1. Digital Twin for Grey Box modeling of Multistory residential building thermal dynamics
- Author
-
Morkunaite, Lina, Kardoka, Justas, Pupeikis, Darius, Fokaides, Paris, and Angelakis, Vangelis
- Subjects
Statistics - Applications ,Computer Science - Machine Learning - Abstract
Buildings energy efficiency is a widely researched topic, which is rapidly gaining popularity due to rising environmental concerns and the need for energy independence. In Northern Europe heating energy alone accounts for up to 70 percent of the total building energy consumption. Industry 4.0 technologies such as IoT, big data, cloud computing and machine learning, along with the creation of predictive and proactive digital twins, can help to reduce this number. However, buildings thermal dynamics is a very complex process that depends on many variables. As a result, commonly used physics-based white box models are time-consuming and require vast expertise. On the contrary, black box forecasting models, which rely primarily on building energy consumption data, lack fundamental insights and hinder re-use. In this study we propose an architecture to facilitate grey box modelling of building thermal dynamics while integrating real time IoT data with 3D representation of buildings. The architecture is validated in a case study creating a digital twin platform that enables users to define the thermal dynamics of buildings based on physical laws and real data, thus facilitating informed decision making for the best heating energy optimization strategy. Also, the created user interface enables stakeholders such as facility managers, energy providers or governing bodies to analyse, compare and evaluate buildings thermal dynamics without extensive expertise or time resources.
- Published
- 2024