120 results on '"Françoise Guichard"'
Search Results
2. Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change
- Author
-
Cornelia Klein, Lawrence S Jackson, Douglas J Parker, John H Marsham, Christopher M Taylor, David P Rowell, Françoise Guichard, Théo Vischel, Adjoua Moïse Famien, and Arona Diedhiou
- Subjects
CMIP ,mesoscale convective system ,West Africa ,climate projection ,atmospheric moisture scaling ,convection-permitting ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for 2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the +0–60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.
- Published
- 2021
- Full Text
- View/download PDF
3. Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models
- Author
-
Magatte Sow, Moussa Diakhaté, Ross D. Dixon, Françoise Guichard, Diarra Dieng, and Amadou T. Gaye
- Subjects
west africa ,rainfall ,annual cycle ,cmip5 models ,onset ,cessation ,extremes ,uncertainties ,Meteorology. Climatology ,QC851-999 - Abstract
We analyse uncertainties associated with the main features of the annual cycle of West African rainfall (amplitude, timing, duration) in 15 CMIP5 simulations over the Sahelian and Guinean regions with satellite daily precipitation estimates. The annual cycle of indices based on daily rainfall such as the frequency and the intensity of wet days, the consecutive dry (CDD) and wet (CWD) days, the 95th percentile of daily rainfall (R95), have been assessed. Over both regions, satellite datasets provide more consistent results on the annual cycle of monthly precipitation than on higher-frequency rainfall indices, especially over the Guinean region. By contrast, CMIP5 simulations display much higher uncertainties in both the mean precipitation climatology and higher-frequency indices. Over both regions, most of them overestimate the frequency of wet days. Over the Guinean region, the difficulty of models to represent the bimodality of the annual cycle of precipitation involves systematic biases in the frequency of wet days. Likewise, we found strong uncertainties in the simulation of the CWD and the CDD over both areas. Finally, models generally provide too early (late) onset dates over the Sahel (the Guinean region) and overestimate rainfall during the early and late monsoon phases. These errors are strongly coupled with errors in the latitudinal position of the ITCZ and do not compensate at the annual scale or when considering West Africa as a whole.
- Published
- 2020
- Full Text
- View/download PDF
4. A short review of numerical cloud-resolving models
- Author
-
Françoise Guichard and Fleur Couvreux
- Subjects
atmospheric convection ,clouds ,numerical modelling ,convection-permitting simulation ,large-eddy simulation ,physical processes ,parametrizations ,turbulence ,microphysics ,radiative transfer ,Oceanography ,GC1-1581 ,Meteorology. Climatology ,QC851-999 - Abstract
A cloud-resolving model (CRM) allows performing numerical simulations of convective clouds, such as shallow cumulus and stratocumulus, or storms and squall-lines with a resolution on the order of a few tens of metres to a few kilometres over a limited-area 4D (time and space) domain. The development of such models over the past decades is reviewed and their specific features are presented. The latter include a non-hydrostatic dynamic and parameterizations of sub-grid turbulence, microphysical and radiative processes. The capabilities of such models are discussed based on comparisons with observations and model-intercomparison studies. CRMs are used in a variety of ways, from the exploration of cloud phenomenology and process-understanding studies to the development of algorithms for satellite products, as well as to address climate issues and to develop convective and cloud parametrizations for large-scale weather and climate models. A few results illustrating this wide utilization are presented. The continuous increase of computer power induces rapid changes in modelling perspectives and therefore, influences the developments and applications of CRMs. This is discussed together with emerging scientific questions which will further benefit from CRM simulations.
- Published
- 2017
- Full Text
- View/download PDF
5. Towards a Long-Term Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to 2018
- Author
-
Moustapha Tall, Clément Albergel, Bertrand Bonan, Yongjun Zheng, Françoise Guichard, Mamadou Simina Dramé, Amadou Thierno Gaye, Luc Olivier Sintondji, Fabien C. C. Hountondji, Pinghouinde Michel Nikiema, and Jean-Christophe Calvet
- Subjects
data assimilation ,land surface modeling ,reanalysis ,remote sensing ,Science - Abstract
This study focuses on the ability of the global Land Data Assimilation System, LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI) from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25° × 0.25° and 0.50° × 0.50° spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain (dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences between the model and the observations are the largest, prior to any assimilation. These differences are linked to the model failing to represent the behavior of some specific vegetation species, which are known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of evapotranspiration and gross primary production after assimilation.
- Published
- 2019
- Full Text
- View/download PDF
6. Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review
- Author
-
Luc Descroix, Françoise Guichard, Manuela Grippa, Laurent A. Lambert, Gérémy Panthou, Gil Mahé, Laetitia Gal, Cécile Dardel, Guillaume Quantin, Laurent Kergoat, Yasmin Bouaïta, Pierre Hiernaux, Théo Vischel, Thierry Pellarin, Bakary Faty, Catherine Wilcox, Moussa Malam Abdou, Ibrahim Mamadou, Jean-Pierre Vandervaere, Aïda Diongue-Niang, Ousmane Ndiaye, Youssouph Sané, Honoré Dacosta, Marielle Gosset, Claire Cassé, Benjamin Sultan, Aliou Barry, Okechukwu Amogu, Bernadette Nka Nnomo, Alseny Barry, and Jean-Emmanuel Paturel
- Subjects
Sahel ,land use/land cover changes ,water holding capacity ,climate change ,hydrological paradox ,re-greening ,Hydraulic engineering ,TC1-978 ,Water supply for domestic and industrial purposes ,TD201-500 - Abstract
In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity.
- Published
- 2018
- Full Text
- View/download PDF
7. Persistence and success of the Sahel desertification narrative
- Author
-
Fabrice Gangneron, Caroline Pierre, Elodie Robert, Laurent Kergoat, Manuela Grippa, Françoise Guichard, Pierre Hiernaux, Crystele Leauthaud, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG), Université de Brest (UBO)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (NantesUniv – IGARUN), Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Gestion de l'Eau, Acteurs, Usages (UMR G-EAU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Département Environnements et Sociétés (Cirad-ES), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- Subjects
Global and Planetary Change ,Narrative ,Sahel ,Villains ,[SDE]Environmental Sciences - Abstract
International audience; The paradigm of Sahelian desertification, whose roots lie in the colonial period, increased in popularity following the droughts of the 1970s and 1980s. This "desertification narrative" was shaped in the international arena by organizations working in the fields of international cooperation, human rights, regional development, economic regulation and environmental questions. This narrative has been deployed to have real-world implications of how risks and responses in the Sahel are understood and prioritised, with particularly tangible implications for civil society and international donor agencies. It is indeed widely used in technical writings, general public media and environmental protection projects, regardless of the fact that the majority of literature in environmental science does not support its underlying rationales. It depicts rural populations as victims and culprits (or villains) partially responsible for the desertification, which in turn justifies external intervention in the Sahelian countries. The desertification narrative has an impact on research and development funding by overemphasizing the role of international development aid to combat desertification, thus favoring research on the subject of Sahelian desertification. Furthermore, we argue that the Sahelian desertification narrative contributes to the political control of rural populations, the latter being stigmatized because of their often-considered excessive use of environmental resources.
- Published
- 2022
8. Atmospheric tropical modes are important drivers of Sahelian springtime heatwaves
- Author
-
Philippe Peyrillé, Martin C. Todd, Françoise Guichard, Kiswendsida H. Guigma, and Yi Wang
- Subjects
Atmospheric Science ,Daytime ,010504 meteorology & atmospheric sciences ,Advection ,Boreal spring ,0207 environmental engineering ,Madden–Julian oscillation ,02 engineering and technology ,01 natural sciences ,symbols.namesake ,Diurnal cycle ,Climatology ,symbols ,Environmental science ,Predictability ,020701 environmental engineering ,Spatial extent ,Kelvin wave ,0105 earth and related environmental sciences - Abstract
Heatwaves pose a serious threat to human health worldwide but remain poorly documented over Africa. This study uses mainly the ERA5 dataset to investigate their large-scale drivers over the Sahel region during boreal spring, with a focus on the role of tropical modes of variability including the Madden–Julian Oscillation (MJO) and the equatorial Rossby and Kelvin waves. Heatwaves were defined from daily minimum and maximum temperatures using a methodology that retains only intraseasonal scale events of large spatial extent. The results show that tropical modes have a large influence on the occurrence of Sahelian heatwaves, and, to a lesser extent, on their intensity. Depending on their convective phase, they can either increase or inhibit heatwave occurrence, with the MJO being the most important of the investigated drivers. A certain sensitivity to the geographic location and the diurnal cycle is observed, with nighttime heatwaves more impacted by the modes over the eastern Sahel and daytime heatwaves more affected over the western Sahel. The examination of the physical mechanisms shows that the modulation is made possible through the perturbation of regional circulation. Tropical modes thus exert a control on moisture and the subsequent longwave radiation, as well as on the advection of hot air. A detailed case study of a major event, which took place in April 2003, further supports these findings. Given the potential predictability offered by tropical modes at the intraseasonal scale, this study has key implications for heatwave risk management in the Sahel.
- Published
- 2020
9. Combining CMIP data with a convection-permitting model and observations to project extreme rainfall under climate change
- Author
-
Cornelia Klein, Douglas J. Parker, Lawrence S. Jackson, John H. Marsham, Christopher M. Taylor, David P. Rowell, Françoise Guichard, Théo Vischel, Adjoua Moise Famien, and Arona Diedhiou
- Abstract
Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37-75% for 2070-2100 (mean 55%, and 18-30% for 2030-2060). This is considerably higher than the +0-60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.
