, but the B3LYP and ωB97X-D functionals do not. Seven CO(2) molecules form the first solvent shell about a single H(2)O with four CO(2) molecules interacting with the H(2)O via Lewis acid-base interactions, two CO(2) interacting with the H(2)O by hydrogen bonds, and the seventh CO(2) completing the shell. The Lewis acid-base and weak hydrogen bond interactions between the water molecules and the CO(2) molecules are strong enough to disrupt the trimer ring configuration for as few as seven CO(2) molecules. Calculated (13)C NMR chemical shifts for mCO(2)·(H(2)O)(n) show little change with respect to the number of H(2)O or CO(2) molecules in the cluster. The O-H stretching frequencies do exhibit shifts that can provide information about the interactions between water and CO(2) molecules.
- Published
- 2012
- Full Text
- View/download PDF
20. Reduction of U(VI) incorporated in the structure of hematite.
- Author
-
Ilton ES, Pacheco JS, Bargar JR, Shi Z, Liu J, Kovarik L, Engelhard MH, and Felmy AR
- Subjects
- Oxidation-Reduction, Uranium Compounds chemistry, Ferric Compounds chemistry, Uranium chemistry
- Abstract
U(VI) doped hematite was synthesized and exposed to two different organic reductants with E(0) of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas non-incorporated U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8.
- Published
- 2012
- Full Text
- View/download PDF
21. In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide.
- Author
-
Loring JS, Schaef HT, Turcu RV, Thompson CJ, Miller QR, Martin PF, Hu J, Hoyt DW, Qafoku O, Ilton ES, Felmy AR, and Rosso KM
- Abstract
The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.
- Published
- 2012
- Full Text
- View/download PDF
22. In situ X-ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2.
- Author
-
Ilton ES, Schaef HT, Qafoku O, Rosso KM, and Felmy AR
- Subjects
- Pressure, Silicates chemistry, Temperature, Bentonite chemistry, Carbon Dioxide chemistry, Sodium chemistry, Water chemistry, X-Ray Diffraction methods
- Abstract
Reactions involving variably hydrated super critical CO(2) (scCO(2)) and a Na saturated dioctahedral smectite (Na-STX-1) were examined by in situ high-pressure X-ray diffraction at 50 °C and 90 bar, conditions that are relevant to long-term geologic storage of CO(2). Both hydration and dehydration reactions were rapid with appreciable reaction occurring in minutes and near steady state occurring within an hour. Hydration occurred stepwise as a function of increasing H(2)O in the system; 1W, 2W-3W, and >3W clay hydration states were stable from ~2-30%, ~31-55 < 64%, and ≥ ~71% H(2)O saturation in scCO(2), respectively. Exposure of sub 1W clay to anhydrous scCO(2) caused interlayer expansion, not contraction as expected for dehydration, suggesting that CO(2) intercalated the interlayer region of the sub 1W clay, which might provide a secondary trapping mechanism for CO(2). In contrast, control experiments using pressurized N(2) and similar initial conditions as in the scCO(2) study, showed little to no change in the d(001) spacing, or hydration states, of the clay. A salient implication for cap rock integrity is that clays can dehydrate when exposed to wet scCO(2). For example, a clay in the ~3W hydration state could collapse by ~3 Å in the c* direction, or ~15%, if exposed to scCO(2) at less than or equal to about 64% H(2)O saturation.
- Published
- 2012
- Full Text
- View/download PDF
23. High-pressure magic angle spinning nuclear magnetic resonance.
- Author
-
Hoyt DW, Turcu RV, Sears JA, Rosso KM, Burton SD, Felmy AR, and Hu JZ
- Subjects
- Bicarbonates chemistry, Carbon Dioxide chemistry, Magnetic Resonance Spectroscopy instrumentation, Silicon Compounds chemistry, Water chemistry, Magnetic Resonance Spectroscopy methods
- Abstract
A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide., (Copyright © 2011 Elsevier Inc. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
24. In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2.
- Author
-
Loring JS, Thompson CJ, Wang Z, Joly AG, Sklarew DS, Schaef HT, Ilton ES, Rosso KM, and Felmy AR
- Subjects
- Kinetics, Pressure, Spectrophotometry, Infrared, Temperature, Carbon Dioxide chemistry, Carbon Sequestration, Silicon Compounds chemistry, Water chemistry
- Abstract
Carbonation reactions are central to the prospect of CO(2) trapping by mineralization in geologic reservoirs. In contrast to the relevant aqueous-mediated reactions, little is known about the propensity for carbonation in the key partner fluid: supercritical carbon dioxide containing dissolved water ("wet" scCO(2)). We employed in situ mid-infrared spectroscopy to follow the reaction of a model silicate mineral (forsterite, Mg(2)SiO(4)) for 24 h with wet scCO(2) at 50 °C and 180 atm. The results show a dramatic dependence of reactivity on water concentration and the presence of liquid water on the forsterite particles. Exposure to neat scCO(2) showed no detectable carbonation reaction. At 47% and 81% water saturation, an Ångstrom-thick liquid-like water film was detected on the forsterite particles and less than 1% of the forsterite transformed. Most of the reaction occurred within the first 3 h of exposure to the fluid. In experiments at 95% saturation and with an excess of water (36% above water saturation), a nanometer-thick water film was detected, and the carbonation reaction proceeded continuously with approximately 2% and 10% conversion, respectively. Our collective results suggest constitutive links between water concentration, water film formation, reaction rate and extent, and reaction products in wet scCO(2).
