14 results on '"Filipe EJ"'
Search Results
2. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.
- Author
-
Morgado P, Das G, McCabe C, and Filipe EJ
- Abstract
The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments.
- Published
- 2015
- Full Text
- View/download PDF
3. Evidence for interaction with the water subphase as the origin and stabilization of nano-domain in semi-fluorinated alkanes monolayer at the air/water interface.
- Author
-
Fontaine P, Fauré MC, Bardin L, Filipe EJ, and Goldmann M
- Abstract
Multilayer films of semifluorinated alkanes (SFAs) at the air/water interface were studied in situ by grazing incidence small-angle X-ray scattering (GISAXS). The results provide evidence that the first layer in contact with the water subphase, buried below the overlayers, exhibits the same supramolecular hexagonal structure that is observed in the monolayer before the collapse, at non-zero surface pressure. We believe this result clearly demonstrates the major role of the interactions between the first layer of SFAs and the water subphase to the formation of the structure.
- Published
- 2014
- Full Text
- View/download PDF
4. Cation alkyl side chain length and symmetry effects on the surface tension of ionic liquids.
- Author
-
Almeida HF, Freire MG, Fernandes AM, Lopes-da-Silva JA, Morgado P, Shimizu K, Filipe EJ, Lopes JN, Santos LM, and Coutinho JA
- Abstract
Aiming at providing a comprehensive study of the influence of the cation symmetry and alkyl side chain length on the surface tension and surface organization of ionic liquids (ILs), this work addresses the experimental measurements of the surface tension of two extended series of ILs, namely R,R'-dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(n)im][NTf2]) and R-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(1)im][NTf2]), and their dependence with temperature (from 298 to 343 K). For both series of ILs the surface tension decreases with an increase in the cation side alkyl chain length up to aliphatic chains no longer than hexyl, here labeled as critical alkyl chain length (CACL). For ILs with aliphatic moieties longer than CACL the surface tension displays an almost constant value up to [C12C12im][NTf2] or [C16C1im][NTf2]. These constant values further converge to the surface tension of long chain n-alkanes, indicating that, for sufficiently long alkyl side chains, the surface ordering is strongly dominated by the aliphatic tails present in the IL. The enthalpies and entropies of surface were also derived and the critical temperatures were estimated from the experimental data. The trend of the derived thermodynamic properties highlights the effect of the structural organization of the IL at the surface with visible trend shifts occurring at a well-defined CACL in both symmetric and asymmetric series of ILs. Finally, the structure of a long-alkyl side chain IL at the vacuum-liquid interface was also explored using Molecular Dynamics simulations. In general, it was found that for the symmetric series of ILs, at the outermost polar layers, more cations point one of their aliphatic tails outward and the other inward, relative to the surface, than cations pointing both tails outward. The number of the former, while being the preferred conformation, exceeds the latter by around 75%.
- Published
- 2014
- Full Text
- View/download PDF
5. Charge templates in aromatic plus ionic liquid systems revisited: NMR experiments and molecular dynamics simulations.
- Author
-
Dias N, Shimizu K, Morgado P, Filipe EJ, Canongia Lopes JN, and Vaca Chávez F
- Abstract
The mutual solubilities of [C2C1im][Ntf2] ionic liquid and aromatic molecules (benzene and its fluorinated derivatives) can be correlated to the dipolar and quadrupolar moments of the latter molecules. This fact can be interpreted as a consequence of the charge-induced structuration of the IL ions around the aromatic molecules. In this paper we demonstrate that we can follow the above-mentioned structural changes in the mixtures using different NMR-based techniques, namely 1D (1)H and (13)C NMR and 2D (1)H-(1)H NOESY NMR spectroscopy. These have been complemented by more detailed structural analyses of the different (IL plus aromatic solute) mixtures using MD simulations. Such systematic studies included eight systems, namely mixtures of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid with benzene, fluorobenzene, 1,2-difluorobenzene, 1,4-difluorobenzene, 1,3,5-trifluorobenzene, 1,2,4,5-tetrafluorobenzene, penta-fluorobenzene, and hexafluorobenzene.