- Published
- 2022
10. Extreme precipitating events in satellite and rain-gauge products over the Sahel
- Author
-
Sidiki Sanogo, Philippe Peyrillé, Romain Roehrig, Françoise Guichard, Ousmane Ouedraogo, Groupe de Météorologie à Moyenne Échelle (GMME), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Groupe de Météorologie de Grande Échelle et Climat (GMGEC), and Agence Nationale de la Météorologie (ANAM-BF)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science - Abstract
Over the recent decades, extreme precipitation events (EPEs) have become more frequent over the Sahel. Their properties, however, have so far received little attention. In this study the spatial distribution, intensity, seasonality, and interannual variability of EPEs are examined, using both a reference dataset based on a high-density rain gauge network over Burkina Faso and 24 precipitation gridded datasets. The gridded datasets are evaluated in depth over Burkina Faso while their commonalities are used to document the EPE properties over the Sahel. EPEs are defined as the occurrence of daily accumulated precipitation exceeding the all-day 99th percentile over a 1° × 1° pixel. Over Burkina Faso, this percentile ranges between 21 and 33 mm day−1. The reference dataset show that EPEs occur in phase with the West African monsoon annual cycle, more frequently during the monsoon core season and during wet years. These results are consistent among the gridded datasets over Burkina Faso but also over the wider Sahel. The gridded datasets exhibit a wide diversity of skills when compared to the Burkinabe reference. The Global Precipitation Climatology Centre Full Data Daily version 1 (GPCC-FDDv1) and the Global Satellite Mapping of Precipitation Gauge Reanalysis version 6.0 (GSMaP-gauge-RNL v6.0) are the only products that properly reproduce all of the EPE features examined in this work. The datasets using a combination of microwave and infrared measurements are prone to overestimate the EPE intensity, while infrared-only products generally underestimate it. Their calibrated versions perform better than their uncalibrated (near-real-time) versions. This study finally emphasizes that the lack of rain gauge data availability over the whole Sahel strongly impedes our ability to gain insights in EPE properties.
- Published
- 2022
11. Interannual variability of rainfall in the Guinean Coast region and its links with sea surface temperature changes over the twentieth century for the different seasons
- Author
-
Hugues Goosse, Moussa Diakhaté, Thierry Fichefet, Françoise Guichard, Koffi Worou, and UCL - SST/ELI/ELIC - Earth & Climate
- Subjects
Rainfall ,Stationarity ,Monsoon ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Harmattan ,Equator ,Teleconnection ,010502 geochemistry & geophysics ,01 natural sciences ,Eastern mediterranean ,Sea surface temperature ,Boreal ,Climatology ,Guinea Coast ,Environmental science ,Variability ,0105 earth and related environmental sciences - Abstract
The summer Guinean Coast (GC) rainfall (GCR) displays a strong variability on different timescales that are driven by Sea Surface Temperature (SST) variations and amplified by land–atmosphere processes. However, the relationships between the GCR and SST modes of variability in the pre-monsoon (March–May, MAM), post-monsoon (October–November, ON) and Harmattan (December–February, DJF) seasons are not well known nor understood. Using observational dataset covering the twentieth century, we extend the conclusion obtained in previous studies that mainly analyzed the summer period (June–September, JJAS) by considering changes in SST-rainfall linkages throughout the year. We show that, in boreal winter, SST interannual variability in the tropical basins are anticorrelated with the GCR. The South Atlantic Ocean Dipole (SAOD) and the Atlantic Niño (ATL3) appear, however, as major drivers of the pre-monsoon and monsoon GCR. In MAM, both modes are in opposite phases with the GCR. Below normal SST in the tropical South Atlantic in MAM leads to a surface divergence south of the equator, and the resulting southerlies bring moist air into coastal Guinea, increasing rainfall. During JJAS, ATL3 and SAOD are in phase with the GCR. During ON, the eastern Mediterranean Sea anomalous warming strengthens the Saharan Heat Low, whose extension in the tropical North Atlantic enhances the low-level westerly Jet. This jet transports moisture into GC. The stationarity of the correlations between the GCR and SST indices has also been assessed, and the strongest and most stationary links are obtained during the monsoon season.
