6,585 results on '"For, B. -Q."'
Search Results
2. Ultra-high-energy $\gamma$-ray emission associated with the tail of a bow-shock pulsar wind nebula
- Author
-
Cao, Zhen, Aharonian, F., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Bian, W., Bukevich, A. V., Cai, C. M., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, H. X., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. B., Chen, X. J., Chen, Y., Cheng, N., Cheng, Y. D., Chu, M. C., Cui, M. Y., Cui, S. W., Cui, X. H., Dai, Y. D. Cui B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Diao, Y. X., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, J. H., Fang, K., Feng, C. F., Feng, H. Feng L., Feng, S. H., Feng, X. T., Feng, Y., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, T. T. Ge L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, J., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., Hannuksela, O. A., Hasan, M., He, H. H., He, H. N., He, J. Y., He, X. Y., He, Y., Hernández-Cadena, S., Hou, Y. K. Hor B. W., Hou, C., Hou, X., Hu, H. B., Hu, S. C., Huang, C., Huang, D. H., Huang, J. J., Huang, T. Q., Huang, W. J. Huang X. T., Huang, X. Y., Huang, Y., Huang, Y. Y., Ji, X. L., Jia, H. Y., Jia, K., Jiang, H. B., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kaci, S., Kang, M. M., Karpikov, I., Khangulyan, D., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, Jian, Li, Jie, Li, K., Li, L., Li, R. L., Li, S. D., Li, T. Y., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liu, E. W. Liang Y. F. Liang S. J. Lin B., Liu, C., Liu, D., Liu, D. B., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. R., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, X., Liu, Y., Liu, Y. N., Lou, Y. Q., Luo, Q. Luo Y., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mou, G. B., Mu, H. J., Nan, Y. C., Neronov, A., Ng, K. C. Y., Ni, M. Y., Nie, L., Ou, L. J., Pattarakijwanich, P., Pei, Z. Y., Qi, J. C., Qi, M. Y., Qin, J. J., Raza, A., Ren, C. Y., Ruffolo, D., Sáiz, A., Saeed, M., Semikoz, D., Shao, L., Shchegolev, O., Shen, Y. Z., Sheng, X. D., Shi, Z. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, D. X., Sun, Q. N., Sun, X. N. Sun Z. B., Takata, J., Tan, P. H. T. Tam H. B., Tang, Q. W., Tang, R., Tang, Z. B., Tian, W. W., Tong, C. N., Wang, L. H. Wan C., Wang, G. W., Wang, H. G., Wang, H. H. Wang J. C., Wang, K., Wang, Kai, Wang, L. P., Wang, L. Y., Wang, R., Wang, W. Wang X. G. Wang X. J., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Z. H., Wang, Z. X., Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Weng, S. S., Wu, C. Y., Wu, H. R., Wu, Q. W., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, Y. L., Xing, Y., Xiong, D. R., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, C. Y., Yang, F. F., Yang, L. L. Yang M. J., Yang, R. Z., Yang, W. X., Yao, Y. H., Yao, Z. G., Ye, X. A., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, B. T., Zhang, F., Zhang, H., Zhang, H. M. Zhang H. Y., Zhang, J. L., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, W. Y., Zhang, X., Zhang, X. P., Zhang, Yi, Zhang, Yong, Zhang, Z. P., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zhao, X. H., Zhao, Z. H., Zheng, F., Zhong, W. J., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, B. Y., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., Zou, Y. C., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $\gamma$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$\sigma$ (9.4$\sigma$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola function with $N0 = (1.93\pm0.23) \times 10^{-16} \rm{TeV^{-1}\,cm^{-2}\,s^{-2}}$, $\alpha = 2.14\pm0.27$, and $\beta = 1.20\pm0.41$ at E0 = 30$\,$TeV. The associated pulsar, PSR J1740+1000, resides at a high galactic latitude and powers a bow-shock pulsar wind nebula (BSPWN) with an extended X-ray tail. The best-fit position of the gamma-ray source appeared to be shifted by $0.2^{\circ}$ with respect to the pulsar position. As the (i) currently identified pulsar halos do not demonstrate such offsets, and (ii) centroid of the gamma-ray emission is approximately located at the extension of the X-ray tail, we speculate that the UHE $\gamma$-ray emission may originate from re-accelerated electron/positron pairs that are advected away in the bow-shock tail., Comment: Corrected spelling errors in several author names
- Published
- 2025
- Full Text
- View/download PDF
3. Broadband $\gamma$-ray spectrum of supernova remnant Cassiopeia A
- Author
-
Cao, Zhen, Aharonian, F., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Bian, W., Bukevich, A. V., Cai, C. M., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, H. X., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. B., Chen, X. J., Chen, Y., Cheng, N., Cheng, Y. D., Chu, M. C., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Diao, Y. X., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, J. H., Fang, K., Feng, C. F., Feng, H., Feng, L., Feng, S. H., Feng, X. T., Feng, Y., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Ge, T. T., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, J., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., Hannuksela, O. A., Hasan, M., He, H. H., He, H. N., He, J. Y., He, X. Y., He, Y., Hernández-Cadena, S., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, S. C., Huang, C., Huang, D. H., Huang, J. J., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Y. Y., Ji, X. L., Jia, H. Y., Jia, K., Jiang, H. B., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kaci, S., Kang, M. M., Karpikov, I., Khangulyan, D., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, Jian, Li, Jie, Li, K., Li, L., Li, R. L., Li, S. D., Li, T. Y., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, D. B., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. R., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, X., Liu, Y., Liu, Y. N., Lou, Y. Q., Luo, Q., Luo, Y., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mou, G. B., Mu, H. J., Nan, Y. C., Neronov, A., Ng, K. C. Y., Ni, M. Y., Nie, L., Ou, L. J., Pattarakijwanich, P., Pei, Z. Y., Qi, J. C., Qi, M. Y., Qin, J. J., Raza, A., Ren, C. Y., Ruffolo, D., Sáiz, A., Saeed, M., Semikoz, D., Shao, L., Shchegolev, O., Shen, Y. Z., Sheng, X. D., Shi, Z. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, D. X., Sun, H., Sun, Q. N., Sun, X. N., Sun, Z. B., Tabasam, N. H., Takata, J., Tam, P. H. T., Tan, H. B., Tang, Q. W., Tang, R., Tang, Z. B., Tian, W. W., Tong, C. N., Wan, L. H., Wang, C., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, Kai, Wang, L. P., Wang, L. Y., Wang, R., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Z. H., Wang, Z. X., Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Weng, S. S., Wu, C. Y., Wu, H. R., Wu, Q. W., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, Y. L., Xing, Y., Xiong, D. R., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, C. Y., Yang, F. F., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, W. X., Yao, Y. H., Yao, Z. G., Ye, X. A., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, B. T., Zhang, F., Zhang, H., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, W. Y., Zhang, X., Zhang, X. P., Zhang, Yi, Zhang, Yong, Zhang, Z. P., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zhao, X. H., Zhao, Z. H., Zheng, F., Zhong, W. J., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, B. Y., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., Zou, Y. C., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The core-collapse supernova remnant (SNR) Cassiopeia A (Cas A) is one of the brightest galactic radio sources with an angular radius of $\sim$ 2.5 $\arcmin$. Although no extension of this source has been detected in the $\gamma$-ray band, using more than 1000 days of LHAASO data above $\sim 0.8$ TeV, we find that its spectrum is significantly softer than those obtained with Imaging Air Cherenkov Telescopes (IACTs) and its flux near $\sim 1$ TeV is about two times higher. In combination with analyses of more than 16 years of \textit{Fermi}-LAT data covering $0.1 \, \mathrm{GeV} - 1 \, \mathrm{TeV}$, we find that the spectrum above 30 GeV deviates significantly from a single power-law, and is best described by a smoothly broken power-law with a spectral index of $1.90 \pm 0.15_\mathrm{stat}$ ($3.41 \pm 0.19_\mathrm{stat}$) below (above) a break energy of $0.63 \pm 0.21_\mathrm{stat} \, \mathrm{TeV}$. Given differences in the angular resolution of LHAASO-WCDA and IACTs, TeV $\gamma$-ray emission detected with LHAASO may have a significant contribution from regions surrounding the SNR illuminated by particles accelerated earlier, which, however, are treated as background by IACTs. Detailed modelling can be used to constrain acceleration processes of TeV particles in the early stage of SNR evolution.