- Published
- 2011
- Full Text
- View/download PDF
25. Heterogeneous reduction of PuO₂ with Fe(II): importance of the Fe(III) reaction product.
- Author
-
Felmy AR, Moore DA, Rosso KM, Qafoku O, Rai D, Buck EC, and Ilton ES
- Subjects
- Oxidation-Reduction, Thermodynamics, Ferric Compounds chemistry, Ferrous Compounds chemistry, Iron Compounds chemistry, Minerals chemistry, Plutonium chemistry
- Abstract
Heterogeneous reduction of actinides in higher, more soluble oxidation states to lower, more insoluble oxidation states by reductants such as Fe(II) has been the subject of intensive study for more than two decades. However, Fe(II)-induced reduction of sparingly soluble Pu(IV) to the more soluble lower oxidation state Pu(III) has been much less studied, even though such reactions can potentially increase the mobility of Pu in the subsurface. Thermodynamic calculations are presented that show how differences in the free energy of various possible solid-phase Fe(III) reaction products can greatly influence aqueous Pu(III) concentrations resulting from reduction of PuO₂(am) by Fe(II). We present the first experimental evidence that reduction of PuO₂(am) to Pu(III) by Fe(II) was enhanced when the Fe(III) mineral goethite was spiked into the reaction. The effect of goethite on reduction of Pu(IV) was demonstrated by measuring the time dependence of total aqueous Pu concentration, its oxidation state, and system pe/pH. We also re-evaluated established protocols for determining Pu(III) {[Pu(III) + Pu(IV)] - Pu(IV)} by using thenoyltrifluoroacetone (TTA) in toluene extractions; the study showed that it is important to eliminate dissolved oxygen from the TTA solutions for accurate determinations. More broadly, this study highlights the importance of the Fe(III) reaction product in actinide reduction rate and extent by Fe(II).
- Published
- 2011
- Full Text
- View/download PDF
26. Atomistic simulations of uranium incorporation into iron (hydr)oxides.
- Author
-
Kerisit S, Felmy AR, and Ilton ES
- Subjects
- Adsorption, Ferrosoferric Oxide chemistry, Iron Compounds chemistry, Kinetics, Minerals chemistry, Oxidation-Reduction, Surface Properties, Ferric Compounds chemistry, Models, Molecular, Radioactive Pollutants chemistry, Uranium chemistry
- Abstract
Atomistic simulations were carried out to characterize the coordination environments of U incorporated in three Fe-(hydr)oxide minerals: goethite, magnetite, and hematite. The simulations provided information on U-O and U-Fe distances, coordination numbers, and lattice distortion for U incorporated in different sites (e.g., unoccupied versus occupied sites, octahedral versus tetrahedral) as a function of the oxidation state of U and charge compensation mechanisms (i.e., deprotonation, vacancy formation, or reduction of Fe(III) to Fe(II)). For goethite, deprotonation of first shell hydroxyls enables substitution of U for Fe(III) with a minimal amount of lattice distortion, whereas substitution in unoccupied octahedral sites induced appreciable distortion to 7-fold coordination regardless of U oxidation states and charge compensation mechanisms. Importantly, U-Fe distances of ∼3.6 Å were associated with structural incorporation of U and cannot be considered diagnostic of simple adsorption to goethite surfaces. For magnetite, the octahedral site accommodates U(V) or U(VI) with little lattice distortion. U substituted for Fe(III) in hematite maintained octahedral coordination in most cases. In general, comparison of the simulations with available experimental data provides further evidence for the structural incorporation of U in iron (hydr)oxide minerals.
