90 results on '"Flatau, P. J."'
Search Results
2. Light scattering by hexagonal columns in the discrete dipole approximation
- Author
-
Flatau, P. J. and Draine, B. T.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
Scattering by infinite hexagonal ice prisms is calculated using Maxwell's equations in the discrete dipole approximation for size parameters up to x=400. Birefringence is included in the calculations. Applicability of the geometric optics approximation is investigated. Excellent agreement between wave optics and geometric optics is observed for large size parameter in the outer part of the 22 degree halo feature. For smaller ice crystals halo broadening is predicted, and there is appreciable "spillover" of the halo into shadow scattering angles <22 degrees. Ways to retrieve ice crystal sizes are suggested based on the full width at half-maximum of the halo, the power at <22 deg, and the halo polarization.
- Published
- 2014
- Full Text
- View/download PDF
3. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3
- Author
-
Draine, B. T. and Flatau, P. J.
- Subjects
Physics - Computational Physics ,Astrophysics - Galaxy Astrophysics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Optics - Abstract
DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for user-specified scattering directions. DDSCAT 7.3 can efficiently calculate E and B throughout a user-specified volume containing the target. This User Guide explains how to use DDSCAT 7.3 to carry out electromagnetic scattering calculations, including use of DDPOSTPROCESS, a Fortran-90 code to perform calculations with E and B at user-selected locations near the target. A number of changes have been made since the last release, DDSCAT 7.2 ., Comment: 102 pages, 17 figures. arXiv admin note: substantial text overlap with arXiv:1202.3424, arXiv:1002.1505, arXiv:0809.0337, arXiv:astro-ph/0409262, arXiv:astro-ph/0309069, arXiv:astro-ph/0008151
- Published
- 2013
4. Interview with Warren Wiscombe on scientific programing and his contributions to atmospheric science tool making
- Author
-
Flatau, Piotr J.
- Subjects
Physics - History and Philosophy of Physics ,Physics - Atmospheric and Oceanic Physics - Abstract
On March 11, 2013 I talked with Warren Wiscombe about his contributions to scientific computer programming, atmospheric science and radiative transfer. Our conversation is divided into three parts related to light scattering, radiative transfer and his general thoughts about scientific programming. There are some reflections on how radiative transfer parameterizations gradually sneaked in to modern climate and atmospheric Global Circulation Models. Why some software programs such as light scattering code MIEV and DISORT are very successful and why some of them fizzle. We talked about the role of tools in modern science, open source movement, repeatability of scientific results, computer languages, computer programs as objects of arts, and even if programs can be revolutionary.
- Published
- 2013
5. User Manual for the Complex Conjugate Gradient Methods Library CCGPAK 2.0
- Author
-
Flatau, Piotr J.
- Subjects
Computer Science - Mathematical Software - Abstract
This manual describes the library of conjugate gradients codes CCGPAK, which solves system of complex linear system of equations. The library is written in FORTRAN90 and is highly portable. The codes are general and provide mechanism for matrix times vector multiplication which is separated from the conjugate gradient iterations itself. It is simple to switch between single and double precisions. All codes follow the same naming conventions.
- Published
- 2012
6. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2
- Author
-
Draine, Bruce T. and Flatau, Piotr J.
- Subjects
Physics - Computational Physics ,Astrophysics - Galaxy Astrophysics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Optics - Abstract
DDSCAT 7.2 is a freely available open-source Fortran-90 software package applying the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", which can be used to study absorption, scattering, and electric fields around arrays of nanostructures. The DDA approximates the target by an array of polarizable points. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008). Efficient near-field calculations are enabled following Flatau & Draine (2012). DDSCAT 7.2 allows accurate calculations of electromagnetic scattering from targets with size parameters 2*pi*aeff/lambda < 25 provided the refractive index m is not large compared to unity (|m-1| < 2). DDSCAT 7.2 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT 7.2 supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import new target geometries into the code. DDSCAT 7.2 calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for specified orientation of the target relative to the incident wave, and for specified scattering directions. DDSCAT 7.2 calculates E throughout a user-specified rectangular volume containing the target. A Fortran-90 code READNF to read E and P from files created by DDSCAT 7.2 is included in the distribution., Comment: 95 pages. Expanded and updated to conform to latest release, DDSCAT 7.2.1. Complete software package available at http://code.google.com/p/ddscat/
- Published
- 2012
7. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1
- Author
-
Draine, B. T. and Flatau, P. J.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
DDSCAT 7.1 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2008). DDSCAT 7.1 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix. This User Guide explains how to use DDSCAT 7.1 to carry out electromagnetic scattering calculations. DDfield, a Fortran-90 code to calculate E and B at user-selected locations near the target, is included in the distribution. A number of changes have been made since the last release, DDSCAT 7.0 ., Comment: 83 pages, 11 figures
- Published
- 2010
8. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0
- Author
-
Draine, B. T. and Flatau, P. J.
- Subjects
Astrophysics - Abstract
DDSCAT 7.0 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2008). DDSCAT 7.0 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix. This User Guide explains how to use DDSCAT 7.0 to carry out electromagnetic scattering calculations. DDfield, a Fortran-90 code DDfield to calculate E and B at user-selected locations near the target, is included in the distribution., Comment: 78 pages, 10 figures. v4 has some typos corrected, and includes more information for installing DDSCAT on non-Linux platforms. v5 corrects some typos in section 8.8, and updates the citation to Draine & Flatau (2008)
- Published
- 2008
9. The discrete dipole approximation for periodic targets I. theory and tests
- Author
-
Draine, B. T. and Flatau, P. J.
- Subjects
Astrophysics - Abstract
The discrete-dipole approximation (DDA) is a powerful method for calculating absorption and scattering by targets that have sizes smaller than or comparable to the wavelength of the incident radiation. The DDA can be extended to targets that are singly- or doubly-periodic. We generalize the scattering amplitude matrix and the 4 x 4 Mueller matrix to describe scattering by singly- and doubly-periodic targets, and show how these matrices can be calculated using the DDA. The accuracy of DDA calculations using the open-source code DDSCAT is demonstrated by comparison to exact results for infinite cylinders and infinite slabs. A method for using the DDA solution to obtain fields within and near the target is presented, with results shown for infinite slabs., Comment: 19 pages, 7 figures, submitted to J. Opt. Soc. Am. A
- Published
- 2008
- Full Text
- View/download PDF
10. User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1
- Author
-
Draine, Bruce T. and Flatau, Piotr J.
- Subjects
Astrophysics - Abstract
DDSCAT 6.1 is a software package which applies the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. DDSCAT 6.1 allows accurate calculations of electromagnetic scattering from targets with size parameters 2 pi a_eff/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 2). DDSCAT 6.1 includes support for MPI and FFTW. We also make available a "plain" distribution of DDSCAT 6.1 that does not include support for MPI, FFTW, or netCDF, but is much simpler to install than the full distribution. The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code, and relatively straightforward to add new target generation capability to the package. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for specified orientation of the target relative to the incident wave, and for specified scattering directions., Comment: 59 pages. Updated to describe new target option CYLCAP, to correct error in formula for linear polarization P of scattered light, and provide more explicit instructions for use of multiple dielectric functions
- Published
- 2004
11. User Guide for the Discrete Dipole Approximation Code DDSCAT.6.0
- Author
-
Draine, B. T. and Flatau, P. J.
- Subjects
Astrophysics - Abstract
DDSCAT.6.0 is a freely available software package (http://www.astro.princeton.edu/~draine/DDSCAT.6.0.html) which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. DDSCAT.6.0 allows accurate calculations of electromagnetic scattering from targets with ``size parameters'' 2*pi*a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). DDSCAT.6.0 includes the option of using the FFTW (Fastest Fourier Transform in the West) package. DDSCAT.6.0 also includes MPI support, permitting parallel calculations on multiprocessor systems. DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to ``import'' arbitrary target geometries into the code, and relatively straightforward to add new target generation capability to the package. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for specified orientation of the target relative to the incident wave, and for specified scattering directions. This User Guide explains how to use DDSCAT.6.0 to carry out electromagnetic scattering calculations. CPU and memory requirements are described., Comment: 46 pages, 6 figures
- Published
- 2003
12. Radar Observations of Individual Rain Drops in the Free Atmosphere
- Author
-
Schmidt, J. M, Flatau, P. J, Harasti, P. R, Yates, R. D, Littleton, R., Pritchard, M. S, Fischer, J. M, Fischer, E. J, Kohri, W. J, Vetter, J. R, Richman, S., Baranowski, D. B, Anderson, M. J, Fletcher, E., and Lando, D. W
- Subjects
microphysics ,convection ,cumulonimbus ,backscatter - Abstract
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar’s unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.
- Published
- 2012
13. User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10)
- Author
-
Draine, B. T. and Flatau, Piotr J.
- Subjects
Astrophysics - Abstract
DDSCAT.5a is a freely available software package which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The DDA approximates the target by an array of polarizable points. DDSCAT.5a requires that these polarizable points be located on a cubic lattice. DDSCAT.5a10 allows accurate calculations of electromagnetic scattering from targets with "size parameters" 2 pi a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code, and relatively straightforward to add new target generation capability to the package. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for specified orientation of the target relative to the incident wave, and for specified scattering directions. This User Guide explains how to use DDSCAT.5a10 to carry out EM scattering calculations. CPU and memory requirements are described., Comment: Added more information for non-Unix sites, and new target option PRISM3 (triangular prism). 42 pages, 5 figures
- Published
- 2000
14. Improvements of the Discrete Dipole Approximation method
- Author
-
Flatau, Piotr J.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
The discrete-dipole approximation (DDA) is a flexible technique for computing scattering and absorption by targets of arbitrary geometry. In this paper we perform systematic study of various non-stationary iterative (conjugate gradient) methods in search for the most efficient one in order to solve the system of equations arising in DDA. We document implementation of these methods in our public domain code DDSCAT.5a
- Published
- 2000
15. Asymptotic light field in the presence of a bubble-layer
- Author
-
Flatau, Piotr J., Piskozub, Jacek, and Zaneveld, J. Ronald V.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
We report that the submerged microbubbles are an efficient source of diffuse radiance and may contribute to a rapid transition to the diffuse asymptotic regime. In this asymptotic regime an average cosine is easily predictable and measurable., Comment: 4 pages, 3 Postscript figures, opex2.sty (enclosed), also available from the Optical Society of America htpp://epubs.osa.org/oearchive/pdf/11948.pdf
- Published
- 2000
- Full Text
- View/download PDF
16. Monte Carlo study of the scattering error of a quartz reflective absorption tube
- Author
-
Piskozub, Jacek, Flatau, Piotr J., and Zaneveld, J. V. R.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
A Monte Carlo model was used to study the scattering error of an absorption meter with a divergent light beam and a limited acceptance angle of the receiver. Reflections at both ends of the tube were taken into account. Calculations of the effect of varying optical properties of water, as well as the receiver geometry, were performed. A weighting function showing the scattering error quantitatively as a function of angle was introduced. Some cases of the practical interests are discussed., Comment: 17 pages, 7 Postscript figures, also available from http://atol.ucsd.edu/~pflatau. In Press, Journal of Atmospheric and Oceanic Technology, 2000
- Published
- 2000
- Full Text
- View/download PDF
17. Remote sensing of bubble clouds in seawater
- Author
-
Flatau, Piotr J., Flatau, Maria, Zaneveld, J. R. V., and Mobley, Curtis D.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
We report on the influence of submerged bubble clouds on the remote sensing properties of water. We show that the optical effect of bubbles on radiative transfer and on the estimate of the ocean color is significant. We present a global map of the volume fraction of air in water derived from daily wind speed data. This map, together with the parameterization of the microphysical properties, shows the possible significance of bubble clouds on the albedo of incoming solar energy, Comment: 17 pages, 6 Postscript figures, see also http://atol.ucsd.edu/~pflatau publications for related papers. Q. J. Roy. Met. Soc. in press 2000
- Published
- 2000
- Full Text
- View/download PDF
18. Global Air Pollution Crossroads over the Mediterranean
- Author
-
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.
- Published
- 2002
19. Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra
- Author
-
Baranowski, Dariusz B., Flatau, Maria K., Flatau, Piotr J., Karnawati, Dwikorita, Barabasz, Katarzyna, Labuz, Michal, Latos, Beata, Schmidt, Jerome M., Paski, Jaka A. I., and Marzuki
- Published
- 2020
- Full Text
- View/download PDF
20. Multiple and spin off initiation of atmospheric convectively coupled Kelvin waves
- Author
-
Baranowski, Dariusz B., Flatau, Maria K., Flatau, Piotr J., and Schmidt, Jerome M.