- Published
- 2025
4. Large moir\'{e} superstructure of stacked incommensurate charge density waves
- Author
-
Lv, B. Q., Su, Yifan, Zong, Alfred, Liu, Qiaomei, Wu, Dong, Yuan, Noah F. Q., Nie, Zhengwei, Li, Jiarui, Sarker, Suchismita, Meng, Sheng, Ruff, Jacob P. C., Wang, N. L., and Gedik, Nuh
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Recent advances in van der Waals heterostructures have opened the new frontier of moir\'{e} physics, whereby tuning the interlayer twist angle or adjusting lattice parameter mismatch have led to a plethora of exotic phenomena such as unconventional superconductivity and fractional quantum spin Hall effect. We extend the concept of moir\'{e} engineering to materials that host incommensurate orders, where we discovered a long-period, thermally-hysteretic moir\'{e} superlattice in a layered charge density wave (CDW) compound, EuTe$_\text{4}$. Using high-momentum-resolution X-ray diffraction performed on ultrathin flakes, we found two coexisting, incommensurate CDWs with slightly mismatched in-plane wavevectors. The interaction between these two CDWs leads to their joint commensuration with the high-symmetry lattice as well as a large moir\'{e} superstructure with an in-plane period of 13.6~nm. Due to different out-of-plane orders of the incommensurate CDWs, the moir\'{e} superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis observed in electrical resistivity and numerous metastable states induced by light or electrical pulses. Our findings pave the way for a new development in moir\'{e} engineering based on an incommensurate lattice. They further highlight the important role of interlayer ordering in determining the macroscopic properties of these stacked incommensurate structures., Comment: 9 pages, 4 figures
- Published
- 2025
5. Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO
- Author
-
Cao, Zhen, Aharonian, F., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo., X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Water Cherenkov Detector Array (WCDA) is one of the components of Large High Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 hours per day with >98\% duty cycle. In this work, we report the detection of two outbursts of the Fanaroff-Riley I radio galaxy NGC 1275 that were detected by LHAASO-WCDA between November 2022 and January 2023 with statistical significance of 5.2~$\sigma$ and 8.3~$\sigma$. The observed spectral energy distribution in the range from 500 GeV to 3 TeV is fitted by a power-law with a best-fit spectral index of $\alpha=-3.37\pm0.52$ and $-3.35\pm0.29$, respectively. The outburst flux above 0.5~TeV was ($4.55\pm 4.21)\times~10^{-11}~\rm cm^{-2}~s^{-1}$ and ($3.45\pm 1.78)\times~10^{-11}~\rm cm^{-2}~s^{-1}$, corresponding to 60\%, 45\% of Crab Nebula flux. Variation analysis reveals the variability time-scale of days at the TeV energy band. A simple test by one-zone synchrotron self-Compton model reproduces the data in the gamma-ray band well., Comment: 11 pages, 8 figures, 3 tables
- Published
- 2024
6. LHAASO detection of very-high-energy gamma-ray emission surrounding PSR J0248+6021
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, J. H., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., Zou, Y. C., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report the detection of an extended very-high-energy (VHE) gamma-ray source coincident with the location of middle-aged (62.4~\rm kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 days and LHAASO-KM2A data of live 1216 days. A significant excess of \gray induced showers is observed both by WCDA in energy bands of 1-25~\rm TeV and KM2A in energy bands of $>$ 25~\rm TeV with 7.3 $\sigma$ and 13.5 $\sigma$, respectively. The best-fit position derived through WCDA data is R.A. = 42.06$^\circ \pm$ 0.12$^\circ$ and Dec. = 60.24$^\circ \pm $ 0.13$^\circ$ with an extension of 0.69$^\circ\pm$0.15$^\circ$ and that of the KM2A data is R.A.= 42.29$^\circ \pm $ 0.13$^\circ$ and Dec. = 60.38$^\circ \pm$ 0.07$^\circ$ with an extension of 0.37$^\circ\pm$0.07$^\circ$. No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band. The most plausible explanation of the VHE \gray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar. These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium, forming a pulsar halo., Comment: 12 pages, 10 figures, Accepted by Sci. China-Phys. Mech. Astron
- Published
- 2024
7. WALLABY Pilot Survey: Gas-Rich Galaxy Scaling Relations from Marginally-Resolved Kinematic Models
- Author
-
Deg, N., Arora, N., Spekkens, K., Halloran, R., Catinella, B., Jones, M. G., Courtois, H., Glazebrook, K., Bosma, A., Cortese, L., Dénes, H., Elagali, A., For, B. -Q., Kamphuis, P., Koribalski, B. S., Lee-Waddell, K., Piña, P. E. Mancera, Mould, J., Rhee, J., Shao, L., Staveley-Smith, L., Wang, J., Westmeier, T., and Wong, O. I.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the first set of galaxy scaling relations derived from kinematic models of the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) pilot phase observations. Combining the results of the first and second pilot data releases, there are 236 available kinematic models. We develop a framework for robustly measuring HI disk structural properties from these kinematic models; applicable to the full WALLABY survey. Utilizing this framework, we obtained the HI size, a measure of the rotational velocity, and angular momentum for 148 galaxies. These comprise the largest sample of galaxy properties from an untargetted, uniformly observed and modelled HI survey to date. We study the neutral atomic Hydrogen (HI) size-mass, size-velocity, mass-velocity, and angular momentum-mass scaling relations. We calculate the slope, intercept, and scatter for these scaling relations and find that they are similar to those obtained from other HI surveys. We also obtain stellar masses for 92 of the 148 robustly measured galaxies using multiband photometry through the Dark Energy Sky Instrument Legacy Imaging Survey Data Release-10 images. We use a subset of 61 of these galaxies that have consistent optical and kinematic inclinations to examine the stellar and baryonic Tully Fisher relations, the gas fraction-disk stability and gas fraction-baryonic mass relations. These measurements and relations demonstrate the unprecedented resource that WALLABY will represent for resolved galaxy scaling relations in HI., Comment: 23 pages, 8 figures, Table 1 data available for download with package, accepted to ApJ
- Published
- 2024
- Full Text
- View/download PDF
8. Constraints on Ultra Heavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Saiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes of astrophysical $\gamma$-ray background while large amount of dark matter. By analyzing more than 700 days observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultra-heavy dark matter annihilation cross-section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived., Comment: 17 pages, 12 figures, accepted by PRL
- Published
- 2024
9. Data quality control system and long-term performance monitor of the LHAASO-KM2A
- Author
-
Cao, Zhen, Aharonian, F., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Bian, W., Bukevich, A. V., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, H. X., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, J. H., Fang, K., Feng, C. F., Feng, H., Feng, L., Feng, S. H., Feng, X. T., Feng, Y., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., Hasan, M., He, H. H., He, H. N., He, J. Y., He, Y., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Karpikov, I., Kuleshov, D., Kurinov, K., Li, B. B., Li, C. M., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, Jian, Li, Jie, Li, K., Li, S. D., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, D. B., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Luo, Q., Luo, Y., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, L. J., Pattarakijwanich, P., Pei, Z. Y., Qi, J. C., Qi, M. Y., Qiao, B. Q., Qin, J. J., Raza, A., Ruffolo, D., Sáiz, A., Saeed, M., Semikoz, D., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, D. X., Sun, Q. N., Sun, X. N., Sun, Z. B., Takata, J., Tam, P. H. T., Tang, Q. W., Tang, R., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, Kai, Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, Q. W., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, Y. L., Xing, Y., Xiong, D. R., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, C. Y., Yang, F., Yang, F. F., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, W. X., Yao, Y. H., Yao, Z. G., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zhao, X. H., Zheng, F., Zhong, W. J., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, B. Y., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., Zou, Y. C., and Zuo, X.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively., Comment: 15 pages, 9 figures