- Published
- 2020
12. The April 2010 North African heatwave: when the water vapor greenhouse effect drives nighttime temperatures
- Author
-
Françoise Guichard, Jessica Barbier, Yann Largeron, Fleur Couvreux, and Romain Roehrig
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Precipitable water ,Advection ,Longwave ,010502 geochemistry & geophysics ,01 natural sciences ,Plume ,Climatology ,Radiative transfer ,Environmental science ,Surface layer ,Shortwave ,Water vapor ,0105 earth and related environmental sciences - Abstract
North Africa experienced a severe heatwave in April 2010 with daily maximum temperatures ( $$T_{max}$$ ) frequently exceeding $$40\,^{\circ }\mathrm{C}$$ and daily minimum temperatures ( $$T_{min}$$ ) over $$27\,^{\circ }\mathrm{C}$$ for more than five consecutive days in extended Saharan and Sahelian areas. Observations show that areas and periods affected by the heatwave correspond to strong positive anomalies of surface incoming longwave fluxes ( $$LW_{in}$$ ) and negative anomalies of incoming shortwave fluxes ( $$SW_{in}$$ ). The latter are explained by clouds in the Sahara, and by both clouds and dust loadings in the Sahel. However, the strong positive anomalies of $$LW_{in}$$ are hardly related to cloud or aerosol radiative effects. An analysis based on climate-model simulations (CNRM-AM) complemented by a specially-designed conceptual soil-atmospheric surface layer model (SARAWI) shows that this positive anomaly of $$LW_{in}$$ is mainly due to a water vapor greenhouse effect. SARAWI, which represents the two processes driving temperatures, namely turbulence and longwave radiative transfer between the soil and the atmospheric surface layer, points to the crucial impact of synoptic low-level advection of water vapor on $$T_{min}$$ . By increasing the atmospheric infrared emissivity, the advected water vapor dramatically increases the nocturnal radiative warming of the soil surface, then in turn reducing the nocturnal cooling of the atmospheric surface layer, which remains warm throughout the night. Over Western Sahel, this advection is related to an early northward incursion of the monsoon flow. Over Sahara, the anomalously high precipitable water is due to a tropical plume event. Both observations and simulations support this major influence of the low-level water vapor radiative effect on $$T_{min}$$ during this spring heatwave.
- Published
- 2020
13. Analysis of Rainfall Dynamics in Conakry, Republic of Guinea
- Author
-
Saïdou Moustapha Sall, Ibrahima Diouf, Ibrahima Kalil Kante, Abdoul Lahat Dieng, Françoise Guichard, Daouda Badiane, and Idrissa Diaby
- Subjects
Convection ,geography ,geography.geographical_feature_category ,Moisture ,Precipitable water ,Climatology ,Moisture convergence ,Environmental science ,Moisture flow ,General Medicine ,Massif ,Seasonal cycle ,Orographic lift - Abstract
Observed rainfall data of the National Meteorological Service of Guinea (NMS) exhibit that synoptic station usually records the largest rainfall amount in Guinea. Only few studies have been done on this rainfall peak observed in Conakry. This work better analyses the atmospheric dynamics leading to rainfall particularity. Using NMS data from 1981 to 2010, the monthly contribution and mean seasonal cycle of each station has been done. These findings of the study show that between July and August (rainfall season peak), the coastline particularly Conakry records the largest amount of rainfall. Using Era Interim data for the common period (1981-2010), we also investigate the rainfall dynamics in the lower level (1000 hPa - 850 hPa) from precipitable water, divergence, and moisture flow transport. There is a west and southwest moisture flow transport explained by a strong moisture convergence in the coastal region (Lower-Guinea). Furthermore, values of precipitable water in the same region are found, in agreement with the high moisture flow transport gradient. These incoming flow (west and south-west) undergo a return by blocking’s Kakoulima range (foehn effect) and Fouta Djallon massif to initiate convection clouds on the Guinean coast. These processes enhance a convergence of moisture associated with orographic origin convection. This has an important effect by increasing the rainfall amount in Conakry.
- Published
- 2020
14. Un auteur (re)découvert au <scp>xxi</scp>e siècle: Évrart de Conty et la paternité des Eschés amoureux
- Author
-
Françoise Guichard-Tesson and Michèle Goyens
- Subjects
Linguistics and Language ,Literature and Literary Theory ,Language and Linguistics - Abstract
Le Livre des Problemes d’Aristote d’Evrart de Conty figure parmi les textes qui ont ete (re)decouverts depuis une vingtaine d’annees. Dans cette contribution, nous retracons tout d’abord brievement...
- Published
- 2020
15. Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change
- Author
-
Adjoua Moise Landry Famien, Douglas J. Parker, Christopher M. Taylor, Arona Diedhiou, John H. Marsham, Cornelia Klein, David P. Rowell, Lawrence S. Jackson, Théo Vischel, Françoise Guichard, UK Centre for Ecology & Hydrology [Penicuik, U.K.], Department of Atmospheric and Cryospheric Sciences [Innsbruck] (ACINN), Universität Innsbruck [Innsbruck], Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de physique de l'atmosphère et de mécaniques des fluides (LAPA-MF), Université de Cocody, Université Félix Houphouët-Boigny (UFHB), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
- Subjects
Convection ,010504 meteorology & atmospheric sciences ,Renewable Energy, Sustainability and the Environment ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Global warming ,0207 environmental engineering ,Public Health, Environmental and Occupational Health ,Climate change ,Storm ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,02 engineering and technology ,Limiting ,15. Life on land ,01 natural sciences ,Atmospheric Sciences ,West african ,Meteorology and Climatology ,13. Climate action ,Climatology ,Range (statistics) ,Environmental science ,Climate model ,020701 environmental engineering ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
International audience; Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for 2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the +0–60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.
