27 results on '"Fontana Escartín, Adrián"'
Search Results
2. Evaluation of the electrochemical response of aromatic peptides for biodetection of dopamine
- Author
-
Fontana-Escartín, Adrián, Rosa, Elisabetta, Diaferia, Carlo, Lanzalaco, Sonia, Accardo, Antonella, and Alemán, Carlos
- Published
- 2025
- Full Text
- View/download PDF
3. Smart polyurethane endosponges for endoluminal vacuum therapy: Integration of a bacteria sensor
- Author
-
Fontana-Escartín, Adrián, Lanzalaco, Sonia, Armelin, Elaine, Turon, Pau, Ardèvol, Jordi, and Alemán, Carlos
- Published
- 2024
- Full Text
- View/download PDF
4. Mechanical and ex-vivo assessment of functionalized surgical sutures for bacterial infection monitoring
- Author
-
Fontana-Escartín, Adrián, El Hauadi, Karima, Pérez-Madrigal, Maria M., Lanzalaco, Sonia, Turon, Pau, and Alemán, Carlos
- Published
- 2024
- Full Text
- View/download PDF
5. Oxygen plasma treated thermoplastics as integrated electroresponsive sensors
- Author
-
Fontana-Escartín, Adrián, Lanzalaco, Sonia, Zhilev, Georgi, Armelin, Elaine, Bertran, Oscar, and Alemán, Carlos
- Published
- 2024
- Full Text
- View/download PDF
6. Aqueous alginate/MXene inks for 3D printable biomedical devices
- Author
-
Fontana-Escartín, Adrián, Lanzalaco, Sonia, Bertran, Oscar, Aradilla, David, and Alemán, Carlos
- Published
- 2023
- Full Text
- View/download PDF
7. Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid)
- Author
-
Fontana-Escartín, Adrián, Lanzalaco, Sonia, Bertran, Oscar, and Alemán, Carlos
- Published
- 2022
- Full Text
- View/download PDF
8. Oxygen plasma treated thermoplastics as integrated electroresponsive sensors
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Zhilev, Georgi, Armelín Diggroc, Elaine Aparecida, Bertran Cànovas, Òscar, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Zhilev, Georgi, Armelín Diggroc, Elaine Aparecida, Bertran Cànovas, Òscar, and Alemán Llansó, Carlos
- Abstract
Polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol (PETG) and polylactic acid (PLA) 3D printed specimens, which are intrinsically non-electroresponsive materials, have been converted into electroresponsive electrodes applying a low-pressure oxygen plasma treatment. After complete chemical, morphological and electrochemical characterization, plasma treated samples have been applied as integrated electrochemical sensors for detecting dopamine and serotonin by cyclic voltammetry and chronoamperometry. Results show differences in the sensing behavior, which have been explained on the basis of the chemical structure of the pristine materials. While plasma treated PLA exhibits the highest performance as electrochemical sensor in terms of sensitivity (lowest limits of detection and quantification) and selectivity (against uric acid and ascorbic acid as interfering substances), plasma treated PP displays the poorest behavior due to its low polarity compared to PLA 3D-printed electrodes. Instead, plasma treated TPU and PETG shows a very good response, much closer to PLA, as sensitive electrodes towards neurotransmitter molecules (dopamine and serotonin). Overall, results open a new door for the fabrication of electrochemical conductive sensors using intrinsically insulating materials, without the need of chemical functionalization processes., Postprint (author's final draft)
- Published
- 2024
9. Mechanical and ex-vivo assessment of functionalized surgical sutures for bacterial infection monitoring
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, El Hauadi, Karima, Pérez Madrigal, Maria del Mar, Lanzalaco, Sonia, Turon, Pau, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, El Hauadi, Karima, Pérez Madrigal, Maria del Mar, Lanzalaco, Sonia, Turon, Pau, and Alemán Llansó, Carlos
- Abstract
Surgical sutures are long-established medical devices that play an important role closing and healing damaged tissues and organs postoperatively. However, current commercial sutures are not able to detect infections at the wound site, which are quite frequent after surgery. In this work, we present mechanically stable smart sutures for the real-time monitoring of bacterial growth and biofilm formation. For this purpose, a conducting polymer named poly(3,4-ethylenedioxythiophene) (PEDOT), which is able to detect bacteria metabolites, was implemented as a coating onto commercial biostable sutures. A protecting hydrogel layer with adhesive properties, which was made of polydopamine-polyacrylamide (PDA-PAM), was used to prevent the detachment of the sensing coating of PEDOT upon looping and knotting