1. The influence of pH-ultrasonic-induced myofibrillar protein conformation of Penaeus vannamei (Litopenaeus vannamei) on emulsification and digestion characteristics of fish oil oleogel-based emulsions.
- Author
-
Pan Y, Liu S, Han Z, Zeng H, Xu X, Shao JH, Xing L, and Yin Y
- Subjects
- Animals, Hydrogen-Ion Concentration, Organic Chemicals chemistry, Hydrophobic and Hydrophilic Interactions, Muscle Proteins chemistry, Muscle Proteins metabolism, Protein Conformation, Digestion, Particle Size, Adsorption, Protein Structure, Secondary, Emulsions chemistry, Fish Oils chemistry, Penaeidae chemistry
- Abstract
pH-induced and ultrasound treatment can both adjust spatial conformation to improve the interfacial stability, and fish oil oleogel could be used to enhance oil binding capacity. The relationship between stabilization mechanism and lipid digestion was revealed, considering the protein conformation and interfacial characteristics. The results showed that pH-ultrasonic-induced myofibrillar proteins (MPs) at pH 7.0 had higher interfacial adsorption capacity and surface hydrophobicity as well as more stable secondary structures, which lowered the particle size and enhanced the interfacial stability. In the stomach, the particle size increased along with the decrease in electrostatic repulsion, and β-sheets significantly increased, which promoted aggregation and flocculation. In the small intestine, the reduction of β-sheets favored the interfacial replacement and facilitated the lipid digestion. Therefore, pH-ultrasonic-modified method improved the structure and function of MPs, facilitated the interfacial stability and intestinal digestion., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF