1. Inferring High-Dimensional Dynamic Networks Changing with Multiple Covariates
- Author
-
Dijkstra, Louis, Godt, Arne, and Foraita, Ronja
- Subjects
Statistics - Methodology - Abstract
High-dimensional networks play a key role in understanding complex relationships. These relationships are often dynamic in nature and can change with multiple external factors (e.g., time and groups). Methods for estimating graphical models are often restricted to static graphs or graphs that can change with a single covariate (e.g., time). We propose a novel class of graphical models, the covariate-varying network (CVN), that can change with multiple external covariates. In order to introduce sparsity, we apply a $L_1$-penalty to the precision matrices of $m \geq 2$ graphs we want to estimate. These graphs often show a level of similarity. In order to model this 'smoothness', we introduce the concept of a 'meta-graph' where each node in the meta-graph corresponds to an individual graph in the CVN. The (weighted) adjacency matrix of the meta-graph represents the strength with which similarity is enforced between the $m$ graphs. The resulting optimization problem is solved by employing an alternating direction method of multipliers. We test our method using a simulation study and we show its applicability by applying it to a real-world data set, the gene expression networks from the study 'German Cancer in childhood and molecular-epidemiology' (KiKme). An implementation of the algorithm in R is publicly available under https://github.com/bips-hb/cvn
- Published
- 2024