- Published
- 2021
16. Sahelian Heat Wave Characterization From Observational Data Sets
- Author
-
Fleur Couvreux, Jessica Barbier, Françoise Guichard, Dominique Bouniol, Romain Roehrig, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), CNRS/Université de Toulouse, Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Météo-France – CNRS
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Atmospheric Science ,geography ,Daytime ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Precipitable water ,0211 other engineering and technologies ,02 engineering and technology ,Heat wave ,Atmospheric sciences ,01 natural sciences ,West africa ,Aerosol ,Geophysics ,13. Climate action ,Space and Planetary Science ,Radiation budget ,Spring (hydrology) ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences - Abstract
International audience; Observational data sets are used to statistically document processes involved in spring time heat waves in the Sahel Nighttime heat waves are linked to an increase in precipitable water as well as a frequent high aerosol load. Daytime heat waves are generally associated with cleaner skies. The more intense events show in addition a higher amount of precipitable water.
- Published
- 2021
17. The added value in CMIP6 models for simulating west African rainfall and its related extreme indices
- Author
-
Magatte Sow, Françoise Guichard, Ross Dixon, Moussa Diakhate, Songnan Lou, and Amadou Gaye
- Published
- 2021
18. Synoptic timescale linkage between midlatitude winter troughs Sahara temperature patterns and northern Congo rainfall: a building block of regional climate variability
- Author
-
Françoise Guichard, Christopher M. Taylor, John H. Marsham, Andreas H. Fink, Richard J. Keane, Neil Ward, and Douglas J. Parker
- Subjects
Mediterranean climate ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0207 environmental engineering ,Rossby wave ,02 engineering and technology ,Block (meteorology) ,01 natural sciences ,Latitude ,Earth sciences ,Meteorology and Climatology ,Middle latitudes ,Climatology ,ddc:550 ,Precipitation ,020701 environmental engineering ,Trough (meteorology) ,Geology ,0105 earth and related environmental sciences ,Teleconnection - Abstract
A coherent synoptic sequence, mostly over North Africa, is identified whereby an upper-level midlatitude trough (in November–March) excites several days of quasi-stationary near-surface warming across the Sahara, leading to rainfall events over northern Congo (NC), and perturbed weather more widely. Ahead of NC rainfall events, composite sequences first identify troughs for several days near Iberia, followed by relatively quick transfer to the Central Mediterranean (CMed). Iberia and CMed daily trough-strength indices reveal that both lead to warming and NC rainfall. Iberia trough linkages develop through West Africa and take longer to reach NC, while CMed linkages reach NC faster (2–3 days), with impact extent focused mostly south and east of CMed. Building up to the rainfall events, initial warming over the central Sahara migrates southeastward close to NC, ultimately with typical magnitude of about 1–2°C at 10–15°N. Such anomalies are statistically predictive for NC daily rainfall and associated nearby atmospheric features: anomalous low-level southerly wind and increased moisture; anomalous low-level westerly wind and vertical easterly shear to 600 hPa; increased mid-level moisture (600 hPa), which along with low-level moisture, connects northward into midlatitudes. A secondary route identified by which Iberia troughs can impact NC rainfall is through direct atmospheric teleconnection with precipitation to the west of NC, and subsequent migration of that convection eastward into NC. The eastern side of NC generally shows a small lag on western parts, and links more strongly to CMed troughs. Taken together, the lagged synoptic expression of Iberia and CMed troughs is widespread over several days, including much of North Africa (to equatorial latitudes), southwestern Asia, eastern Africa and the western Indian Ocean. Overall, these results can contribute to situational awareness for weather forecasters across the zones influenced by the troughs, while also providing a framework for climate timescale analyses.