- Published
- 2024
10. Discovery of Very-high-energy Gamma-ray Emissions from the Low Luminosity AGN NGC 4278 by LHAASO
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, J. H., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., Zou, Y. C., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The first source catalog of Large High Altitude Air Shower Observatory reported the detection of a very-high-energy gamma ray source, 1LHAASO J1219+2915. In this paper a further detailed study of the spectral and temporal behavior of this point-like source have been carried. The best-fit position of the TeV source ($\rm{RA}=185.05^{\circ}\pm0.04^{\circ}$, $\rm{Dec}=29.25^{\circ}\pm0.03^{\circ}$) is compatible with NGC 4278 within $\sim0.03$ degree. Variation analysis shows an indication of the variability at a few months level in the TeV band, which is consistent with low frequency observations. Based on these observations, we report the detection of TeV $\gamma$-ray emissions from this low-luminosity AGN NGC 4278. The observations by LHAASO-WCDA during active period has a significance level of 8.8\,$\sigma$ with best-fit photon spectral index $\varGamma=2.56\pm0.14$ and a flux $f_{1-10\,\rm{TeV}}=(7.0\pm1.1_{\rm{sta}}\pm0.35_{\rm{syst}})\times10^{-13}\,\rm{photons\,cm^{-2}\,s^{-1}}$, or approximately $5\%$ of the Crab Nebula. The discovery of VHE from NGC 4278 indicates that the compact, weak radio jet can efficiently accelerate particles and emit TeV photons., Comment: 11 pages, 5 figures
- Published
- 2024
- Full Text
- View/download PDF
11. LHAASO-KM2A detector simulation using Geant4
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, J. H., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
KM2A is one of the main sub-arrays of LHAASO, working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV. Detector simulation is the important foundation for estimating detector performance and data analysis. It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units (>6000) with large altitude difference (30 m) and huge coverage (1.3 km^2). In this paper, the design of the KM2A simulation code G4KM2A based on Geant4 is introduced. The process of G4KM2A is optimized mainly in memory consumption to avoid memory overffow. Some simpliffcations are used to signiffcantly speed up the execution of G4KM2A. The running time is reduced by at least 30 times compared to full detector simulation. The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented, which show good agreement.
- Published
- 2024
- Full Text
- View/download PDF
12. WALLABY Pilot Survey: Public data release of ~1800 HI sources and high-resolution cut-outs from Pilot Survey Phase 2
- Author
-
Murugeshan, C., Deg, N., Westmeier, T., Shen, A. X., For, B. -Q., Spekkens, K., Wong, O. I., Staveley-Smith, L., Catinella, B., Lee-Waddell, K., Dénes, H., Rhee, J., Cortese, L., Goliath, S., Halloran, R., van der Hulst, J. M., Kamphuis, P., Koribalski, B. S., Kraan-Korteweg, R. C., Lelli, F., Venkataraman, P., Verdes-Montenegro, L., and Yu, N.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the Pilot Survey Phase 2 data release for the Wide-field ASKAP L-band Legacy All-sky Blind surveY (WALLABY), carried-out using the Australian SKA Pathfinder (ASKAP). We present 1760 HI detections (with a default spatial resolution of 30") from three pilot fields including the NGC 5044 and NGC 4808 groups as well as the Vela field, covering a total of ~180 deg$^2$ of the sky and spanning a redshift up to $z \simeq 0.09$. This release also includes kinematic models for over 126 spatially resolved galaxies. The observed median rms noise in the image cubes is 1.7 mJy per 30" beam and 18.5 kHz channel. This corresponds to a 5$\sigma$ HI column density sensitivity of $\sim 9.1\times10^{19}(1 + z)^4$ cm$^{-2}$ per 30" beam and $\sim 20$ km/s channel, and a 5$\sigma$ HI mass sensitivity of $\sim 5.5\times10^8 (D/100$ Mpc)$^{2}$ M$_{\odot}$ for point sources. Furthermore, we also present for the first time 12" high-resolution images ("cut-outs") and catalogues for a sub-sample of 80 sources from the Pilot Survey Phase 2 fields. While we are able to recover sources with lower signal-to-noise ratio compared to sources in the Public Data Release 1, we do note that some data quality issues still persist, notably, flux discrepancies that are linked to the impact of side lobes associated with the dirty beams due to inadequate deconvolution. However, in spite of these limitations, the WALLABY Pilot Survey Phase 2 has already produced roughly a third of the number of HIPASS sources, making this the largest spatially resolved HI sample from a single survey to date., Comment: 25 pages, 16 figures, 6 tables, accepted for publication in Publications of the Astronomical Society of Australia (PASA)
- Published
- 2024
13. Type-II pumping beyond resonance principle: From energetic to geometric rules
- Author
-
Song, B. Q., Smith, J. D. H., Yao, Y. X., and Wang, J.
- Subjects
Quantum Physics - Abstract
Conventionally, pumping relies on energetic resonance: energy quanta ${\hbar}{\omega}$ matches the gap $\Delta$. Under linear approximation, this is known as the Fermi golden rule (FGR). However, this principle becomes challenging to apply in the "0/0" limit, where ${\omega},{\Delta}{\rightarrow}0$ simultaneously. In "0/0" scenarios, such as topological phase transition (TPT), a type-II pumping, geometric pumping (GP), is recognized subject to geometric rules, distinguished from type-I dictated by FGR. Type-I features an "arrow of energy", sending particles higher in energy, reflected by FGR's dependence on Fermi distribution $f_v-f_c$ (probabilities of valence and conduction bands). While GP is non-directional, its probability relies on $f_v+f_c-2f_v f_c$ instead, a key signature for detection. In this work, we address: (1) the concept of GP; (2) its features of fractionality, irreversibility, and dependence on TPT; (3) experimental detection with ultra-fast spectrum in coherent phonon driving of ZrTe$_5$., Comment: 25 pages, 7 figures
- Published
- 2024
14. Scaling and networking a modular photonic quantum computer
- Author
-
Aghaee Rad, H., Ainsworth, T., Alexander, R. N., Altieri, B., Askarani, M. F., Baby, R., Banchi, L., Baragiola, B. Q., Bourassa, J. E., Chadwick, R. S., Charania, I., Chen, H., Collins, M. J., Contu, P., D’Arcy, N., Dauphinais, G., De Prins, R., Deschenes, D., Di Luch, I., Duque, S., Edke, P., Fayer, S. E., Ferracin, S., Ferretti, H., Gefaell, J., Glancy, S., González-Arciniegas, C., Grainge, T., Han, Z., Hastrup, J., Helt, L. G., Hillmann, T., Hundal, J., Izumi, S., Jaeken, T., Jonas, M., Kocsis, S., Krasnokutska, I., Larsen, M. V., Laskowski, P., Laudenbach, F., Lavoie, J., Li, M., Lomonte, E., Lopetegui, C. E., Luey, B., Lund, A. P., Ma, C., Madsen, L. S., Mahler, D. H., Mantilla Calderón, L., Menotti, M., Miatto, F. M., Morrison, B., Nadkarni, P. J., Nakamura, T., Neuhaus, L., Niu, Z., Noro, R., Papirov, K., Pesah, A., Phillips, D. S., Plick, W. N., Rogalsky, T., Rortais, F., Sabines-Chesterking, J., Safavi-Bayat, S., Sazhaev, E., Seymour, M., Rezaei Shad, K., Silverman, M., Srinivasan, S. A., Stephan, M., Tang, Q. Y., Tasker, J. F., Teo, Y. S., Then, R. B., Tremblay, J. E., Tzitrin, I., Vaidya, V. D., Vasmer, M., Vernon, Z., Villalobos, L. F. S. S. M., Walshe, B. W., Weil, R., Xin, X., Yan, X., Yao, Y., Zamani Abnili, M., and Zhang, Y.