- Published
- 2017
- Full Text
- View/download PDF
21. EUREC4A
- Author
-
Stevens, B, Bony, S, Farrell, D, Ament, F, Blyth, A, Fairall, C, Karstensen, J, Quinn, P, Speich, S, Acquistapace, C, Aemisegger, F, Albright, A, Bellenger, H, Bodenschatz, E, Caesar, K, Chewitt-Lucas, R, De Boer, G, Delanoe, J, Denby, L, Ewald, F, Fildier, B, Forde, M, George, G, Gross, S, Hagen, M, Hausold, A, Heywood, K, Hirsch, L, Jacob, M, Jansen, F, Kinne, S, Klocke, D, Kolling, T, Konow, H, Lothon, M, Mohr, W, Naumann, A, Nuijens, L, Olivier, L, Pincus, R, Pohlker, M, Reverdin, G, Roberts, G, Schnitt, S, Schulz, H, Pier Siebesma, A, Stephan, C, Sullivan, P, Touze-Peiffer, L, Vial, J, Vogel, R, Zuidema, P, Alexander, N, Alves, L, Arixi, S, Asmath, H, Bagheri, G, Baier, K, Bailey, A, Baranowski, D, Baron, A, Barrau, S, Barrett, P, Batier, F, Behrendt, A, Bendinger, A, Beucher, F, Bigorre, S, Blades, E, Blossey, P, Bock, O, Boing, S, Bosser, P, Bourras, D, Bouruet-Aubertot, P, Bower, K, Branellec, P, Branger, H, Brennek, M, Brewer, A, Brilouet, P, Brugmann, B, Buehler, S, Burke, E, Burton, R, Calmer, R, Canonici, J, Carton, X, Cato, G, Charles, J, Chazette, P, Chen, Y, Chilinski, M, Choularton, T, Chuang, P, Clarke, S, Coe, H, Cornet, C, Coutris, P, Couvreux, F, Crewell, S, Cronin, T, Cui, Z, Cuypers, Y, Daley, A, Damerell, G, Dauhut, T, Deneke, H, Desbios, J, Dorner, S, Donner, S, Douet, V, Drushka, K, Dutsch, M, Ehrlich, A, Emanuel, K, Emmanouilidis, A, Etienne, J, Etienne-Leblanc, S, Faure, G, Feingold, G, Ferrero, L, Fix, A, Flamant, C, Flatau, P, Foltz, G, Forster, L, Furtuna, I, Gadian, A, Galewsky, J, Gallagher, M, Gallimore, P, Gaston, C, Gentemann, C, Geyskens, N, Giez, A, Gollop, J, Gouirand, I, Gourbeyre, C, De Graaf, D, De Groot, G, Grosz, R, Guttler, J, Gutleben, M, Hall, K, Harris, G, Helfer, K, Henze, D, Herbert, C, Holanda, B, Ibanez-Landeta, A, Intrieri, J, Iyer, S, Julien, F, Kalesse, H, Kazil, J, Kellman, A, Kidane, A, Kirchner, U, Klingebiel, M, Korner, M, Kremper, L, Kretzschmar, J, Kruger, O, Kumala, W, Kurz, A, L'Hegaret, P, Labaste, M, Lachlan-Cope, T, Laing, A, Landschutzer, P, Lang, T, Lange, D, Lange, I, Laplace, C, Lavik, G, Laxenaire, R, Lebihan, C, Leandro, M, Lefevre, N, Lena, M, Lenschow, D, Li, Q, Lloyd, G, Los, S, Losi, N, Lovell, O, Luneau, C, Makuch, P, Malinowski, S, Manta, G, Marinou, E, Marsden, N, Masson, S, Maury, N, Mayer, B, Mayers-Als, M, Mazel, C, Mcgeary, W, Mcwilliams, J, Mech, M, Mehlmann, M, Meroni, A, Mieslinger, T, Minikin, A, Minnett, P, Moller, G, Avalos, Y, Muller, C, Musat, I, Napoli, A, Neuberger, A, Noisel, C, Noone, D, Nordsiek, F, Nowak, J, Oswald, L, Parker, D, Peck, C, Person, R, Philippi, M, Plueddemann, A, Pohlker, C, Portge, V, Poschl, U, Pologne, L, Posyniak, M, Prange, M, Melendez, E, Radtke, J, Ramage, K, Reimann, J, Renault, L, Reus, K, Reyes, A, Ribbe, J, Ringel, M, Ritschel, M, Rocha, C, Rochetin, N, Rottenbacher, J, Rollo, C, Royer, H, Sadoulet, P, Saffin, L, Sandiford, S, Sandu, I, Schafer, M, Schemann, V, Schirmacher, I, Schlenczek, O, Schmidt, J, Schroder, M, Schwarzenboeck, A, Sealy, A, Senff, C, Serikov, I, Shohan, S, Siddle, E, Smirnov, A, Spath, F, Spooner, B, Katharina Stolla, M, Szkolka, W, De Szoeke, S, Tarot, S, Tetoni, E, Thompson, E, Thomson, J, Tomassini, L, Totems, J, Ubele, A, Villiger, L, Von Arx, J, Wagner, T, Walther, A, Webber, B, Wendisch, M, Whitehall, S, Wiltshire, A, Wing, A, Wirth, M, Wiskandt, J, Wolf, K, Worbes, L, Wright, E, Wulfmeyer, V, Young, S, Zhang, C, Zhang, D, Ziemen, F, Zinner, T, Zoger, M, Stevens B., Bony S., Farrell D., Ament F., Blyth A., Fairall C., Karstensen J., Quinn P. K., Speich S., Acquistapace C., Aemisegger F., Albright A. L., Bellenger H., Bodenschatz E., Caesar K. -A., Chewitt-Lucas R., De Boer G., Delanoe J., Denby L., Ewald F., Fildier B., Forde M., George G., Gross S., Hagen M., Hausold A., Heywood K. J., Hirsch L., Jacob M., Jansen F., Kinne S., Klocke D., Kolling T., Konow H., Lothon M., Mohr W., Naumann A. K., Nuijens L., Olivier L., Pincus R., Pohlker M., Reverdin G., Roberts G., Schnitt S., Schulz H., Pier Siebesma A., Stephan C. C., Sullivan P., Touze-Peiffer L., Vial J., Vogel R., Zuidema P., Alexander N., Alves L., Arixi S., Asmath H., Bagheri G., Baier K., Bailey A., Baranowski D., Baron A., Barrau S., Barrett P. A., Batier F., Behrendt A., Bendinger A., Beucher F., Bigorre S., Blades E., Blossey P., Bock O., Boing S., Bosser P., Bourras D., Bouruet-Aubertot P., Bower K., Branellec P., Branger H., Brennek M., Brewer A., Brilouet P. -E., Brugmann B., Buehler S. A., Burke E., Burton R., Calmer R., Canonici J. -C., Carton X., Cato G., Charles J. A., Chazette P., Chen Y., Chilinski M. T., Choularton T., Chuang P., Clarke S., Coe H., Cornet C., Coutris P., Couvreux F., Crewell S., Cronin T., Cui Z., Cuypers Y., Daley A., Damerell G. M., Dauhut T., Deneke H., Desbios J. -P., Dorner S., Donner S., Douet V., Drushka K., Dutsch M., Ehrlich A., Emanuel K., Emmanouilidis A., Etienne J. -C., Etienne-Leblanc S., Faure G., Feingold G., Ferrero L., Fix A., Flamant C., Flatau P. J., Foltz G. R., Forster L., Furtuna I., Gadian A., Galewsky J., Gallagher M., Gallimore P., Gaston C., Gentemann C., Geyskens N., Giez A., Gollop J., Gouirand I., Gourbeyre C., De Graaf D., De Groot G. E., Grosz R., Guttler J., Gutleben M., Hall K., Harris G., Helfer K. C., Henze D., Herbert C., Holanda B., Ibanez-Landeta A., Intrieri J., Iyer S., Julien F., Kalesse H., Kazil J., Kellman A., Kidane A. T., Kirchner U., Klingebiel M., Korner M., Kremper L. A., Kretzschmar J., Kruger O., Kumala W., Kurz A., L'Hegaret P., Labaste M., Lachlan-Cope T., Laing A., Landschutzer P., Lang T., Lange D., Lange I., Laplace C., Lavik G., Laxenaire R., LeBihan C., Leandro M., Lefevre N., Lena M., Lenschow D., Li Q., Lloyd G., Los S., Losi N., Lovell O., Luneau C., Makuch P., Malinowski S., Manta G., Marinou E., Marsden N., Masson S., Maury N., Mayer B., Mayers-Als M., Mazel C., McGeary W., McWilliams J. C., Mech M., Mehlmann M., Meroni A. N., Mieslinger T., Minikin A., Minnett P., Moller G., Avalos Y. M., Muller C., Musat I., Napoli A., Neuberger A., Noisel C., Noone D., Nordsiek F., Nowak J. L., Oswald L., Parker D. J., Peck C., Person R., Philippi M., Plueddemann A., Pohlker C., Portge V., Poschl U., Pologne L., Posyniak M., Prange M., Melendez E. Q., Radtke J., Ramage K., Reimann J., Renault L., Reus K., Reyes A., Ribbe J., Ringel M., Ritschel M., Rocha C. B., Rochetin N., Rottenbacher J., Rollo C., Royer H., Sadoulet P., Saffin L., Sandiford S., Sandu I., Schafer M., Schemann V., Schirmacher I., Schlenczek O., Schmidt J., Schroder M., Schwarzenboeck A., Sealy A., Senff C. J., Serikov I., Shohan S., Siddle E., Smirnov A., Spath F., Spooner B., Katharina Stolla M., Szkolka W., De Szoeke S. P., Tarot S., Tetoni E., Thompson E., Thomson J., Tomassini L., Totems J., Ubele A. A., Villiger L., Von Arx J., Wagner T., Walther A., Webber B., Wendisch M., Whitehall S., Wiltshire A., Wing A. A., Wirth M., Wiskandt J., Wolf K., Worbes L., Wright E., Wulfmeyer V., Young S., Zhang C., Zhang D., Ziemen F., Zinner T., Zoger M., Stevens, B, Bony, S, Farrell, D, Ament, F, Blyth, A, Fairall, C, Karstensen, J, Quinn, P, Speich, S, Acquistapace, C, Aemisegger, F, Albright, A, Bellenger, H, Bodenschatz, E, Caesar, K, Chewitt-Lucas, R, De Boer, G, Delanoe, J, Denby, L, Ewald, F, Fildier, B, Forde, M, George, G, Gross, S, Hagen, M, Hausold, A, Heywood, K, Hirsch, L, Jacob, M, Jansen, F, Kinne, S, Klocke, D, Kolling, T, Konow, H, Lothon, M, Mohr, W, Naumann, A, Nuijens, L, Olivier, L, Pincus, R, Pohlker, M, Reverdin, G, Roberts, G, Schnitt, S, Schulz, H, Pier Siebesma, A, Stephan, C, Sullivan, P, Touze-Peiffer, L, Vial, J, Vogel, R, Zuidema, P, Alexander, N, Alves, L, Arixi, S, Asmath, H, Bagheri, G, Baier, K, Bailey, A, Baranowski, D, Baron, A, Barrau, S, Barrett, P, Batier, F, Behrendt, A, Bendinger, A, Beucher, F, Bigorre, S, Blades, E, Blossey, P, Bock, O, Boing, S, Bosser, P, Bourras, D, Bouruet-Aubertot, P, Bower, K, Branellec, P, Branger, H, Brennek, M, Brewer, A, Brilouet, P, Brugmann, B, Buehler, S, Burke, E, Burton, R, Calmer, R, Canonici, J, Carton, X, Cato, G, Charles, J, Chazette, P, Chen, Y, Chilinski, M, Choularton, T, Chuang, P, Clarke, S, Coe, H, Cornet, C, Coutris, P, Couvreux, F, Crewell, S, Cronin, T, Cui, Z, Cuypers, Y, Daley, A, Damerell, G, Dauhut, T, Deneke, H, Desbios, J, Dorner, S, Donner, S, Douet, V, Drushka, K, Dutsch, M, Ehrlich, A, Emanuel, K, Emmanouilidis, A, Etienne, J, Etienne-Leblanc, S, Faure, G, Feingold, G, Ferrero, L, Fix, A, Flamant, C, Flatau, P, Foltz, G, Forster, L, Furtuna, I, Gadian, A, Galewsky, J, Gallagher, M, Gallimore, P, Gaston, C, Gentemann, C, Geyskens, N, Giez, A, Gollop, J, Gouirand, I, Gourbeyre, C, De Graaf, D, De Groot, G, Grosz, R, Guttler, J, Gutleben, M, Hall, K, Harris, G, Helfer, K, Henze, D, Herbert, C, Holanda, B, Ibanez-Landeta, A, Intrieri, J, Iyer, S, Julien, F, Kalesse, H, Kazil, J, Kellman, A, Kidane, A, Kirchner, U, Klingebiel, M, Korner, M, Kremper, L, Kretzschmar, J, Kruger, O, Kumala, W, Kurz, A, L'Hegaret, P, Labaste, M, Lachlan-Cope, T, Laing, A, Landschutzer, P, Lang, T, Lange, D, Lange, I, Laplace, C, Lavik, G, Laxenaire, R, Lebihan, C, Leandro, M, Lefevre, N, Lena, M, Lenschow, D, Li, Q, Lloyd, G, Los, S, Losi, N, Lovell, O, Luneau, C, Makuch, P, Malinowski, S, Manta, G, Marinou, E, Marsden, N, Masson, S, Maury, N, Mayer, B, Mayers-Als, M, Mazel, C, Mcgeary, W, Mcwilliams, J, Mech, M, Mehlmann, M, Meroni, A, Mieslinger, T, Minikin, A, Minnett, P, Moller, G, Avalos, Y, Muller, C, Musat, I, Napoli, A, Neuberger, A, Noisel, C, Noone, D, Nordsiek, F, Nowak, J, Oswald, L, Parker, D, Peck, C, Person, R, Philippi, M, Plueddemann, A, Pohlker, C, Portge, V, Poschl, U, Pologne, L, Posyniak, M, Prange, M, Melendez, E, Radtke, J, Ramage, K, Reimann, J, Renault, L, Reus, K, Reyes, A, Ribbe, J, Ringel, M, Ritschel, M, Rocha, C, Rochetin, N, Rottenbacher, J, Rollo, C, Royer, H, Sadoulet, P, Saffin, L, Sandiford, S, Sandu, I, Schafer, M, Schemann, V, Schirmacher, I, Schlenczek, O, Schmidt, J, Schroder, M, Schwarzenboeck, A, Sealy, A, Senff, C, Serikov, I, Shohan, S, Siddle, E, Smirnov, A, Spath, F, Spooner, B, Katharina Stolla, M, Szkolka, W, De Szoeke, S, Tarot, S, Tetoni, E, Thompson, E, Thomson, J, Tomassini, L, Totems, J, Ubele, A, Villiger, L, Von Arx, J, Wagner, T, Walther, A, Webber, B, Wendisch, M, Whitehall, S, Wiltshire, A, Wing, A, Wirth, M, Wiskandt, J, Wolf, K, Worbes, L, Wright, E, Wulfmeyer, V, Young, S, Zhang, C, Zhang, D, Ziemen, F, Zinner, T, Zoger, M, Stevens B., Bony S., Farrell D., Ament F., Blyth A., Fairall C., Karstensen J., Quinn P. K., Speich S., Acquistapace C., Aemisegger F., Albright A. L., Bellenger H., Bodenschatz E., Caesar K. -A., Chewitt-Lucas R., De Boer G., Delanoe J., Denby L., Ewald F., Fildier B., Forde M., George G., Gross S., Hagen M., Hausold A., Heywood K. J., Hirsch L., Jacob M., Jansen F., Kinne S., Klocke D., Kolling T., Konow H., Lothon M., Mohr W., Naumann A. K., Nuijens L., Olivier L., Pincus R., Pohlker M., Reverdin G., Roberts G., Schnitt S., Schulz H., Pier Siebesma A., Stephan C. C., Sullivan P., Touze-Peiffer L., Vial J., Vogel R., Zuidema P., Alexander N., Alves L., Arixi S., Asmath H., Bagheri G., Baier K., Bailey A., Baranowski D., Baron A., Barrau S., Barrett P. A., Batier F., Behrendt A., Bendinger A., Beucher F., Bigorre S., Blades E., Blossey P., Bock O., Boing S., Bosser P., Bourras D., Bouruet-Aubertot P., Bower K., Branellec P., Branger H., Brennek M., Brewer A., Brilouet P. -E., Brugmann B., Buehler S. A., Burke E., Burton R., Calmer R., Canonici J. -C., Carton X., Cato G., Charles J. A., Chazette P., Chen Y., Chilinski M. T., Choularton T., Chuang P., Clarke S., Coe H., Cornet C., Coutris P., Couvreux F., Crewell S., Cronin T., Cui Z., Cuypers Y., Daley A., Damerell G. M., Dauhut T., Deneke H., Desbios J. -P., Dorner S., Donner S., Douet V., Drushka K., Dutsch M., Ehrlich A., Emanuel K., Emmanouilidis A., Etienne J. -C., Etienne-Leblanc S., Faure G., Feingold G., Ferrero L., Fix A., Flamant C., Flatau P. J., Foltz G. R., Forster L., Furtuna I., Gadian A., Galewsky J., Gallagher M., Gallimore P., Gaston C., Gentemann C., Geyskens N., Giez A., Gollop J., Gouirand I., Gourbeyre C., De Graaf D., De Groot G. E., Grosz R., Guttler J., Gutleben M., Hall K., Harris G., Helfer K. C., Henze D., Herbert C., Holanda B., Ibanez-Landeta A., Intrieri J., Iyer S., Julien F., Kalesse H., Kazil J., Kellman A., Kidane A. T., Kirchner U., Klingebiel M., Korner M., Kremper L. A., Kretzschmar J., Kruger O., Kumala W., Kurz A., L'Hegaret P., Labaste M., Lachlan-Cope T., Laing A., Landschutzer P., Lang T., Lange D., Lange I., Laplace C., Lavik G., Laxenaire R., LeBihan C., Leandro M., Lefevre N., Lena M., Lenschow D., Li Q., Lloyd G., Los S., Losi N., Lovell O., Luneau C., Makuch P., Malinowski S., Manta G., Marinou E., Marsden N., Masson S., Maury N., Mayer B., Mayers-Als M., Mazel C., McGeary W., McWilliams J. C., Mech M., Mehlmann M., Meroni A. N., Mieslinger T., Minikin A., Minnett P., Moller G., Avalos Y. M., Muller C., Musat I., Napoli A., Neuberger A., Noisel C., Noone D., Nordsiek F., Nowak J. L., Oswald L., Parker D. J., Peck C., Person R., Philippi M., Plueddemann A., Pohlker C., Portge V., Poschl U., Pologne L., Posyniak M., Prange M., Melendez E. Q., Radtke J., Ramage K., Reimann J., Renault L., Reus K., Reyes A., Ribbe J., Ringel M., Ritschel M., Rocha C. B., Rochetin N., Rottenbacher J., Rollo C., Royer H., Sadoulet P., Saffin L., Sandiford S., Sandu I., Schafer M., Schemann V., Schirmacher I., Schlenczek O., Schmidt J., Schroder M., Schwarzenboeck A., Sealy A., Senff C. J., Serikov I., Shohan S., Siddle E., Smirnov A., Spath F., Spooner B., Katharina Stolla M., Szkolka W., De Szoeke S. P., Tarot S., Tetoni E., Thompson E., Thomson J., Tomassini L., Totems J., Ubele A. A., Villiger L., Von Arx J., Wagner T., Walther A., Webber B., Wendisch M., Whitehall S., Wiltshire A., Wing A. A., Wirth M., Wiskandt J., Wolf K., Worbes L., Wright E., Wulfmeyer V., Young S., Zhang C., Zhang D., Ziemen F., Zinner T., and Zoger M.