- Published
- 2014
- Full Text
- View/download PDF
6. Liquid mixtures involving hydrogenated and fluorinated chains: (p, ρ, T, x) surface of (ethanol + 2,2,2-trifluoroethanol), experimental and simulation.
- Author
-
Duarte P, Silva M, Rodrigues D, Morgado P, Martins LF, and Filipe EJ
- Abstract
The effect of mixing hydrogenated and fluorinated molecules that simultaneously interact through strong hydrogen bonding was investigated: (ethanol + 2,2,2-trifluoroethanol) binary mixtures were studied both experimentally and by computer simulation. This mixture displays a very complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The excess volumes are large and positive (unlike those of mixtures of hydrogenated alchools), while the excess enthalpies are large and negative (contrasting with those of mixtures of alkanes and perfluoroalkanes). In this work, the liquid density of the mixtures was measured as a function of composition, at several temperatures from 278.15 to 353.15 K and from atmospheric pressure up to 70 MPa. The corresponding excess molar volumes, compressibilities, and expansivities were calculated over the whole (p, ρ, T, x) surface. In order to obtain molecular level insight, the behavior of the mixture was also studied by molecular dynamics simulation, using the OPLS-AA force field. The combined analysis of the experimental and simulation results indicates that the peculiar phase behavior of this system stems from a balance between the weak dispersion forces between the hydrogenated and fluorinated groups and a preferential hydrogen bond between ethanol and 2,2,2-trifluoroethanol. Additionally, it was observed that a 25% reduction of the F-H dispersive interaction in the simulations brings agreement between the experimental and simulated excess enthalpy but produces no effect in the excess volumes. This reveals that the main reason causing the volume increase in these systems is not entirely related to the weak dispersive interactions, as it is usually assumed, and should thus be connected to the repulsive part of the intermolecular potential.
- Published
- 2013
- Full Text
- View/download PDF
7. Probing the structure of liquids with 129Xe NMR spectroscopy: n-alkanes, cycloalkanes, and branched alkanes.
- Author
-
Morgado P, Bonifácio R, Martins LF, and Filipe EJ
- Abstract
The liquid organization of linear, branched, and cyclic alkanes was studied using atomic (129)Xe as a NMR probe. (129)Xe chemical shifts have been experimentally determined for xenon dissolved in a total of 21 alkanes. In order to allow the comparison of the different solvents at similar thermodynamic conditions, the measurements were performed over a wide range of temperatures, from the melting point of the solvent up to 350 K. The results were rationalized in terms of the density, nature, and organization of the chemical groups within xenon's coordination sphere. Additionally, molecular dynamics simulations were performed using established atomistic force fields to interpret and clarify the conclusions suggested by the experimental results. The analysis is able to interpret previous results in the literature for ethane and propane at very different experimental conditions.
- Published
- 2013
- Full Text
- View/download PDF
8. Systems involving hydrogenated and fluorinated chains: volumetric properties of perfluoroalkanes and perfluoroalkylalkane surfactants.
- Author
-
Morgado P, Lewis JB, Laginhas CM, Martins LF, McCabe C, Blas FJ, and Filipe EJ
- Abstract
As part of a combined experimental and theoretical study of the thermodynamic properties of perfluoroalkylalkanes (PFAAs), the liquid density of perfluorobutylpentane (F4H5), perfluorobutylhexane (F4H6), and perfluorobutyloctane (F4H8) was measured as a function of temperature from 278.15 to 353.15 K and from atmospheric pressure to 70 MPa. The liquid densities of n-perfluoropentane, n-perfluorohexane, n-perfluorooctane, and n-perfluorononane were also measured at room pressure over the same temperature range. The PVT behavior of the PFAAs was also studied using the SAFT-VR equation of state. The PFAA molecules were modeled as heterosegmented diblock chains, using different parameters for the alkyl and perfluoroalkyl segments, that were developed in earlier work. Through this simple approach, we are able to predict the thermodynamic behavior of the perfluoroalkylalkanes, without fitting to any experimental data for the systems being studied. Molecular dynamics simulations have also been performed and used to calculate the densities of the perfluoroalkylalkanes studied.