- Published
- 2025
- Full Text
- View/download PDF
15. Dynamic Compressive Behavior of a Carbonfiber- Reinforced Composite at Different Temperatures and Strain Rates
- Author
-
Wu, Q. G., Zhang, B. Q., Zu, L., Wang, Q. K., Zhang, Q., Zhang, G. M., Fu, J. H., and Wang, B. Z.
- Published
- 2025
- Full Text
- View/download PDF
16. Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A
- Author
-
The LHAASO Collaboration, Cao, Zhen, Aharonian, F., An, Q., Axikegu, A., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at $3.67 \pm 0.05 \pm 0.15$ PeV. Below the knee, the spectral index is found to be -$2.7413 \pm 0.0004 \pm 0.0050$, while above the knee, it is -$3.128 \pm 0.005 \pm 0.027$, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -$0.1200 \pm 0.0003 \pm 0.0341$. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components., Comment: 8 pages, 3 figures
- Published
- 2024
- Full Text
- View/download PDF
17. Core-level signature of long-range density-wave order and short-range excitonic correlations probed by attosecond broadband spectroscopy
- Author
-
Zong, Alfred, Lin, Sheng-Chih, Sato, Shunsuke A., Berger, Emma, Nebgen, Bailey R., Hui, Marcus, Lv, B. Q., Cheng, Yun, Xia, Wei, Guo, Yanfeng, Xiang, Dao, and Zuerch, Michael W.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science ,Physics - Chemical Physics - Abstract
Advances in attosecond core-level spectroscopies have successfully unlocked the fastest dynamics involving high-energy electrons. Yet, these techniques are not conventionally regarded as an appropriate probe for low-energy quasiparticle interactions that govern the ground state of quantum materials, nor for studying long-range order because of their limited sensitivity to local charge environments. Here, by employing a unique cryogenic attosecond beamline, we identified clear core-level signatures of long-range charge-density-wave (CDW) formation in a quasi-2D excitonic insulator candidate, even though equilibrium photoemission and absorption measurements of the same core levels showed no spectroscopic singularity at the phase transition. Leveraging the high time resolution and intrinsic sensitivity to short-range charge excitations in attosecond core-level absorption, we observed compelling time-domain evidence for excitonic correlations in the normal-state of the material, whose presence has been subjected to a long-standing debate in equilibrium experiments because of interfering phonon fluctuations in a similar part of the phase space. Our findings support the scenario that short-range excitonic fluctuations prelude long-range order formation in the ground state, providing important insights in the mechanism of exciton condensation in a quasi-low-dimensional system. These results further demonstrate the importance of a simultaneous access to long- and short-range order with underlying dynamical processes spanning a multitude of time- and energy-scales, making attosecond spectroscopy an indispensable tool for both understanding the equilibrium phase diagram and for discovering novel, nonequilibrium states in strongly correlated materials.
- Published
- 2024
18. Quantum geometry embedded in unitarity of evolution: revealing its impacts as geometric oscillation and dephasing in spin resonance and crystal bands
- Author
-
Song, B. Q., Smith, J. D. H., Jiang, T., Yao, Y. X., and Wang, J.
- Subjects
Quantum Physics - Abstract
Quantum Hall effects provide intuitive ways of revealing the topology in crystals, i.e., each quantized "step" represents a distinct topological state. Here, we seek a counterpart for "visualizing" quantum geometry, which is a broader concept. We show how geometry emerges in quantum as an intrinsic consequence of unitary evolution, composing a frame work compatible with quantum metric and independent of specific details or approximations, suggesting quantum geometry may have widespread applicability. Indeed, we exemplify geometric observables, such as oscillation, dephasing, in spin and band scenarios. Anomalies, supported by both analytic and numerical solutions, underscore the advantages of adopting a geometric perspective, potentially yielding distinguishable experimental signatures., Comment: 5 pages, 3 figures
- Published
- 2024
19. Coexistence of interacting charge density waves in a layered semiconductor
- Author
-
Lv, B. Q., Zong, Alfred, Wu, Dong, Nie, Zhengwei, Su, Yifan, Choi, Dongsung, Ilyas, Batyr, Fichera, Bryan T., Li, Jiarui, Baldini, Edoardo, Mogi, Masataka, Huang, Y. -B., Po, Hoi Chun, Meng, Sheng, Wang, Yao, Wang, N. L., and Gedik, Nuh
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe4, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect FS nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that mono- and bi-layers of Te in the unit cell host different CDWs that are associated with distinct energy gaps. The two gaps display dichotomous evolutions following photoexcitation, where the larger bilayer CDW gap exhibits less renormalization and faster recovery. Surprisingly, the CDW in the Te monolayer displays an additional momentum-dependent gap renormalization that cannot be captured by density-functional theory calculations. This phenomenon is attributed to interlayer interactions between the two CDW orders, which account for the semiconducting nature of the equilibrium state. Our findings not only offer microscopic insights into the correlated ground state of EuTe4 but also provide a general non-equilibrium approach to understand coexisting, layer-dependent orders in a complex system., Comment: To appear in PRL
- Published
- 2024
- Full Text
- View/download PDF
20. Does or did the supernova remnant Cassiopeia A operate as a PeVatron?
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo., X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; $E_\gamma \geq 100$~TeV) $\gamma$-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way., Comment: 11 pages, 3 figures, Accepted by the APJL
- Published
- 2023
21. Very high energy gamma-ray emission beyond 10 TeV from GRB 221009A
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, A., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The highest energy gamma-rays from gamma-ray bursts (GRBs) have important implications for their radiation mechanism. Here we report for the first time the detection of gamma-rays up to 13 TeV from the brightest GRB 221009A by the Large High Altitude Air-shower Observatory (LHAASO). The LHAASO-KM2A detector registered more than 140 gamma-rays with energies above 3 TeV during 230$-$900s after the trigger. The intrinsic energy spectrum of gamma-rays can be described by a power-law after correcting for extragalactic background light (EBL) absorption. Such a hard spectrum challenges the synchrotron self-Compton (SSC) scenario of relativistic electrons for the afterglow emission above several TeV. Observations of gamma-rays up to 13 TeV from a source with a measured redshift of z=0.151 hints more transparency in intergalactic space than previously expected. Alternatively, one may invoke new physics such as Lorentz Invariance Violation (LIV) or an axion origin of very high energy (VHE) signals., Comment: 49pages, 11figures
- Published
- 2023
- Full Text
- View/download PDF
22. A New Bis-Keggin Polyoxometallate-Based Bifunctional Catalyst for Efficient Electrochemical Sensing and Photocatalytic Reduction of Cr(VI)
- Author
-
Yang, L., Zhong, B.-Q., Cao, H.-B., Zhang, Z., Li, S., and Liu, G.-C.
- Published
- 2024
- Full Text
- View/download PDF
23. Position operators in terms of converging finite-dimensional matrices: Exploring their interplay with geometry, transport, and gauge theory
- Author
-
Song, B. Q., Smith, J. D. H., and Wang, J.
- Subjects
Quantum Physics - Abstract
Position operator $\hat{r}$ appears as $i{\partial_p}$ in wave mechanics, while its matrix form is well known diverging in diagonals, causing serious difficulties in basis transformation, observable yielding, etc. We aim to find a convergent $r$-matrix (CRM) to improve the existing divergent $r$-matrix (DRM), and investigate its influence at both the conceptual and the application levels. Unlike the spin matrix, which affords a Lie algebra representation as the solution of $[s_i,s_j]={\epsilon}_{i,j,k}s_k$, the $r$-matrix cannot be a solution for $[\hat{r},p]=i\hbar$, namely Weyl algebra. Indeed: matrix representations of Weyl algebras prove not existing; thus, neither CRM nor DRM would afford a representation. Instead, the CRM should be viewed as a procedure of encoding $\hat{r}$ using matrices of arbitrary finite dimensions. Deriving CRM recognizes that the limited understanding about Weyl algebra has led to the divergence. A key modification is increasing the 1-st Weyl algebra (the familiar substitution $\hat{r}{\rightarrow}i{\partial_p}$) to the $N$-th Weyl algebra. Resolving the divergence makes $r$-matrix rigorously defined, and we are able to show $r$-matrix is distinct from a spin matrix in terms of its defining principles, transformation behavior, and the observable it yields. At the conceptual level, the CRM fills the logical gap between the $r$-matrix and the Berry connection; and helps to show that Bloch space $\mathcal{H}_B$ is incomplete for $\hat{r}$. At the application level, we focus on transport, and discover that the Hermitian matrix is not identical with the associative Hermitian operator, i.e., $r_{m,n}=r_{n,m}^*{\nLeftrightarrow}\hat{r}=\hat{r}^{\dagger}$. We also discuss how such a non-representation CRM can contribute to building a unified transport theory., Comment: 37 pages, 2 figures
- Published
- 2024
24. Quantum Liouville's theorem based on Haar measure
- Author
-
Song, B. Q., Smith, J. D. H., Luo, L., and Wang, J.