- Published
- 2021
19. Heavy precipitating events in satellites and rain-gauge products over the Sahel
- Author
-
Françoise Guichard, Sidiki Sanogo, Philippe Peyrillé, Ousmane Ouedraogo, and Romain Roehrig
- Subjects
Rain gauge ,Meteorology ,Environmental science - Abstract
The Sahel has experienced an increase in the frequency and intensity of extreme rainfall events over the recent decades. These trends are expected to continue in the future. However the properties of these events have so far received little attention. In the present study, we define a heavy precipitating event (HPE) as the occurrence of daily-mean precipitation exceeding a given percentile (e.g., 99th and higher) over a 1°x1° pixel and examine their spatial distribution, intensity, seasonality and interannual variability. We take advantage of an original reference dataset based on a rather high-density rain-gauge network over Burkina Faso (142 stations) to evaluate 22 precipitation gridded datasets often used in the literature, based on rain-gauge-only measurements, satellite measurements, or both. Our reference dataset documents the HPEs over Burkina Faso. The 99th percentile identifies events greater than 26 mm d-1 with a ~2.5 mm confidence interval depending on the number of stations within a 1°x1° pixel. The HPEs occur in phase with the West African monsoon annual cycle, more frequently during the monsoon core season and during wet years. The evaluation of the gridded rainfall products reveals that only two of the datasets, namely the rain-gauge-only based products GPCC-DDv1 and REGENv1, are able to properly reproduce all of the HPE features examined in the present work. A subset of the remaining rainfall products also provide satisfying skills over Burkina Faso, but generally only for a few HPE features examined here. In particular, we notice a general better performance for rainfall products that include rain-gauge data in the calibration process, while estimates using microwave sensor measurements are prone to overestimate the HPE intensity. The agreement among the 22 datasets is also assessed over the entire Sahel region. While the meridional gradient in HPE properties is well captured by the good performance subset, the zonal direction exhibit larger inter-products spread. This advocates for the need to continue similar evaluation with the available rain-gauge network available in West Africa, both to enhance the HPE documentation and understanding at the scale of the region and to help improve the rainfall dataset quality.
- Published
- 2021
20. What Drives the Intensification of Mesoscale Convective Systems over the West African Sahel under Climate Change?
- Author
-
Edward K. Vizy, John H. Marsham, Simon Tucker, Rachel Stratton, Kerry H. Cook, Christopher M. Taylor, Françoise Guichard, Declan L. Finney, Rory G. J. Fitzpatrick, Lawrence S. Jackson, J. A. Crook, David P. Rowell, Douglas J. Parker, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Convection ,[PHYS]Physics [physics] ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Mesoscale meteorology ,Climate change ,Storm ,02 engineering and technology ,01 natural sciences ,Convective available potential energy ,020801 environmental engineering ,Meteorology and Climatology ,13. Climate action ,Climatology ,Wind shear ,[SDE]Environmental Sciences ,Environmental science ,Climate model ,Precipitation ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Extreme rainfall is expected to increase under climate change, carrying potential socioeconomic risks. However, the magnitude of increase is uncertain. Over recent decades, extreme storms over the West African Sahel have increased in frequency, with increased vertical wind shear shown to be a cause. Drier midlevels, stronger cold pools, and increased storm organization have also been observed. Global models do not capture the potential effects of lower- to midtropospheric wind shear or cold pools on storm organization since they parameterize convection. Here we use the first convection-permitting simulations of African climate change to understand how changes in thermodynamics and storm dynamics affect future extreme Sahelian rainfall. The model, which simulates warming associated with representative concentration pathway 8.5 (RCP8.5) until the end of the twenty-first century, projects a 28% increase of the extreme rain rate of MCSs. The Sahel moisture change on average follows Clausius–Clapeyron scaling, but has regional heterogeneity. Rain rates scale with the product of time-of-storm total column water (TCW) and in-storm vertical velocity. Additionally, prestorm wind shear and convective available potential energy both modulate in-storm vertical velocity. Although wind shear affects cloud-top temperatures within our model, it has no direct correlation with precipitation rates. In our model, projected future increase in TCW is the primary explanation for increased rain rates. Finally, although colder cold pools are modeled in the future climate, we see no significant change in near-surface winds, highlighting avenues for future research on convection-permitting modeling of storm dynamics.
- Published
- 2020
21. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas
- Author
-
Xiaoye Tong, Françoise Guichard, Feng Tian, Josep Peñuelas, Wenmin Zhang, Martin Brandt, Rasmus Fensholt, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Geosciences and Natural Resource Management [Copenhagen] (IGN), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Global Ecology Unit CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona (UAB), Tsinghua University [Beijing] (THU), European Project: 610028,EC:FP7:ERC,ERC-2013-SyG,IMBALANCE-P(2014), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), and Groupe d'étude de l'atmosphère météorologique (CNRM-GAME)
- Subjects
0301 basic medicine ,Science ,General Physics and Astronomy ,02 engineering and technology ,Land cover ,Woodland ,Article ,General Biochemistry, Genetics and Molecular Biology ,Tropical savanna climate ,03 medical and health sciences ,Evapotranspiration ,Ecosystem ,lcsh:Science ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Multidisciplinary ,General Chemistry ,Vegetation ,15. Life on land ,021001 nanoscience & nanotechnology ,Arid ,030104 developmental biology ,13. Climate action ,Climatology ,Environmental science ,lcsh:Q ,0210 nano-technology ,Woody plant - Abstract
Tropical savannas comprise mixed woodland grassland ecosystems in which trees and grasses compete for water resources thereby maintaining the spatial structuring of this ecosystem. A global change in rainfall climatology may impact the structure of tropical savanna ecosystems by favouring woody plants, relative to herbaceous vegetation. Here we analysed satellite data and observed a relatively higher increase in woody vegetation (5%) as compared to the increase in annual maximum leaf area index (LAImax, an indicator of the total green vegetation production) (3%) in arid and semi-arid savannas over recent decades. We further observed a declining sensitivity of LAImax to annual rainfall over 56% of the tropical savannas, spatially overlapping with areas of increased woody cover and altered rainfall climatology. This suggests a climate-induced shift in the coexistence of woody and herbaceous vegetation in savanna ecosystems, possibly caused by altered hydrological conditions with significance for land cover and associated biophysical effects such as surface albedo and evapotranspiration., Changing rainfall patterns may drive changes in the structure of tropical savanna. Here Zhang et al. use satellite data from global tropical savannas, and find evidence to suggest that altered rainfall may be favouring woody plants over herbaceous plants in these ecosystems.