- Published
- 2011
- Full Text
- View/download PDF
9. Long-range nanometer-scale organization of semifluorinated alkane monolayers at the air/water interface.
- Author
-
Bardin L, Fauré MC, Limagne D, Chevallard C, Konovalov O, Filipe EJ, Waton G, Krafft MP, Goldmann M, and Fontaine P
- Subjects
- Microscopy, Atomic Force, Scattering, Radiation, Surface Properties, Surface-Active Agents chemistry, X-Ray Diffraction, Alkanes chemistry, Fluorine chemistry, Nanotechnology
- Abstract
We have determined the structure formed at the air-water interface by semifluorinated alkanes (C(8)F(17)C(m)H(2m+1) diblocks, F8Hm for short) for different lengths of the molecule (m = 14, 16, 18, 20) by using surface pressure versus area per molecule isotherms, Brewster angle microscopy (BAM), and grazing incidence x-ray experiments (GISAXS and GIXD). The behavior of the monolayers of diblocks under compression is mainly characterized by a phase transition from a low-density phase to a condensed phase. The nonzero surface pressure phase is crystalline and exhibits two hexagonal lattices at two different scales: a long-range-order lattice of a few tens of nanometers lateral parameter and a molecular array of about 0.6 nm parameter. The extent of this organization is sufficiently large to impact larger scale behavior. Analysis of the various compressibilities evidences the presence of non organized molecules in the monolayer for all 2D pressures. At room temperature, the self-assembled structure appears generic for all the F8Hm investigated.
- Published
- 2011
- Full Text
- View/download PDF
10. Excess thermodynamic properties of mixtures involving xenon and light alkanes: a study of their temperature dependence by computer simulation.
- Author
-
Martins LF, Carvalho AJ, Ramalho JP, and Filipe EJ
- Subjects
- Monte Carlo Method, Alkanes chemistry, Molecular Dynamics Simulation, Thermodynamics, Xenon chemistry
- Abstract
As a natural extension of a previous work, excess molar enthalpies and excess molar volumes as a function of composition in a wide range of temperatures have been obtained for binary mixtures of xenon with ethane, propane, and n-butane by Monte Carlo computer simulation. Xenon was modeled by a simple spherical Lennard-Jones potential, and the TraPPE-UA force field was used to describe the n-alkanes. One of the main goals of this study is to investigate the temperature dependence of the excess properties for mixtures of xenon and n-alkanes and, if possible, to supplement the lack of experimental data. For all three systems, the simulation results predicted excess volumes in good agreement with the experimental data. As for the excess enthalpies, in the case of (xenon + ethane), the simulation results confirm the negative experimental result and the weak temperature dependence. In the case of (xenon + propane) and (xenon + n-butane), however, the simulation predicts negative excess enthalpies, but those estimated from experimental data are positive. Both excess volumes and enthalpies display a complex dependence on temperature that in some aspects resembles that found for mixtures of n-alkanes.The structure of the liquid mixtures was also investigated by calculating radial distribution functions [g(αβ)(r)] between each pair of interaction groups for all the binary systems at all temperatures. It is found that the mean distance between xenon and CH(2) groups is systematically higher than the distance between xenon and CH(3). In addition, the number of groups around xenon in the first coordination sphere was calculated and seems to be proportionally more populated by methyl groups than by methylene groups. The results seem to reflect a preferential and stronger interaction between xenon and CH(3), in agreement with previous findings.