the suture. The protective hydrogel preserved not only the knot mechanical properties of the suture but also the electrochemical response of the PEDOT-coating and, therefore, its ability to detect NADH from bacteria respiration. Ex-vivo assays using sutured swine intestine samples demonstrated that the suture with the PDA-PAM hydrogel layer detects the growth of bacteria in real tissues. As a proof of concept, sutures coated with PEDOT and protected with PDA-PAM were used to inhibit the local growth of bacteria in sutured intestines by applying controlled electrostimuli. Results evidenced that smart electro-responsive sutures can be used as multi-task devices focused on fighting bacterial infections, meaning not only monitoring but also hampering bacteria growth., Postprint (author's final draft)
- Published
- 2024
10. Smart polyurethane endosponges for endoluminal vacuum therapy: Integration of a bacteria sensor
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Armelín Diggroc, Elaine Aparecida, Turon, Pau, Ardèvol Solanes, Jordi, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Armelín Diggroc, Elaine Aparecida, Turon, Pau, Ardèvol Solanes, Jordi, and Alemán Llansó, Carlos
- Abstract
The development of smart biomedical devices as efficient tools in early diagnosis and therapy monitoring has recently witnessed unprecedented growth, becoming an emerging field in biomedical engineering. Sponges for endoluminal vacuum therapy, which are intended for transmitting negative pressure as trigger for tissue regeneration and for draining infections in anastomotic leakages, are massively used implants with very complex geometry and high risk of infection. In this work, commercial polyurethane (PU) sponges have been converted into smart biomedical devices by incorporating an electrochemical sensor to monitor the growth of bacteria. Such innovative approach, which allows to track the tissue healing process avoiding further infection development, has been performed applying a three-step process: 1) activation of PU using low pressure oxygen plasma; 2) incorporation of conducting polymer (CP) nanoparticles (NPs) at the surface of the activated PU by chemical oxidative polymerization; and 3) formation of a homogeneous electroactive coating using the CP NPs obtained in 2), as growth nuclei in an electrochemical polymerization. The functionalized PU sponge is able to monitor the bacteria growth in the surrounding media by detecting the concentration of nicotinamide adenine dinucleotide (NADH) from respiration reactions in the cytosol (i.e. bacteria do not have mitochondria). Conversely, respiration in normal eukaryotic cells takes place in the mitochondria, whose double membrane is not permeable to NADH. The sensing performance of the CP-coated PU sponges (limit of detection: 0.06¿mM; sensitivity: 1.21¿mA/cm2) has been determined in the lab using NADH solutions, while a proof of concept have been conducted using Escherichia coli bacteria cultures., Postprint (author's final draft)
- Published
- 2024
11. Oxygen plasma treated thermoplastics as integrated electroresponsive sensors
- Author
-
Fontana-Escartín, Adrián, primary, Lanzalaco, Sonia, additional, Zhilev, Georgi, additional, Armelin, Elaine, additional, Bertran, Oscar, additional, and Alemán, Carlos, additional
- Published
- 2023
- Full Text
- View/download PDF
12. Permanently Polarized Materials: An Approach for Designing Materials with Customized Electrical Properties
- Author
-
Sans, Jordi, primary, Arnau, Marc, additional, Fontana-Escartín, Adrián, additional, Turon, Pau, additional, and Alemán, Carlos, additional
- Published
- 2023
- Full Text
- View/download PDF
13. Smart Design of Sensor‐Coated Surgical Sutures for Bacterial Infection Monitoring
- Author
-
Fontana‐Escartín, Adrián, primary, Hauadi, Karima El, additional, Lanzalaco, Sonia, additional, Pérez‐Madrigal, Maria M., additional, Armelin, Elaine, additional, Turon, Pau, additional, and Alemán, Carlos, additional
- Published
- 2023
- Full Text
- View/download PDF
14. Permanently polarized materials: an approach for designing materials with customized electrical properties
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Sans Milà, Jordi, Arnau Roca, Marc, Fontana Escartín, Adrián, Turon, Pau, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Sans Milà, Jordi, Arnau Roca, Marc, Fontana Escartín, Adrián, Turon, Pau, and Alemán Llansó, Carlos
- Abstract