- Subjects
Quantum Physics - Abstract
Liouville theorem (LT) reveals robust incompressibility of distribution function in phase space, given arbitrary potentials. However, its quantum generalization, Wigner flow, is compressible, i.e., LT is only conditionally true (e.g., for perfect Harmonic potential). We develop quantum Liouville theorem (rigorous incompressibility) for arbitrary potentials (interacting or not) in Hamiltonians. Haar measure, instead of symplectic measure dp^dq used in Wigner's scheme, plays a central role. The argument is based on general measure theory, independent of specific spaces or coordinates. Comparison of classical and quantum is made: for instance, we address why Haar measure and metric preservation do not work in the classical case. Applications of theorems in statistics, topological phase transition, ergodic theory, etc. are discussed., Comment: 9 pages, 1 figure
- Published
- 2023
- Full Text
- View/download PDF
25. White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era
- Author
-
Batista, R. Alves, Amelino-Camelia, G., Boncioli, D., Carmona, J. M., di Matteo, A., Gubitosi, G., Lobo, I., Mavromatos, N. E., Pfeifer, C., Rubiera-Garcia, D., Saridakis, E. N., Terzić, T., Vagenas, E. C., Moniz, P. Vargas, Abdalla, H., Adamo, M., Addazi, A., Anagnostopoulos, F. K., Antonelli, V., Asorey, M., Ballesteros, A., Basilakos, S., Benisty, D., Boettcher, M., Bolmont, J., Bonilla, A., Bosso, P., Bouhmadi-López, M., Burderi, L., Campoy-Ordaz, A., Caroff, S., Cerci, S., Cortes, J. L., D'Esposito, V., Das, S., de Cesare, M., Demirci, M., Di Lodovico, F., Di Salvo, T., Diego, J. M., Djordjevic, G., Domi, A., Ducobu, L., Escamilla-Rivera, C., Fabiano, G., Fernández-Silvestre, D., Franchino-Viñas, S. A., Frassino, A. M., Frattulillo, D., Gaug, M., Gergely, L. Á., Guendelman, E. I., Guetta, D., Gutierrez-Sagredo, I., He, P., Heefer, S., Jurić, T., Katori, T., Kowalski-Glikman, J., Lambiase, G., Said, J. Levi, Li, C., Li, H., Luciano, G. G., Ma, B-Q, Marciano, A., Martinez, M., Mazumdar, A., Menezes, G., Mercati, F., Minic, D., Miramonti, L., Mitsou, V. A., Mustamin, M. F., Navas, S., Olmo, G. J., Oriti, D., Övgün, A., Pantig, R. C., Parvizi, A., Pasechnik, R., Pasic, V., Petruzziello, L., Platania, A., Rasouli, S. M. M., Rastgoo, S., Relancio, J. J., Rescic, F., Reyes, M. A., Rosati, G., Sakallı, İ., Salamida, F., Sanna, A., Staicova, D., Strišković, J., Cerci, D. Sunar, Torri, M. D. C., Vigliano, A., Wagner, F., Wallet, J-C, Wojnar, A., Zarikas, V., Zhu, J., and Zornoza, J. D.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Theory - Abstract
The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test, where a clear signal of quantum properties of gravity is still missing. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 ``Quantum gravity phenomenology in the multi-messenger approach (QG-MM)'', in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.
- Published
- 2023
- Full Text
- View/download PDF
26. The First LHAASO Catalog of Gamma-Ray Sources
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo., X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
We present the first catalog of very-high energy and ultra-high energy gamma-ray sources detected by the Large High Altitude Air Shower Observatory (LHAASO). The catalog was compiled using 508 days of data collected by the Water Cherenkov Detector Array (WCDA) from March 2021 to September 2022 and 933 days of data recorded by the Kilometer Squared Array (KM2A) from January 2020 to September 2022. This catalog represents the main result from the most sensitive large coverage gamma-ray survey of the sky above 1 TeV, covering declination from $-$20$^{\circ}$ to 80$^{\circ}$. In total, the catalog contains 90 sources with an extended size smaller than $2^\circ$ and a significance of detection at $> 5\sigma$. Based on our source association criteria, 32 new TeV sources are proposed in this study. Among the 90 sources, 43 sources are detected with ultra-high energy ($E > 100$ TeV) emission at $> 4\sigma$ significance level. We provide the position, extension, and spectral characteristics of all the sources in this catalog., Comment: 40 pages, 13 figures, 4 tables
- Published
- 2023
- Full Text
- View/download PDF
27. Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Saiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The diffuse Galactic $\gamma$-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse $\gamma$-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner ($15^{\circ}
10$~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of $-2.99\pm0.04$, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of $\sim3$ than the prediction. A similar spectrum with an index of $-2.99\pm0.07$ is found in the outer Galaxy region, and the absolute flux for $10\lesssim E\lesssim60$ TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations., Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical Review Letters; source mask file provided as ancillary file - Published
- 2023
- Full Text
- View/download PDF
28. Disease-free survival as surrogate for overall survival in esophageal cancer: An individual patient data meta-analysis of neoadjuvant chemotherapy and chemoradiotherapy
- Author
-
Cabrit, Nicolas, Cheugoua-Zanetsie, Maurice, Tierney, Jayne, Thirion, Pierre, Nankivell, Matthew, Winter, Kathryn, Yang, Hong, Wijnhoven, Bas, Vernerey, Dewi, Smithers, B.Mark, Piessen, Guillaume, Nilsson, Magnus, Boonstra, Jurjen, Ychou, Marc, Law, Simon, Cunningham, David, Vathaire, Florent de, Stahl, Michael, Urba, Susan, Valmasoni, Michele, Williaume, Danièle, Thomas, Janine, Lordick, Florian, Tepper, Joel, Gebski, Val, Burmeister, Bryan, Paoletti, Xavier, Sandick, Johanna van, Fu, Jianhua, Pignon, Jean-Pierre, Ducreux, Michel, Faron, Matthieu, and Michiels, Stefan
- Published
- 2025
- Full Text
- View/download PDF
29. WALLABY Pre-Pilot Survey: Ultra-Diffuse Galaxies in the Eridanus Supergroup
- Author
-
For, B. -Q., Spekkens, K., Staveley-Smith, L., Bekki, K., Karunakaran, A., Catinella, B., Koribalski, B. S., Lee-Waddell, K., Madrid, J. P., Murugeshan, C., Rhee, J., Westmeier, T., Wong, O. I., Zaritsky, D., and Donnerstein, R.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present a pilot study of the atomic neutral hydrogen gas (HI) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) to search for HI in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one HI detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are HI-free. We show the overall distribution of SMUDGes UDG candidates on the size-luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their HI content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the HI content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario., Comment: 11 pages, 8 figures
- Published
- 2023
30. Precise determination of ground-state hyperfine splitting and calculation of Zeeman coefficients for 171Yb+ microwave frequency standard
- Author
-
Han, J. Z., Lu, B. Q., Xin, N. C., Yu, Y. M., Qin, H. R., Chen, S. T., Zheng, Y., Li, J. G., Zhang, J. W., and Wang, L. J.