- Abstract
The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic - eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored - from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation - are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at 10.25326/165 , and a film documenting the campaign is provided as a video supplement.
- Published
- 2021
22. Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions
- Author
-
Russell, P. B, Flatau, P. J, Valero, F. P. J, Nakajima, T, Holben, B, Pilewskie, P, Bergin, M, Schmid, B, Bergstrom, R. W, Vogelmann, A, and Hipskind, R. Stephen
- Subjects
Environment Pollution - Abstract
ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.
- Published
- 2002
23. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties
- Author
-
Russell, Philip B, Valero, F. P. J, Flatau, P. J, Bergin, M, Holben, B, Nakajima, T, Pilewskie, P, Bergstrom, R, and Hipskind, R. Stephen
- Subjects
Environment Pollution - Abstract
A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.
- Published
- 2001
24. The role of radiation in mesoscale flows: Physics, parameterizations, codes
- Author
-
Flatau, P. J, Churchill, Dean, and Cess, Robert D
- Subjects
Meteorology And Climatology - Abstract
The topics discussed include the following: an overview of radiation and mesoscale flows and lessons learned from the intercomparison of GCM radiative codes.
- Published
- 1993
25. Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models
- Author
-
Stephens, Graeme L, Flatau, P. J, Tsay, S.-C, and Hein, Paul F
- Subjects
Meteorology And Climatology - Abstract
A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds.
- Published
- 1990
26. Light scattering by hexagonal columns in the discrete dipole approximation
- Author
-
Flatau, P. J., primary and Draine, B. T., additional
- Published
- 2014
- Full Text
- View/download PDF
27. Upper ocean response to the passage of two sequential typhoons
- Author
-
Baranowski, D. B., primary, Flatau, P. J., additional, Chen, S., additional, and Black, P. G., additional
- Published
- 2014
- Full Text
- View/download PDF
28. Upper ocean response to two collocated typhoons
- Author
-
Baranowski, D. B., primary, Flatau, P. J., additional, Chen, S., additional, and Black, P. G., additional
- Published
- 2013
- Full Text
- View/download PDF
29. Overview of ACE-Asia spring 2001 investigations on aerosol-radiation interactions
- Author
-
Russell, P. B., Flatau, P. J., Valero, F. P. J., Nakajima, T., Holben, B., Pilewskie, P., Bergin, M., Schmid, B., Bergstrom, R. W., Vogelmann, A., Bush, B., Redemann, J., Pope, S., Livingston, J., Leitner, S., Hsu, N. C., Wang, J., Seinfeld, J., Hegg, D., Quinn, P., and Covert, D.
- Subjects
respiratory system ,complex mixtures - Abstract
In spring 2001 the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) made extensive measurements from land, ocean, air and space platforms. A primary objective was to quantify the interactions between aerosols and radiation. This talk presents illustrative results from each type of platform, with initial assessments of regional aerosol radiative forcing obtained by combining satellite and suborbital results.
- Published
- 2002
30. Inclusion of Sea-Surface Temperature Variation in the U.S. Navy Ensemble-Transform Global Ensemble Prediction System
- Author
-
NAVAL RESEARCH LAB MONTEREY CA, McLay, J G, Flatau, M K, Reynolds, C A, Cummings, J, Hogan, T, Flatau, P J, NAVAL RESEARCH LAB MONTEREY CA, McLay, J G, Flatau, M K, Reynolds, C A, Cummings, J, Hogan, T, and Flatau, P J
- Abstract
The local ensemble transform (ET) analysis perturbation scheme is adapted to generate perturbations to both atmospheric variables and sea-surface temperature (SST). The adapted local ET scheme is used in conjunction with a prognostic model of SST diurnal variation and the Navy Operational Global Atmospheric Prediction System (NOGAPS) global spectral model to generate a medium-range forecast ensemble. When compared to a control ensemble, the new forecast ensemble with SST variation exhibits notable differences in various physical properties including the spatial patterns of surface fluxes, outgoing longwave radiation (OLR), cloud radiative forcing, near-surface air temperature and wind speed, and 24-h accumulated precipitation. The structure of the daily cycle of precipitation also is substantially changed, generally exhibiting a more realistic midday peak of precipitation. Diagnostics of ensemble performance indicate that the inclusion of SST variation is very favorable to forecasts in the Tropics. The forecast ensemble with SST variation outscores the control ensemble in the Tropics across a broad set of metrics and variables. The SST variation has much less impact in the Midlatitudes. Further comparison shows that SST diurnal variation and the SST analysis perturbations are each individually beneficial to the forecast from an overall standpoint. The SST analysis perturbations have broader benefit in the Tropics than the SST diurnal variation, and inclusion of the SST analysis perturbations together with the SST diurnal variation is essential to realize the greatest gains in forecast performance., Published in the Journal of Geophysical Research, v117 article ID D19120, 13 Oct 2012.