The development of experimental procedures to transform conventional materials into new materials with unique properties has become a necessity in many fields, as for example catalysis, electronics, electrochemistry and biomedicine, among others. In recent years, the thermal stimulated polarization (TSP) treatment, which consists of applying a constant voltage at a high temperature, has been applied to hydroxyapatite, Ca5(PO4)3OH (HAp), leading to permanently polarized HAp (p-HAp). The enhanced electrical properties of p-HAp, which are the consequence of the controlled generation of vacancies, the specific orientation of the remaining OH– groups and the surface charge accumulation have been used for the catalytic fixation of CO2, CH4 and/or N2 under very mild conditions (<120 °C) and with accurate selectivity toward different reaction products (up to 95%). In this Perspective, we stablish the fundamentals of permanently polarized materials, providing the generalized concepts of the permanent polarized state and some representative examples of applying the TSP approach to a wide variety of materials. More specifically, we provide empirical evidence of the polarized state after applying the TSP treatment to quartz nanopowder, binary metal oxides (TiO2 and ZrO2) and different synthetic polymers, confirming the obtaining of enhanced electrical properties and the associated structural changes. Finally, the implications, challenges and perspectives of the polarized state are discussed considering different fields, such as catalysis, biomedicine, optics and electronics, sensors and energy storage devices., Peer Reviewed, Postprint (author's final draft)
- Published
- 2023
15. Preparation and characterization of functionalized surgical meshes for early detection of bacterial infections
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, El Hauadi, Karima, Lanzalaco, Sonia, Pérez Madrigal, Maria del Mar, Armelín Diggroc, Elaine Aparecida, Turon, Pau, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, El Hauadi, Karima, Lanzalaco, Sonia, Pérez Madrigal, Maria del Mar, Armelín Diggroc, Elaine Aparecida, Turon, Pau, and Alemán Llansó, Carlos
- Abstract
Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections., Postprint (published version)
- Published
- 2023
16. Aqueous alginate/MXene inks for 3D printable biomedical devices
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Bertran Cànovas, Òscar, Aradilla, David, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Bertran Cànovas, Òscar, Aradilla, David, and Alemán Llansó, Carlos
- Abstract
Electrochemically responsive hydrogel networks have been obtained using printable inks made of a biopolymer, alginate (Alg), and an inorganic 2D material, MXene (titanium carbide, Ti3C2Tx) nanosheets. While MXene offers an electrically conductive pathway for electron transfer and Alg provides an interconnected framework for ion diffusion, the printed nanocomposite results, after gelation, in an extended active interface for redox reactions, being an ideal framework to design and construct flexible devices for biomedical applications. In this work, after characterization, we demonstrate that hydrogels obtained by cross-linking printed Alg/MXene inks exhibit great potential for bioelectronics. More specifically, we prove that flexible Alg/MXene hydrogels act as self-supported electroactive electrodes for the electrochemical detection of bioanalytes, such as dopamine, with a performance similar to that achieved using more sophisticated electrodes, as for example those containing conducting polymers and electrocatalytic gold nanoparticles. In addition, Alg/MXene hydrogels have been successfully used to regulate the release of a previously loaded broad spectrum antibiotic (chloramphenicol) by electrical stimulation., Postprint (author's final draft)
- Published
- 2023
17. Smart design of sensor-coated surgical sutures for bacterial infection monitoring
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, El Hauadi, Karima, Lanzalaco, Sonia, Pérez Madrigal, Maria del Mar, Armelín Diggroc, Elaine Aparecida, Turon, Pau, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, El Hauadi, Karima, Lanzalaco, Sonia, Pérez Madrigal, Maria del Mar, Armelín Diggroc, Elaine Aparecida, Turon, Pau, and Alemán Llansó, Carlos
- Abstract