- Published
- 2011
- Full Text
- View/download PDF
27. Free energies for degradation reactions of 1,2,3-trichloropropane from ab initio electronic structure theory.
- Author
-
Bylaska EJ, Glaesemann KR, Felmy AR, Vasiliu M, Dixon DA, and Tratnyek PG
- Abstract
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
- Published
- 2010
- Full Text
- View/download PDF
28. Dissolution study of metatorbernite: thermodynamic properties and the effect of pH and phosphate.
- Author
-
Ilton ES, Zachara JM, Moore DA, McKinley JP, Eckberg AD, Cahill CL, and Felmy AR
- Subjects
- Hydrogen-Ion Concentration, Solubility, Thermodynamics, Phosphates chemistry, Uranium Compounds chemistry
- Abstract
The uranyl copper-phosphate, metatorbernite, has been identified in the shallow vadose zone of the 300 A area at the Hanford site, WA, USA. Consequently, modeling the evolution of U concentrations in vadose zone porewaters driven by meteoric water recharge requires accurate knowledge of metatorbernite solubility. Previous determinations of the solubility constant for metatorbernite were under constrained. In the present contribution, the dissolution of natural metatorbernite crystals was studied at target pH 2.5 and 3.0, using both nitric and phosphoric acid. Steady state was approached from under- and supersaturation. The experiments and calculations yielded a preferred log K(sp) = -28.0 ± 0.1 that is significantly different than previously determined values. Further, both stoichiometric and nonstoichiometric dissolution was observed as a function of pH and aqueous phosphate concentration.
- Published
- 2010
- Full Text
- View/download PDF
29. Influence of dynamical conditions on the reduction of U(VI) at the magnetite-solution interface.
- Author
-
Ilton ES, Boily JF, Buck EC, Skomurski FN, Rosso KM, Cahill CL, Bargar JR, and Felmy AR
- Subjects
- Fourier Analysis, Mining, Oxidation-Reduction, Solutions, Thermodynamics, Ferrosoferric Oxide chemistry, Uranium chemistry
- Abstract
The heterogeneous reduction of U(VI) to U(IV) by ferrous iron is believed to be a key process influencing the fate and transport of U in the environment. The reactivity of both sorbed and structural Fe(II) has been studied for numerous substrates, including magnetite. Published results from U(VI)-magnetite experiments have been variable, ranging from no reduction to clear evidence for the formation of U(IV). In this contribution, we used XAS and high resolution (+/-cryogenic) XPS to study the interaction of U(VI) with nanoparticulate magnetite. The results indicated that U(VI) was partially reduced to U(V) with no evidence of U(IV). However, thermodynamic calculations indicated that U phases with average oxidation states below (V) should have been stable, indicating that the system was not in redox equilibrium. A reaction pathway that involves incorporation and stabilization of U(V) and U(VI) into secondary phases is invoked to explain the observations. The results suggest an important and previously unappreciated role of U(V) in the fate and transport of uranium in the environment.
- Published
- 2010
- Full Text
- View/download PDF
30. Solution state structure determination of silicate oligomers by 29SI NMR spectroscopy and molecular modeling.
- Author
-
Cho H, Felmy AR, Craciun R, Keenum JP, Shah N, and Dixon DA
- Abstract
Evidence for nine new solution state silicate oligomers has been discovered by (29)Si NMR homonuclear correlation experiments of (29)Si-enriched samples. In addition to enhancing signal sensitivity, the isotopic enrichment increases the probability of the (29)Si-(29)Si two-bond scalar couplings that are necessary for the observation of internuclear correlations in 2-D experiments. The proposed assignments are validated by comparisons of experimental and simulated cross-peaks obtained with high digital resolution. The internuclear connectivity indicated by the NMR data suggests that several of these oligomers can have multiple stereoisomers, including conformers and/or diastereomers. The stabilities of these oligomers and their possible stereoisomers have been investigated by electronic structure calculations.
- Published
- 2006
- Full Text
- View/download PDF
31. Mica surfaces stabilize pentavalent uranium.
- Author
-
Ilton ES, Haiduc A, Cahill CL, and Felmy AR
- Abstract
High-resolution X-ray photoelectron spectroscopy was used to demonstrate that reduction of aqueous U6+ at ferrous mica surfaces at 25 degrees C preserves U5+ as the dominant sorbed species over a broad range of solution compositions. Polymerization of sorbed U5+ with sorbed U6+ and U4+ is identified as a possible mechanism for how mineral surfaces circumvent the rapid disproportionation of aqueous U5+. The general nature of this mechanism suggests that U5+ could play an important, but previously unidentified, role in the low-temperature chemistry of uranium in reducing, heterogeneous aqueous systems.
- Published
- 2005
- Full Text
- View/download PDF
32. Colloid formation in Hanford sediments reacted with simulated tank waste.
- Author
-
Mashal K, Harsh JB, Flury M, Felmy AR, and Zhao H
- Subjects
- Aluminum Oxide chemistry, Aluminum Silicates chemistry, Chemical Precipitation, Electrophoresis, Hydrogen-Ion Concentration, Minerals analysis, Nitrates chemistry, Particle Size, Sodium Hydroxide chemistry, Solubility, Spectroscopy, Fourier Transform Infrared, Washington, Colloids chemistry, Geologic Sediments analysis, Radioactive Waste analysis, Soil Pollutants, Radioactive analysis
- Abstract
Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.