- Subjects
Physics - Atomic Physics - Abstract
We report precise measurement of the hyperfine splitting and calculation of the Zeeman coefficients of the $^{171}$Yb$^+$ ground state. The absolute hyperfine splitting frequency is measured using high-resolution laser-microwave double-resonance spectroscopy at 0.1 mHz level, and evaluated using more accurate Zeeman coefficients. These Zeeman coefficients are derived using Land\'{e} $g_J$ factors calculated by two atomic-structure methods, multiconfiguration Dirac-Hartree-Fock, and multireference configuration interaction. The cross-check of the two calculations ensures an accuracy of the Zeeman coefficients at $10^{-2}$ Hz/G$^2$ level. The results provided in this paper improve the accuracy and reliability of the second-order Zeeman shift correction, thus further improving the accuracy of the microwave frequency standards based on $^{171}$Yb$^+$. The high-precision hyperfine splitting and Zeeman coefficients could also support could also support further experiments to improve the constraints of fundamental constants through clock frequency comparison of the Yb$^+$ system.
- Published
- 2023
31. WALLABY Pilot Survey: the Potential Polar Ring Galaxies NGC~4632 and NGC~6156
- Author
-
Deg, N., Palleske, R., Spekkens, K., Wang, J., Jarrett, T., English, J., Lin, X., Yeung, J., Mould, J. R., Catinella, B., Dénes, H., Elagali, A., For, B. ~-Q., Kamphuis, P., Koribalski, B. S., Lee-Waddell, K., Murugeshan, C., Oh, S., Rhee, J., Serra, P., Westmeier, T., Wong, O. I., Bekki, K., Bosma, A., Carignan, C., Holwerda, B. W., and Yu, N.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report on the discovery of two potential polar ring galaxies (PRGs) in the WALLABY Pilot Data Release 1 (PDR1). These untargetted detections, cross-matched to NGC 4632 and NGC 6156, are some of the first galaxies where the Hi observations show two distinct components. We used the iDaVIE virtual reality software to separate the anomalous gas from the galactic gas and find that the anomalous gas comprises ~ 50% of the total H i content of both systems. We have generated plausible 3D kinematic models for each galaxy assuming that the rings are circular and inclined at 90 degrees to the galaxy bodies. These models show that the data are consistent with PRGs, but do not definitively prove that the galaxies are PRGs. By projecting these models at different combinations of main disk inclinations, ring orientations, and angular resolutions in mock datacubes, we have further investigated the detectability of similar PRGs in WALLABY. Assuming that these galaxies are indeed PRGs, the detectability fraction, combined with the size distribution of WALLABY PDR1 galaxies, implies an incidence rate of ~ 1% - 3%. If this rate holds true, the WALLABY survey will detect hundreds of new polar ring galaxies., Comment: Accepted to MNRAS -- Corrected Table 1
- Published
- 2023
- Full Text
- View/download PDF
32. Laboratory evidence of confinement and acceleration of wide-angle flows by toroidal magnetic fields
- Author
-
Lei, Z., Li, L. X., Zhao, Z. H., Sun, W., An, H. H., Yuan, D. W., Xie, Y., Yuan, W. Q., He, S. K., Cheng, L., Zhang, Z., Zhong, J. Y., Wang, W., Zhu, B. Q., Zhou, W. M., Zhou, C. T., Zhu, S. P., Zhu, J. Q., He, X. T., and Qiao, B.
- Published
- 2024
- Full Text
- View/download PDF
33. WALLABY Pilot Survey: The diversity of HI structural parameters in nearby galaxies
- Author
-
Reynolds, T. N., Catinella, B., Cortese, L., Deg, N., Denes, H., Elagali, A., For, B. -Q., Kamphuis, P., Kleiner, D., Koribalski, B. S., Lee-Waddell, K., Murugeshan, C., Raja, W., Rhee, J., Spekkens, K., Staveley-Smith, L., van der Hulst, J. M., Wang, J., Westmeier, T., Wong, O. I., Bigiel, F., Bosma, A., Holwerda, B. W., Leahy, D. A., and Meyer, M. J.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (HI) gas discs in ~280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric HI data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation and HI structural parameters. We quantify the HI structure by the size of the HI relative to the optical disc and the average HI surface density measured using effective and isodensity radii. For galaxies resolved by >1.3 beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended HI discs and lower HI surface densities: the isodensity HI structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by >2 beams. We find that galaxies with higher HI surface densities and more extended HI discs tend to be more star forming: the isodensity HI structural parameters have stronger correlations with star formation. Normalising the HI disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity HI radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution HI data and large, statistical studies using spatially unresolved, single-dish data., Comment: 16 page, 5 figures, accepted for publication in PASA
- Published
- 2023
- Full Text
- View/download PDF
34. Echoes of the regularized dilatonic black hole
- Author
-
Wang, B. Q. and Wu, S. R.
- Subjects
General Relativity and Quantum Cosmology - Abstract
In present work, the evolution of scalar field and electromagnetic field under the background of the regularized dilatonic black bounces spacetimes are investigated, we obtain an obvious echoes signal which appropriately reports the properties of regularized dilatonic black bounces spacetimes and disclose the physical reasons behind such phenomena. By studying the quasinormal ringdown of the three states of regularized dilatonic black bounces spacetimes, it shows that the echoes signal only appears when $b>2k$., Comment: Lack of graphical analysis
- Published
- 2023
35. Flux Variations of Cosmic Ray Air Showers Detected by LHAASO-KM2A During a Thunderstorm on 10 June 2021
- Author
-
LHAASO Collaboration, Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Zhe, Cao, Zhen, Chang, J., Chang, J. F., Chen, E. S., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. J., Chen, Y., Cheng, H. L., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Duan, K. K., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Gu, F. L., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, W. H., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Li, B. B., Li, Cheng, Li, Cong, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Long, W. J., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Min, Z., Mitthumsiri, W., Nan, Y. C., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. Y., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R., Wang, R. N., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z. H. Wang. Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., W, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yan, J. Z., Yang, C. W., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, Lu, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Y. L., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
The Large High Altitude Air Shower Observatory (LHAASO) has three sub-arrays, KM2A, WCDA and WFCTA. The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during the thunderstorm on 10 June 2021. The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields, with maximum fractional increase of 20%. The variations of trigger rates (increases or decreases) are found to be strongly dependent on the primary zenith angle. The flux of secondary particles increases significantly, following a similar trend with that of the shower events. To better understand the observed behavior, Monte Carlo simulations are performed with CORSIKA and G4KM2A (a code based on GEANT4). We find that the experimental data (in saturated negative fields) are in good agreement with simulations, assuming the presence of a uniform upward electric field of 700 V/cm with a thickness of 1500 m in the atmosphere above the observation level. Due to the acceleration/deceleration and deflection by the atmospheric electric field, the number of secondary particles with energy above the detector threshold is modified, resulting in the changes in shower detection rate., Comment: 18 pages, 11 figures
- Published
- 2022
- Full Text
- View/download PDF
36. WALLABY Pre-Pilot Survey: Radio Continuum Properties of the Eridanus Supergroup
- Author
-
Grundy, J. A., Wong, O. I., Lee-Waddell, K., Seymour, N., For, B. -Q., Murugeshan, C., Koribalski, B. S., Madrid, J. P., Rhee, J., and Westmeier, T.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the highest resolution and sensitivity $\sim1.4\,$GHz continuum observations of the Eridanus supergroup obtained as a part of the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) pre-pilot observations using the Australian Square Kilometer Array Pathfinder (ASKAP). We detect 9461 sources at 1.37 GHz down to a flux density limit of $\sim0.1$ mJy at $6.1''\times 7.9''$ resolution with a mean root-mean-square (RMS) of 0.05 mJy/beam. We find that the flux scale is accurate to within 5% (compared to NVSS at 1.4 GHz). We then determine the global properties of eight Eridanus supergroup members, which are detected in both radio continuum and neutral hydrogen (HI) emission, and find that the radio-derived star formation rates (SFRs) agree well with previous literature. Using our global and resolved radio continuum properties of the nearby Eridanus galaxies, we measure and extend the infrared-radio correlation (IRRC) to lower stellar masses and inferred star formation rates than before. We find the resolved IRRC to be useful for: 1) discriminating between AGN and star-forming galaxies (SFGs); 2) identifying background radio sources; and 3) tracing the effects of group environment pre-processing in NGC 1385. We find evidence for tidal interactions and ram-pressure stripping in the HI, resolved spectral index and IRRC morphologies of NGC 1385. There appears to be a spatial coincidence (in projection) of double-lobed radio jets with the central HI hole of NGC 1367. The destruction of polycyclic aromatic hydrocarbons (PAHs) by merger-induced shocks may be driving the observed WISE W3 deficit observed in NGC 1359. Our results suggest that resolved radio continuum and IRRC studies are excellent tracers of the physical processes that drive galaxy evolution and will be possible on larger sample of sources with upcoming ASKAP radio continuum surveys., Comment: 26 pages, 14 figures, Accepted for publication at PASA 23/2/2023, Full catalogues and underlying data available at: https://doi.org/10.25919/8ga8-0n09
- Published
- 2023
- Full Text
- View/download PDF
37. Design of new helium vessel and tuner for CEPC 650 MHz 2 cell cavity
- Author
-
Mi, Z. H., Li, Z. Q., Sha, P., Zhai, J. Y., He, F. S., Ma, Q., Liu, B. Q., Zhang, X. Y., Han, R. X., Meng, F. B., and Zheng, H. J.