Virtually, all implantable medical devices are susceptible to infection. As the main healthcare issue concerning implantable devices is the elevated risk of infection, different strategies based on the coating or functionalization of biomedical devices with antiseptic agents or antibiotics are proposed. In this work, an alternative approach is presented, which consists of the functionalization of implantable medical devices with sensors capable of detecting infection at very early stages through continuous monitoring of the bacteria metabolism. This approach, which is implemented in surgical sutures as a representative case of implantable devices susceptible to bacteria colonization, is expected to minimize the risk of worsening the patient's clinical condition. More specifically, non-absorbable polypropylene/polyethylene (PP/PE) surgical sutures are functionalized with conducting polymers using a combination of low-pressure oxygen plasma, chemical oxidative polymerization, and anodic polymerization, to detect metabolites coming from bacteria respiration. Functionalized suture yarns are used for real-time monitoring of bacteria growth, demonstrating the potential of this strategy to fight against infections., Postprint (published version)
- Published
- 2023
18. Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections
- Author
-
Fontana-Escartín, Adrián, primary, El Hauadi, Karima, additional, Lanzalaco, Sonia, additional, Pérez-Madrigal, Maria M., additional, Armelin, Elaine, additional, Turon, Pau, additional, and Alemán, Carlos, additional
- Published
- 2023
- Full Text
- View/download PDF
19. Electrochemical activation for sensing of three‐dimensional‐printed poly(lactic acid) using low‐pressure plasma
- Author
-
Fontana‐Escartín, Adrián, primary, Lanzalaco, Sonia, additional, Pérez‐Madrigal, Maria M., additional, Bertran, Oscar, additional, and Alemán, Carlos, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Electrochemical activation for sensing of three-dimensional-printed poly(lactic acid) using low-pressure plasma
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Pérez Madrigal, Maria del Mar, Bertran Cànovas, Òscar, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Pérez Madrigal, Maria del Mar, Bertran Cànovas, Òscar, and Alemán Llansó, Carlos
- Abstract
Integrated electrochemical sensors in which plasma-treated poly(lactic acid) (PLA) single material acts as both selective coating layer and electrochemical transductor (electrode) are prepared. Thus, three-dimensional-printed PLA specimens are transformed into electroresponsive material by applying a low-pressure gas plasma treatment with three different gases: N2, O2, and air (79% N2¿+¿21% O2). Although all treated samples are able to electrochemically detect dopamine, the one derived from the treatment of low-pressure O2 plasma exhibits the best performance as a sensor. Finally, cell adhesion assays demonstrate that the cell viability is higher for plasma-treated PLA modified than for pristine PLA, making the former a promising, versatile, and powerful electroresponsive platform for diverse applications in biomedicine., Peer Reviewed, Postprint (published version)
- Published
- 2022
21. Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid)
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Bertran Cànovas, Òscar, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Lanzalaco, Sonia, Bertran Cànovas, Òscar, and Alemán Llansó, Carlos
- Abstract
Electrochemical sensors for real-time detection of several bioanalytes have been prepared by additive manufacturing, shaping non-conductive poly(lactic acid) (PLA) filaments, and applying a physical treatment to create excited species. The latter process, which consists of the application of power discharge of 100 W during 2 min in a chamber at a low pressure of O2, converts electrochemically inert PLA into an electrochemically responsive material. The electric discharge caused the oxidation of the PLA surface as evidenced by the increment in the quantity of oxygenated species detected by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). Indeed, changes in the surface chemical composition became more pronounced with increasing O2 pressure. After demonstrating the performance of the chemically modified material as individual dopamine and glucose sensors, multiplexed detection has been achieved by measuring simultaneously the two voltammetric signals. This has been performed by collecting the signals in two different regions, a naked chemically modified PLA for dopamine detection and a chemically modified PLA region functionalized with Glucose Oxidase. These outcomes led to define a new paradigm for manufacturing electrodes for electrochemical sensors based on 3D printing without using conducting materials at any stage of the process., Postprint (author's final draft)
- Published
- 2022
22. Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material