- Published
- 2004
- Full Text
- View/download PDF
33. Molecular dynamics investigation of ferrous-ferric electron transfer in a hydrolyzing aqueous solution: calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force.
- Author
-
Rustad JR, Rosso KM, and Felmy AR
- Abstract
We present a molecular model for ferrous-ferric electron transfer in an aqueous solution that accounts for electronic polarizability and exhibits spontaneous cation hydrolysis. An extended Lagrangian technique is introduced for carrying out calculations of electron-transfer barriers in polarizable systems. The model predicts that the diabatic barrier to electron transfer increases with increasing pH, due to stabilization of the Fe3+ by fluctuations in the number of hydroxide ions in its first coordination sphere, in much the same way as the barrier would increase with increasing dielectric constant in the Marcus theory. We have also calculated the effect of pH on the potential of mean force between two hydrolyzing ions in aqueous solution. As expected, increasing pH reduces the potential of mean force between the ferrous and ferric ions in the model system. The magnitudes of the predicted increase in diabatic transfer barrier and the predicted decrease in the potential of mean force nearly cancel each other at the canonical transfer distance of 0.55 nm. Even though hydrolysis is allowed in our calculations, the distribution of reorganization energies has only one maximum and is Gaussian to an excellent approximation, giving a harmonic free energy surface in the reorganization energy F(DeltaE) with a single minimum. There is thus a surprising amount of overlap in electron-transfer reorganization energies for Fe(2+)-Fe(H2O)6(3+), Fe(2+)-Fe(OH)(H2O)5(2+), and Fe(2+)-Fe(OH)2(H2O)+ couples, indicating that fluctuations in hydrolysis state can be viewed on a continuum with other solvent contributions to the reorganization energy. There appears to be little justification for thinking of the transfer rate as arising from the contributions of different hydrolysis states. Electronic structure calculations indicate that Fe(H2O)6(2+)-Fe(OH)n(H2O)(6-n)(3-n)+ complexes interacting through H3O2- bridges do not have large electronic couplings., ((c) 2004 American Institute of Physics)
- Published
- 2004
- Full Text
- View/download PDF
34. A study of the corrosion products of mild steel in high ionic strength brines.
- Author
-
Wang Z, Moore RC, Felmy AR, Mason MJ, and Kukkadapu RK
- Subjects
- Corrosion, Ferric Compounds chemistry, Hydrochloric Acid chemistry, Metals analysis, Microscopy, Atomic Force, Radioactive Waste, Refuse Disposal methods, Spectrum Analysis, Ferric Compounds analysis, Refuse Disposal instrumentation, Salts chemistry, Steel chemistry
- Abstract
The corrosion layer on steel surfaces that formed after exposure to waste isolation pilot plant (WIPP) brines under anoxic conditions was characterized for chemical composition, thickness and phase composition. The chemical composition of the corrosion layer was determined both by X-ray photoelectron spectroscopy (XPS) and by chemical analysis of acid solutions used to remove the corrosion layer. Atomic force microscopic (AFM) images indicated that the brine-corroded surface layer shows extensive granulation along the contours of the steel surface that is characteristic of sharp polishing marks. The corrosion layer seemed to be porous and could be dissolved and detached in dilute hydrochloric acid. The corrosion layer appears to be composed of iron oxides with some ionic substitutions from the brines. The 77 K Mössbauer spectrum recorded for iron powder leached under similar conditions indicated the corrosion layer was comprised principally of green rust.
- Published
- 2001
- Full Text
- View/download PDF
35. Computation of the electrical double layer properties of semipermeable membranes in multicomponent electrolytes
- Author
-
Wasserman E and Felmy AR
- Abstract
A methodology is presented for calculating of the surface potential, Donnan potential, and ion concentration profiles for semipermeable microbial membranes that is valid for an arbitrary electrolyte composition. This model for surface potential, Donnan potential, and charge density was applied to recently reported experimental data for gram-positive bacteria, including Bacillus brevis, Rhodococcus opacus, Rhodococcus erythropolis, and Corynebacterium species. These calculations show that previously unconsidered trace amounts of divalent and trivalent cations at very low concentrations (10(-6) M) can have significant effects on the calculated surface and Donnan potentials, at ionic strengths of I = 0.01 M, and that these effects need to be considered in accurate modeling of microbial surface. In addition, the calculated ion concentration profiles show that owing to the relatively high surface charges that can develop in microbial membranes, electrostatic effects can act to significantly concentrate divalent (factors of 5 x 10(3)) and trivalent (factors of 2 x 10(4)) cations within the bacterial cell wall. Comparison of the calculated concentration factors with those derived from experiments shows that a significant fraction of the uptake of metal by bacteria can be explained by the proposed electrostatic model.
- Published
- 1998
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.