- Published
- 2012
31. Inclusion of sea‐surface temperature variation in the U.S. Navy ensemble‐transform global ensemble prediction system
- Author
-
McLay, J. G., primary, Flatau, M. K., additional, Reynolds, C. A., additional, Cummings, J., additional, Hogan, T., additional, and Flatau, P. J., additional
- Published
- 2012
- Full Text
- View/download PDF
32. Fast near field calculations in the discrete dipole approximation for regular rectilinear grids
- Author
-
Flatau, P. J., primary and Draine, B. T., additional
- Published
- 2012
- Full Text
- View/download PDF
33. Tropical cyclone turbulent mixing as observed by autonomous oceanic profilers with the high repetition rate
- Author
-
Baranowski, D B, primary, Flatau, P J, additional, and Malinowski, S P, additional
- Published
- 2011
- Full Text
- View/download PDF
34. Observations and Modeling of the Surface Aerosol Radiative Forcing during UAE2
- Author
-
Markowicz, K. M., primary, Flatau, P. J., primary, Remiszewska, J., primary, Witek, M., primary, Reid, E. A., primary, Reid, J. S., primary, Bucholtz, A., primary, and Holben, B., primary
- Published
- 2008
- Full Text
- View/download PDF
35. Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure
- Author
-
Markowicz, K. M., primary, Flatau, P. J., additional, Kardas, A. E., additional, Remiszewska, J., additional, Stelmaszczyk, K., additional, and Woeste, L., additional
- Published
- 2008
- Full Text
- View/download PDF
36. Modulation of the aerosol absorption and single-scattering albedo due to synoptic scale and sea breeze circulations: United Arab Emirates experiment perspective
- Author
-
Remiszewska, J., primary, Flatau, P. J., additional, Markowicz, K. M., additional, Reid, E. A., additional, Reid, J. S., additional, and Witek, M. L., additional
- Published
- 2007
- Full Text
- View/download PDF
37. Delayed onset of the 2002 Indian monsoon
- Author
-
Flatau, M. K., primary, Flatau, P. J., additional, Schmidt, J., additional, and Kiladis, G. N., additional
- Published
- 2003
- Full Text
- View/download PDF
38. Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent
- Author
-
Baranowski, Dariusz B., Flatau, Maria K., Flatau, Piotr J., and Matthews, Adrian J.
- Abstract
Convectively coupled Kelvin waves (CCKWs) are a major component of the tropical atmospheric circulation, propagating eastward around the equatorial belt. Here we show that there are scale interactions between CCKWs and the diurnal cycle over the Maritime Continent. In particular, CCKW packets that pass a base point in the eastern Indian Ocean at 90°E between 0600 and 0900 UTC subsequently arrive over Sumatra in phase with the diurnal cycle of convection. As the distance between Sumatra and Borneo is equal to the distance traveled by a CCKW in 1 day, these waves are then also in phase with the diurnal cycle over Borneo. Consequently, this subset of CCKWs has a precipitation signal up to a factor of 3 larger than CCKWs that arrive at other times of the day and a 40% greater chance of successfully traversing the Maritime Continent. Atmospheric equatorial convectively coupled Kelvin waves (CCKWs) are phase locked to the diurnal cycle over the Maritime ContinentCCKWs in phase with the diurnal cycle have a precipitation signal up to 3 times larger than other CCKWsCCKWs in phase with the diurnal cycle are 40% more likely to successfully cross the Maritime Continent than other CCKWs
- Published
- 2016
- Full Text
- View/download PDF
39. Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability
- Author
-
Baranowski, Dariusz B., Flatau, Maria K., Flatau, Piotr J., and Matthews, Adrian J.
- Abstract
Convectively coupled Kelvin waves (CCKWs) are atmospheric weather systems that propagate eastward along the equatorial wave guide with phase speeds between 11 and 14 m s−1. They are an important constituent of the convective envelope of the Madden‐Julian oscillation (MJO), for which ocean‐atmosphere interactions play a vital role. Hence, ocean‐atmosphere interactions within CCKWs may be important for MJO development and prediction and for tropical climate, in general. Although the atmospheric structure of CCKWs has been well studied, their impact on the underlying ocean is unknown. In this paper, the ocean‐atmosphere interactions in CCKWs are investigated by a case study from November 2011 during the CINDY/DYNAMO field experiment, using in situ oceanographic measurements from an ocean glider. The analysis is then extended to a 15 year period using precipitation data from the Tropical Rainfall Measuring Mission and surface fluxes from the TropFlux analysis. A methodology is developed to calculate trajectories of CCKWs. CCKW events are strongly controlled by the MJO, with twice as many CCKWs observed during the convectively active phase of the MJO compared to the suppressed phase. Coherent ocean‐atmosphere interaction is observed during the passage of a CCKW, which lasts approximately 4 days at any given longitude. Surface wind speed and latent heat flux are enhanced, leading to a transient suppression of the diurnal cycle of sea surface temperature (SST) and a sustained decrease in bulk SST of 0.1°C. Given that a typical composite mean MJO SST anomaly is of the order of 0.3°C, and more than one CCKW can occur during the active phase of a single MJO event, the oceanographic impact of CCKWs is of major importance to the MJO cycle. Passage of a CCKW is associated with coherent atmosphere‐ocean interactions that last about 4 daysUpper ocean temperature diurnal cycle is suppressed and bulk SST is decreased during CCKW eventAir‐sea interactions during CCKW passage are substantial contributor to intraseasonal variability
- Published
- 2016
- Full Text
- View/download PDF
40. Upper ocean response to two collocated typhoons.
- Author
-
Baranowski, D. B., Flatau, P. J., Chen, S., and Black, P. G.