- Published
- 2011
- Full Text
- View/download PDF
11. Viscosity of liquid perfluoroalkanes and perfluoroalkylalkane surfactants.
- Author
-
Morgado P, Laginhas CM, Lewis JB, McCabe C, Martins LF, and Filipe EJ
- Abstract
As part of a systematic study of the thermophysical properties of two important classes of fluorinated organic compounds (perfluoroalkanes and perfluoroalkylalkanes), viscosity measurements of four n-perfluoroalkanes and five perfluoroalkylalkanes have been carried out at atmospheric pressure and over a wide range of temperatures (278-353 K). From the experimental results the contribution to the viscosity from the CF(2) and CF(3) groups as a function of temperature have been estimated. Similarly, the contributions for CH(2) and CH(3) groups in n-alkanes have been determined using literature data. For perfluoroalkylalkanes, the viscosity results were interpreted in terms of the contributions of the constituent CF(2), CF(3), CH(2), and CH(3) groups, the deviations from ideality on mixing hydrogenated and fluorinated chains, and the contribution due to the formation of the CF(2)-CH(2) bond. A standard empirical group contribution method (Sastri-Rao method) has also been used to estimate the viscosities of the perfluoroalkylalkanes. Finally, to obtain molecular level insight into the behavior of these molecules, all-atom molecular dynamics simulations have been performed and used to calculate the densities and viscosities of the perfluoroalkylalkanes studied. Although both quantities are underestimated compared to the experimental data, with the viscosities showing the largest deviations, the trends observed in the experimental viscosities are captured., (© 2011 American Chemical Society)
- Published
- 2011
- Full Text
- View/download PDF
12. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.
- Author
-
Bonifácio RP, Martins LF, McCabe C, and Filipe EJ
- Subjects
- Algorithms, Computer Simulation, Monte Carlo Method, Solubility, Solutions, Thermodynamics, Hexanes chemistry, Pentanes chemistry, Xenon chemistry
- Abstract
The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.
- Published
- 2010
- Full Text
- View/download PDF
13. Liquid mixtures of xenon with fluorinated species: xenon + sulfur hexafluoride.
- Author
-
Dias LM, Filipe EJ, McCabe C, Cordeiro T, and Calado JC
- Abstract
The vapor-liquid equilibrium of binary mixtures of xenon + SF6 has been measured at nine temperatures from 235.34 to 295.79 K and pressures up to 6.5 MPa. The mixture critical line is found to be continuous between the critical points of the pure components, and hence, the system can be classified as type I phase behavior in the scheme of van Konynenburg and Scott. The excess Gibbs free energies have been calculated, and the experimental results have been interpreted using the statistical associating fluid theory for potentials of variable range (SAFT-VR). Additionally, the SAFT-VR equation has been used to model other systems involving SF6 and alkanes, illustrating the predictability of the approach and further demonstrating the transferability of parameters between binary mixtures involving alkanes and xenon.
- Published
- 2007
- Full Text
- View/download PDF
14. Liquid phase behavior of perfluoroalkylalkane surfactants.
- Author
-
Morgado P, Zhao H, Blas FJ, McCabe C, Rebelo LP, and Filipe EJ
- Subjects
- Alkylation, Fluorocarbons chemistry, Pressure, Temperature, Alkanes chemistry, Fluorine chemistry, Surface-Active Agents chemistry
- Abstract
We have performed a combined experimental and theoretical study of the thermodynamic properties of semifluorinated alkanes. In particular, the liquid density of perfluorohexylhexane (F6H6) and perfluorohexyloctane (F6H8) has been measured as a function of temperature from 273.15 to 353.15 K and at four temperatures as a function of pressure up to 600 bar. The results were interpreted using the SAFT-VR equation of state. The perfluoroalkylalkanes were modeled as heterosegmented diblock chains using parameters for the alkyl and perfluoroalkyl segments developed in earlier work. Through this simple approach, we are able to predict the thermodynamic behavior of the perfluoroalkylalkanes studied without fitting to any experimental data for the systems being studied.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.