- Published
- 2019
22. Regional co-variability of spatial and temporal soil moisture-precipitation coupling in North Africa : An observational perspective
- Author
-
Chiel C. van Heerwaarden, Cathy Hohenegger, Françoise Guichard, Irina Y. Petrova, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Wageningen University and Research [Wageningen] (WUR), Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and Groupe d'étude de l'atmosphère météorologique (CNRM-GAME)
- Subjects
Convection ,Meteorologie en Luchtkwaliteit ,010504 meteorology & atmospheric sciences ,Meteorology and Air Quality ,0208 environmental biotechnology ,Mesoscale meteorology ,Wetland ,02 engineering and technology ,010501 environmental sciences ,Sensible heat ,01 natural sciences ,lcsh:Technology ,lcsh:TD1-1066 ,RELATIVE-HUMIDITY ,ATMOSPHERIC CONTROLS ,Life Science ,Precipitation ,MESOSCALE CONVECTIVE SYSTEM ,lcsh:Environmental technology. Sanitary engineering ,RAINFALL ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Water content ,WEST-AFRICA ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,General Environmental Science ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,WIMEK ,FEEDBACK ,lcsh:T ,Anomaly (natural sciences) ,LARGE-SCALE ,lcsh:Geography. Anthropology. Recreation ,LIFE-CYCLE ,020801 environmental engineering ,BOUNDARY LAYER INTERACTIONS ,lcsh:G ,[SDU]Sciences of the Universe [physics] ,Climatology ,Earth and Environmental Sciences ,Soil water ,General Earth and Planetary Sciences ,Environmental science ,AMMA CAMPAIGN - Abstract
The magnitude and sign of soil moisture–precipitation coupling (SMPC) is investigated using a probability-based approach and 10 years of daily microwave satellite data across North Africa at a 1∘ horizontal scale. Specifically, the co-existence and co-variability of spatial (i.e. using soil moisture gradients) and temporal (i.e. using soil moisture anomaly) soil moisture effects on afternoon rainfall is explored. The analysis shows that in the semi-arid environment of the Sahel, the negative spatial and the negative temporal coupling relationships do not only co-exist, but are also dependent on one another. Hence, if afternoon rain falls over temporally drier soils, it is likely to be surrounded by a wetter environment. Two regions are identified as SMPC “hot spots”. These are the south-western part of the domain (7–15∘ N, 10∘ W–7∘ E), with the most robust negative SMPC signal, and the South Sudanese region (5–13∘ N, 24–34∘ E). The sign and significance of the coupling in the latter region is found to be largely modulated by the presence of wetlands and is susceptible to the number of long-lived propagating convective systems. The presence of wetlands and an irrigated land area is found to account for about 30 % of strong and significant spatial SMPC in the North African domain. This study provides the first insight into regional variability of SMPC in North Africa, and supports the potential relevance of mechanisms associated with enhanced sensible heat flux and mesoscale variability in surface soil moisture for deep convection development.