- Subjects
OCEANOGRAPHY ,TYPHOONS ,WIND speed ,NUMERICAL analysis ,SIMULATION methods & models ,KINETIC energy - Abstract
The atmospheric wind stress forcing and the oceanic response are examined for the period between 15 September 2008 and 6 October 2008, during which two typhoons, Hagupit and Jangmi passed through the same region of the Western Pacific at Saffir-Simpson intensity categories one and three, respectively. A three-dimensional oceanic mixed layer model is compared against the remote sensing observations as well as high repetition Argo float data. Numerical model simulations suggested that magnitude of the cooling caused by the second typhoon, Jangmi, would have been significantly larger if the ocean had not already been influenced by the first typhoon, Hagupit. It is estimated that the temperature anomaly behind Jangmi would have been about 0.4°C larger in both cold wake and left side of the track. The numerical simulations suggest that the magnitude and position of Jangmi's cold wake depends on the precursor state of the ocean as well as lag between typhoons. Based on sensitivity experiments we show that temperature anomaly difference between "single typhoon" and "two ty phoons" as well as magnitude of the cooling strongly depends on the value of inertial current decay time parameter. Thus, the magnitude of the observed cooling depends also on the amount of kinetic energy in the upper ocean. This paper indicates that studies of ocean-atmosphere tropical cyclone interaction will benefit from denser, high repetition Argo float measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
41. Clouds - Their Prediction and Simulation.
- Author
-
COLORADO STATE UNIV FORT COLLINS DEPT OF ATMOSPHERIC SCIENCE, Cotton, W. R., Stephens, G. L., Flatau, P. J., COLORADO STATE UNIV FORT COLLINS DEPT OF ATMOSPHERIC SCIENCE, Cotton, W. R., Stephens, G. L., and Flatau, P. J.
- Abstract
Summary of research advances during FIRE II modelling and aircraft operations in provided. Discussion of mesoscale forecasts during FIRE 11 using RAMS model is given. Advances in radiative transfer module and scattering by irregular particles are reported. New cloud physics parameterization of homogeneous nucleation is described. Planned research in the area of cirrus, stratocumulus, and cumulus predictions are defined. Cloud prediction, cirrus, stratocumulus, mesoscale modeling, radiative transfer, cloud physics.
- Published
- 1992
42. Radiative effects of convection in the tropical Pacific
- Author
-
Collins, W. D., primary, Valero, F. P. J., additional, Flatau, P. J., additional, Lubin, D., additional, Grassl, H., additional, and Pilewskie, P., additional
- Published
- 1996
- Full Text
- View/download PDF
43. Kinetics of the intraband absorption and magnetoabsorption coefficients in mixed semiconductors with composition fluctuations.
- Author
-
Flatau, P. J.
- Published
- 1978
- Full Text
- View/download PDF
44. Discrete-dipole approximation for periodic targets: theory and tests
- Author
-
Draine, Bruce T. and Flatau, Piotr J.
- Abstract
The discrete-dipole approximation (DDA) is a powerful method for calculating absorption and scattering by targets that have sizes smaller than or comparable to the wavelength of the incident radiation. The DDA can be extended to targets that are singly or doubly periodic. We generalize the scattering amplitude matrix and the 4×4 Mueller matrix to describe scattering by singly and doubly periodic targets and show how these matrices can be calculated using the DDA. The accuracy of DDA calculations using the open-source code DDSCAT is demonstrated by comparison with exact results for infinite cylinders and infinite slabs. A method for using the DDA solution to obtain fields within and near the target is presented, with results shown for infinite slabs.
- Published
- 2008
45. Discrete-Dipole Approximation For Scattering Calculations
- Author
-
Draine, Bruce T. and Flatau, Piotr J.
- Abstract
The discrete-dipole approximation (DDA) for scattering calculations, including the relationship between the DDA and other methods, is reviewed. Computational considerations, i.e., the use of complex-conjugate gradient algorithms and fast-Fourier-transform methods, are discussed. We test the accuracy of the DDA by using the DDA to compute scattering and absorption by isolated, homogeneous spheres as well as by targets consisting of two contiguous spheres. It is shown that, for dielectric materials (|m| ≲ 2), the DDA permits calculations of scattering and absorption that are accurate to within a few percent.
- Published
- 1994
46. Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the Block–Toeplitz structure
- Author
-
Flatau, Piotr J., Draine, Bruce T., and Stephens, Graeme L.
- Abstract
The discrete-dipole approximation is used to study the problem of light scattering by homogeneous rectangular particles. The structure of the discrete-dipole approximation is investigated, and the matrix formed by this approximation is identified to be a symmetric, block-Toeplitz matrix. Special properties of block-Toeplitz arrays are explored, and an efficient algorithm to solve the dipole scattering problem is provided. Timings for conjugate gradient, Linpack, and block-Toeplitz solvers are given; the results indicate the advantages of the block-Toeplitz algorithm. A practical test of the algorithm was performed on a system of 1400 dipoles, which corresponds to direct inversion of an 8400 × 8400 real matrix. A short discussion of the limitations of the discrete-dipole approximation is provided, and some results for cubes and parallelepipeds are given. We briefly consider how the algorithm may be improved further.
- Published
- 1990
47. Scattering by two spheres in contact: comparisons between discrete-dipole approximation and modal analysis
- Author
-
Flatau, Piotr J., Fuller, Kirk A., and Mackowski, Daniel W.
- Abstract
This paper applies two different techniques to the problem of scattering by two spheres in contact:modal analysis, which is an exact method, and the discrete-dipole approximation (DDA). Good agreement is obtained, which further demonstrates the utility of the DDA to scattering problems for irregular particles. The choice of the DDA polarizability scheme is discussed in detail. We show that the lattice dispersion relation provides excellent improvement over the Clausius–Mossoti polarizability parameterization.
- Published
- 1993
48. Absorbing meditterranean aerosols lead to a large reduction in the solar radiation at the surface
- Author
-
Krzysztof Markowicz, Flatau, P. J., Ramana, M. V., Crutzen, P. J., and Ramanathan, V.
49. Improvements in the discrete-dipole approximation method of computing scattering and absorption
- Author
-
Flatau, Piotr J.
- Abstract
Improvements in complex-conjugate gradient algorithms applied to the discrete-dipole approximation are reported. It is shown that computational time is reduced by use of the stabilized version of the biconjugate gratings algorithm, with diagonal left preconditioning.
- Published
- 1997
50. Application of fast-Fourier-transform techniques to the discrete-dipole approximation
- Author
-
Goodman, J. J., Flatau, P. J., and Draine, B. T.
- Abstract
We show how fast-Fourier-transform methods can be used to accelerate computations of scattering and absorption by particles of arbitrary shape using the discrete-dipole approximation.
- Published
- 1991
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.