- Author
-
Fontana-Escartín, Adrián, primary, Ruano, Guillem, additional, Silva, Fiorella M., additional, Estrany, Francesc, additional, Puiggalí, Jordi, additional, Alemán, Carlos, additional, and Torras, Juan, additional
- Published
- 2021
- Full Text
- View/download PDF
23. Poly(aspartic acid) biohydrogel as the base of a new hybrid conducting material
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Universitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables, Fontana Escartín, Adrián, Ruano Torres, Guillem, Silva, Fiorella M., Estrany Coda, Francesc, Puiggalí Bellalta, Jordi, Alemán Llansó, Carlos, Torras Costa, Juan, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Universitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables, Fontana Escartín, Adrián, Ruano Torres, Guillem, Silva, Fiorella M., Estrany Coda, Francesc, Puiggalí Bellalta, Jordi, Alemán Llansó, Carlos, and Torras Costa, Juan
- Abstract
In the present study, a composite made of conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), and a biodegradable hydrogel of poly(aspartic acid) (PASP) were electrochemically interpenetrated with poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT) to prepare a new interpenetrated polymer network (IPN). Different cross-linker and PEDOT MPs contents, as well as different electropolymerization times, were studied to optimize the structural and electrochemical properties. The properties of the new material, being electrically conductive, biocompatible, bioactive, and biodegradable, make it suitable for possible uses in biomedical applications., Postprint (author's final draft)
- Published
- 2021
24. Impresión 3D orientada al diseño de sistemas destinados a la actuación como sensores para la detección de biomoléculas
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Lanzalaco, Sonia, Fontana Escartín, Adrián, Gaspar Mas, Sofia, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Lanzalaco, Sonia, Fontana Escartín, Adrián, and Gaspar Mas, Sofia
- Published
- 2021
25. Manufactured flexible electrodes for dopamine detection: integration of conducting polymer in 3D-printed polylactic acid
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Puiggalí Jou, Anna, Lanzalaco, Sonia, Bertran Cànovas, Òscar, Alemán Llansó, Carlos, Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies, Fontana Escartín, Adrián, Puiggalí Jou, Anna, Lanzalaco, Sonia, Bertran Cànovas, Òscar, and Alemán Llansó, Carlos
- Abstract
Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7¿±¿0.3¿GPa and 47¿±¿1¿MPa, respectively, is activated applying a 0.5¿m¿NaOH solution for 30¿min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in¿situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments., Peer Reviewed, Postprint (author's final draft)
- Published
- 2021
26. Estudio computacional del mecanismo de reacciones orgánicas
- Author
-
Fontana Escartín, Adrián and Merino Filella, Pedro
- Abstract
En este trabajo, se estudia el mecanismo de la cicloadición 1,3-dipolar entre fenilazida y (E)-nitroestireno. El estudio se ha llevado a cabo de manera teórica, utilizando herramientas computacionales para realizar cálculos basados en la teoría del funcional de densidad (DFT). Los niveles de teoría empleados han sido M062X/6-31+G(d,p) para la optimización de geometrías y M062X/6-311+G(d,p)// M062X/6-31+G(d,p) para el cálculo de las energías. Se ha explorado la superficie de energía potencial (PES) para las dos vías regioisómeras que conducen a la formación de dos posibles triazolinas, según los grupos fenilo estén en posiciones 1,4 o 1,5 y las correspondientes aproximaciones endo/exo. La obtención del producto 1,5 a través de una aproximación endo está favorecida. La reacción transcurre a través de un mecanismo concertado asíncrono que debido a su baja polaridad apenas se ve afectado por el disolvente empleado. La reacción es exotérmica pero los productos se obtienen a través de un control cinético, es decir, dependiendo de la barrera de activación.
- Published
- 2018
27. Impresión 3D orientada al diseño de sistemas destinados a la actuación como sensores para la detección de biomoléculas
- Author
-
Gaspar Mas, Sofia, Lanzalaco, Sonia, Fontana Escartín, Adrián, and Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
- Subjects
Three-dimensional printing ,Biopolímers ,Biopolymers ,Enginyeria química [Àrees temàtiques de la UPC] ,Àcid polilàctic ,Tratamiento con plasma ,Lactato ,Lactato Oxidasa ,detección electroquímica ,Impressió 3D ,Biosensor - Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.