- Subjects
Physics - Accelerator Physics - Abstract
CEPC will use 650 MHz cavities for the collider. Each collider cryomodule contains six 650 MHz 2-cell cavities, which is totally new. Therefore, new helium vessel and tuner are designed for the 650 MHz 2-cell cavity. Also, a test cryomodule, which consists of two 650 MHz 2-cell cavities, has begun as the first step to the full scale cryomodule. This paper mainly focuses on the structure design of Helium vessel and tuner for the 2-cell cavity., Comment: 3pages,10figures
- Published
- 2023
38. Numerical Study on Characteristics and Hazard Consequences of the Hydrogen Cloud Explosion in a Hydrogenation Unit
- Author
-
Liu, Y.-H., Bao, L., Wang, H.-Z., Xin, B.-Q., Yu, A.-F., and Ge, C.-T.
- Published
- 2024
- Full Text
- View/download PDF
39. An Enigmatic PeVatron in an Area around H ii Region G35.6−0.5
- Author
-
Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, B. Q. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S.M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Sáiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, and (The LHAASO Collaboration)
- Subjects
Gamma-rays ,Gamma-ray sources ,H II regions ,Supernova remnants ,Astrophysics ,QB460-466 - Abstract
Identifying Galactic PeVatrons (PeV particle accelerators) from ultrahigh-energy (UHE, >100 TeV) γ -ray sources plays a crucial role in revealing the origin of Galactic cosmic rays. The UHE source 1LHAASO J1857+0203u is suggested to be associated with HESS J1858+020, which may be attributed to the possible PeVatron candidate supernova remnant (SNR) G35.6−0.4 or H ii region G35.6−0.5. We perform detailed analysis on the very-high-energy and UHE γ -ray emissions toward this region with data from the Large High Altitude Air Shower Observatory (LHAASO). 1LHAASO J1857+0203u is detected with a significance of 11.6 σ above 100 TeV, indicating the presence of a PeVatron. It has an extent of ∼0 $\mathop{.}\limits^{\unicode{x000B0}}$ 18 with a power-law (PL) spectral index of ∼2.5 at 1–25 TeV and pointlike emission with a PL spectral index of ∼3.2 above 25 TeV. Using archival CO and H i data, we identify some molecular and atomic clouds that may be associated with the TeV γ -ray emissions. Our modeling indicates that the TeV γ -ray emissions are unlikely to arise from clouds illuminated by the protons that escaped from SNR G35.6−0.4. In the scenario in which H ii region G35.6−0.5 could accelerate particles to the UHE band, the observed GeV–TeV γ -ray emission could be well explained by a hadronic model with a PL spectral index of ∼2.0 and cutoff energy of ∼450 TeV. However, an origin in an evolved pulsar wind nebula cannot be ruled out.
- Published
- 2025
- Full Text
- View/download PDF
40. WALLABY Pilot Survey: Public release of HI kinematic models for more than 100 galaxies from phase 1 of ASKAP pilot observations
- Author
-
Deg, N., Spekkens, K., Westmeier, T., Reynolds, T. N., Venkataraman, P., Goliath, S., Shen, A. X., Halloran, R., Bosma, A., Catinella, B., de Blok, W. J. G., Dénes, H., Di Teodoro, E. M., Elagali, A., For, B. -Q., Howlett, C., Józsa, G. I. G., Kamphuis, P., Kleiner, D., Koribalski, B., Lee-Waddell, K., Lelli, F., Lin, X., Murugeshan, C., Oh, S., Rhee, J., Scott, T. C., Staveley-Smith, L., van der Hulst, J. M., Verdes-Montenegro, L., Wang, J., and Wong, O. I.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I HI kinematic models. This first data release consists of HI observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique HI detections in these fields. The modelling method adopted here - which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available - consists of combining results from the homogeneous application of the FAT and 3DBAROLO algorithms to the subset of 209 detections with sufficient resolution and S/N in order to generate optimized model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3-4 synthesized beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially-resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analyzed dataset will be a powerful legacy product that that will enable a wide range of scientific studies., Comment: Accepted to PASA
- Published
- 2022
- Full Text
- View/download PDF
41. WALLABY Pilot Survey: Public release of HI data for almost 600 galaxies from phase 1 of ASKAP pilot observations
- Author
-
Westmeier, T., Deg, N., Spekkens, K., Reynolds, T. N., Shen, A. X., Gaudet, S., Goliath, S., Huynh, M. T., Venkataraman, P., Lin, X., O'Beirne, T., Catinella, B., Cortese, L., Dénes, H., Elagali, A., For, B. -Q., Józsa, G. I. G., Howlett, C., van der Hulst, J. M., Jurek, R. J., Kamphuis, P., Kilborn, V. A., Kleiner, D., Koribalski, B. S., Lee-Waddell, K., Murugeshan, C., Rhee, J., Serra, P., Shao, L., Staveley-Smith, L., Wang, J., Wong, O. I., Zwaan, M. A., Allison, J. R., Anderson, C. S., Ball, Lewis, Bock, D. C. -J., Brodrick, D., Bunton, J. D., Cooray, F. R., Gupta, N., Hayman, D. B., Mahony, E. K., Moss, V. A., Ng, A., Pearce, S. E., Raja, W., Roxby, D. N., Voronkov, M. A., Warhurst, K. A., Courtois, H. M., and Said, K.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present WALLABY pilot data release 1, the first public release of HI pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60~{\rm deg}^2$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of z < 0.08. The source catalogue, images and spectra of nearly 600 extragalactic HI detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of z ~ 0.014 is relatively low compared to the full WALLABY survey. The median galaxy HI mass is $2.3 \times 10^{9}~M_{\odot}$. The target noise level of 1.6 mJy per $30''$ beam and 18.5 kHz channel translates into a $5\sigma$ HI mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100~Mpc})^{2} \, M_{\odot}$ across 50 spectral channels (~200 km/s) and a $5\sigma$ HI column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}~\mathrm{cm}^{-2}$ across 5 channels (~20 km/s) for emission filling the $30''$ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey., Comment: 24 pages, 13 figures, 5 tables, accepted for publication in PASA
- Published
- 2022
- Full Text
- View/download PDF
42. Deep underground laboratory measurement of $^{13}$C($\alpha$,$n$)$^{16}$O in the Gamow windows of the $s$- and $i$-processes
- Author
-
Gao, B., Jiao, T. Y., Li, Y. T., Chen, H., Lin, W. P., An, Z., Ru, L. H., Zhang, Z. C., Tang, X. D., Wang, X. Y., Zhang, N. T., Fang, X., Xie, D. H., Fan, Y. H., Ma, L., Zhang, X., Bai, F., Wang, P., Fan, Y. X., Liu, G., Huang, H. X., Wu, Q., Zhu, Y. B., Chai, J. L., Li, J. Q., Sun, L. T., Wang, S., Cai, J. W., Li, Y. Z., Su, J., Zhang, H., Li, Z. H., Li, Y. J., Li, E. T., Chen, C., Shen, Y. P., Lian, G., Guo, B., Li, X. Y., Zhang, L. Y., He, J. J., Sheng, Y. D., Chen, Y. J., Wang, L. H., Zhang, L., Cao, F. Q., Nan, W., Nan, W. K., Li, G. X., Song, N., Cui, B. Q., Chen, L. H., Ma, R. G., Yan, S. Q., Liao, J. H., Wang, Y. B., Zeng, S., Nan, D., Fan, Q. W., Qi, N. C., Sun, W. L., Guo, X. Y., Zhang, P., Chen, Y. H., Zhou, Y., Zhou, J. F., He, J. R., Shang, C. S., Li, M. C., Kubono, S., Liu, W. P., deBoer, R. J., Wiescher, M., and Pignatari, M.
- Subjects
Nuclear Experiment - Abstract
The $^{13}$C($\alpha$,$n$)$^{16}$O reaction is the main neutron source for the slow-neutron-capture (s-) process in Asymptotic Giant Branch stars and for the intermediate (i-) process. Direct measurements at astrophysical energies in above-ground laboratories are hindered by the extremely small cross sections and vast cosmic-ray induced background. We performed the first consistent direct measurement in the range of $E_{\rm c.m.}=$0.24 MeV to 1.9 MeV using the accelerators at the China Jinping Underground Laboratory (CJPL) and Sichuan University. Our measurement covers almost the entire i-process Gamow window in which the large uncertainty of the previous experiments has been reduced from 60\% down to 15\%, eliminates the large systematic uncertainty in the extrapolation arising from the inconsistency of existing data sets, and provides a more reliable reaction rate for the studies of the s- and i-processes along with the first direct determination of the alpha strength for the near-threshold state.
- Published
- 2022
- Full Text
- View/download PDF
43. Battery-Less Sensor Tags with RFID: A Survey.
- Author
-
Luís Felipe Vieira Silva, Emanuel Pereira, Mateus Batista, Sandoval Júnior, ícaro B. Q. de Araújo, Eliel Santos, Jobson de Araújo Nascimento, Erick de Andrade Barboza, Francisco Gomes 0004, Ismael Trindade Fraga, Roger Davanso, and Daniel Oliveira dos Santos
- Published
- 2024
- Full Text
- View/download PDF
44. Outcomes of KDIGO-Defined CKD in U.S. Veterans With HFpEF, HFmrEF, and HFrEF
- Author
-
Patel, Samir, Raman, Venkatesh K., Faselis, Charles, Fonarow, Gregg C., Lam, Phillip H., Ahmed, Amiya A., Heidenreich, Paul A., Anker, Stefan D., Deedwania, Prakash, Morgan, Charity J., Zhang, Sijian, Moore, Hans, Rangaswami, Janani, Bakris, George, Butler, Javed, Sheriff, Helen M., Allman, Richard M., Zeng-Treitler, Qing, Wu, Wen-Chih, and Ahmed, Ali
- Published
- 2025
- Full Text
- View/download PDF
45. All-cause mortality and death by aortic dissection in women with Turner syndrome: A national clinical cohort study
- Author
-
Thunström, Sofia, Thunström, Erik, Naessén, Sabine, Berntorp, Kerstin, Laczna Kitlinski, Margareta, Ekman, Bertil, Wahlberg, Jeanette, Bergström, Ingrid, Isaksson, Magnus, Basic, Carmen, Svanvik, Teresia, Bryman, Inger, and Landin-Wilhelmsen, Kerstin
- Published
- 2025
- Full Text
- View/download PDF
46. Genetic insights into psychotic major depressive disorder: bridging the mood-psychotic disorder spectrum
- Author
-
Nguyen, Thuy-Dung, Meijsen, Joeri J., Sigström, Robert, Kuja-Halkola, Ralf, Xiong, Ying, Harder, Arvid, Kowalec, Kaarina, Pasman, Joëlle A., Scarpa, Carolina, Hörbeck, Elin, Jonsson, Lina, Hägg, Sara, Mullins, Niamh, O’Connell, Kevin S., Dalman, Christina, Helenius, Dorte, Zetterberg, Richard, Larsson, Henrik, Lichtenstein, Paul, Andreassen, Ole A., Werge, Thomas, Buil, Alfonso, Landén, Mikael, Sullivan, Patrick F., and Lu, Yi
- Published
- 2025
- Full Text
- View/download PDF
47. Disclosure and non-disclosure of childhood sexual abuse in Australia: Results from a national survey
- Author
-
Mathews, Ben, Finkelhor, David, Collin-Vézina, Delphine, Malacova, Eva, Thomas, Hannah J., Scott, James G., Higgins, Daryl J., Meinck, Franziska, Pacella, Rosana, Erskine, Holly E., Haslam, Divna M., and Lawrence, David
- Published
- 2025
- Full Text
- View/download PDF
48. Predictors for Vulnerable Plaque in Functionally Significant Lesions
- Author
-
Yang, Seokhun, Hwang, Doyeon, Sakai, Koshiro, Mizukami, Takuya, Leipsic, Jonathon, Belmonte, Marta, Sonck, Jeroen, Nørgaard, Bjarne L., Otake, Hiromasa, Ko, Brian, Maeng, Michael, Møller Jensen, Jesper, Buytaert, Dimitri, Munhoz, Daniel, Andreini, Daniele, Ohashi, Hirofumi, Shinke, Toshiro, Taylor, Charles A., Barbato, Emanuele, De Bruyne, Bernard, Collet, Carlos, and Koo, Bon-Kwon
- Published
- 2025
- Full Text
- View/download PDF
49. Probing Autism and ADHD subtypes using cortical signatures of the T1w/T2w-ratio and morphometry
- Author
-
Norbom, Linn B., Syed, Bilal, Kjelkenes, Rikka, Rokicki, Jaroslav, Beauchamp, Antoine, Nerland, Stener, Kushki, Azadeh, Anagnostou, Evdokia, Arnold, Paul, Crosbie, Jennifer, Kelley, Elizabeth, Nicolson, Robert, Schachar, Russell, Taylor, Margot J., Westlye, Lars T., Tamnes, Christian K., and Lerch, Jason P.
- Published
- 2025
- Full Text
- View/download PDF
50. CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials
- Author
-
Zouraris, Dimitrios, Mavrogiorgis, Angelos, Tsoumanis, Andreas, Saarimäki, Laura Aliisa, del Giudice, Giusy, Federico, Antonio, Serra, Angela, Greco, Dario, Rouse, Ian, Subbotina, Julia, Lobaskin, Vladimir, Jagiello, Karolina, Ciura, Krzesimir, Judzinska, Beata, Mikolajczyk, Alicja, Sosnowska, Anita, Puzyn, Tomasz, Gulumian, Mary, Wepener, Victor, Martinez, Diego S.T., Petry, Romana, El Yamani, Naouale, Rundén-Pran, Elise, Murugadoss, Sivakumar, Shaposhnikov, Sergey, Minadakis, Vasileios, Tsiros, Periklis, Sarimveis, Harry, Longhin, Eleonora Marta, SenGupta, Tanima, Olsen, Ann-Karin Hardie, Skakalova, Viera, Hutar, Peter, Dusinska, Maria, Papadiamantis, Anastasios G., Gheorghe, L. Cristiana, Reilly, Katie, Brun, Emilie, Ullah, Sami, Cambier, Sebastien, Serchi, Tommaso, Tämm, Kaido, Lorusso, Candida, Dondero, Francesco, Melagrakis, Evangelos, Fraz, Muhammad Moazam, Melagraki, Georgia, Lynch, Iseult, and Afantitis, Antreas
- Published
- 2025
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.