- Published
- 2018
23. Characteristics of mid‐level clouds over West Africa
- Author
-
John H. Marsham, Cathryn E. Birch, Dominique Bouniol, Fleur Couvreux, Douglas J. Parker, Luis Garcia-Carreras, Elsa Bourgeois, Françoise Guichard, Centre national de recherches météorologiques (CNRM), Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), School of Earth and Environment [Leeds] (SEE), and University of Leeds
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Inversion (meteorology) ,Seasonality ,010502 geochemistry & geophysics ,Monsoon ,medicine.disease ,01 natural sciences ,West africa ,Radiative effect ,Lidar ,13. Climate action ,Diurnal cycle ,Climatology ,Radiative transfer ,medicine ,ComputingMilieux_MISCELLANEOUS ,Geology ,0105 earth and related environmental sciences - Abstract
Mid‐level clouds, located between 2 and 9 km height, are ubiquitous in the tropical belt. However, few studies have documented their characteristics and tried to identify the associated thermodynamic properties, particularly in West Africa. This region is characterized by a strong seasonality with precipitation occurring in the Sahel from June to September (monsoon season). This period also coincides with the annual maximum of the cloud cover. Here, we document the macro‐ and microphysical properties of mid‐level clouds, the environment in which such clouds occur, as well as their radiative properties across West Africa. To do so, we combined high‐resolution observations from two ground‐based sites (including lidar and cloud radar) in contrasted environments: one in the Sahel (Niamey, AMMA campaign, 2006) and the other in the Sahara (Bordj Badji Mokhtar, Fennec campaign, June 2011) along with the merged CloudSat‐CALIPSO satellite products. The results show that mid‐level clouds are found throughout the year with a predominance around the monsoon season early in the morning. They also are preferentially observed in the southern and western parts of West Africa. They are usually thin (most of them are less than 1000 m deep) and as observed in Niamey, mainly composed of liquid water. A clustering method applied to Niamey data allows us to distinguish three different types of cloud: one with low bases, one with high bases and another with large thicknesses. The two first cloud families are capped by an inversion. The last family is associated with a large vertical moisture transport and likely has the highest radiative effect at the Earth's surface among the three cloud types.
- Published
- 2018
24. Detection of Intraseasonal Large-Scale Heat Waves: Characteristics and Historical Trends during the Sahelian Spring
- Author
-
Romain Roehrig, Fleur Couvreux, Jessica Barbier, Françoise Guichard, Dominique Bouniol, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Spring season ,Lead (sea ice) ,Extreme events ,Tropics ,02 engineering and technology ,Heat wave ,Atmospheric sciences ,01 natural sciences ,020801 environmental engineering ,Earth surface ,13. Climate action ,Climatology ,Spring (hydrology) ,Environmental science ,Scale (map) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
In the Sahel very high temperatures prevail in spring, but little is known about heat waves in this region at that time of year. This study documents Sahelian heat waves with a new methodology that allows selecting heat waves at specific spatiotemporal scales and can be used in other parts of the world. It is applied separately to daily maximum and minimum temperatures, as they lead to the identification of distinct events. Synoptic–intraseasonal Sahelian heat waves are characterized from March to July over the period 1950–2012 with the Berkeley Earth Surface Temperature (BEST) gridded dataset. Morphological and temperature-related characteristics of the selected heat waves are presented. From March to July, the further into the season, the shorter and the less frequent the heat waves become. From 1950 to 2012, these synoptic–intraseasonal heat waves do not tend to be more frequent; however, they become warmer, and this trend follows the Sahelian climatic trend. Compared to other commonly used indices, the present index tends to select heat waves with more uniform intensities. This comparison of indices also underlined the importance of the heat index definition on the estimated climatic heat wave trends in a changing climate. Finally, heat waves were identified with data from three meteorological reanalyses: ERA-Interim, MERRA, and NCEP-2. The spreads in temperature variabilities, seasonal cycles, and trends among reanalyses lead to differences in the characteristics, interannual variability, and climatic trends of heat waves, with fewer departures from BEST for ERA-Interim.
- Published
- 2017
25. The Surface Energy Budget Computed at the Grid-Scale of a Climate Model Challenged by Station Data in West Africa
- Author
-
Frédéric Hourdin, F. B. Diallo, A.-K. Traore, Françoise Guichard, Catherine Rio, Laurent Kergoat, and L. Mellul
- Subjects
Global and Planetary Change ,010504 meteorology & atmospheric sciences ,Intertropical Convergence Zone ,0208 environmental biotechnology ,Flux ,02 engineering and technology ,Seasonality ,Albedo ,Monsoon ,medicine.disease ,Energy budget ,Atmospheric sciences ,01 natural sciences ,020801 environmental engineering ,13. Climate action ,Climatology ,medicine ,Radiative transfer ,General Earth and Planetary Sciences ,Environmental Chemistry ,Climate model ,0105 earth and related environmental sciences - Abstract
In most state-of-the-art climate models, systematic errors persist in the representation of the rainfall seasonality, near surface air temperature, and surface energy budget over West Africa, even during the dry season. Most biases are related to an incorrect latitudinal position of the monsoon structures. To disentangle the role of the large-scale dynamics from that of the physical processes in these biases, simulations are performed with the LMDZ general circulation model in which the horizontal winds are nudged toward reanalysis. Wind nudging greatly improves the position of the ITCZ as well as the representation of the components of the surface energy budget directly impacted by the water budget and hence facilitates a more systematic analysis of remaining biases associated with the physics in the model. The great potential of wind nudging to compare the energetics of the atmospheric column in climate models at grid cell scale with station observations, even for coarse grid models, is then shown. Despite the improved water advec-tion and rainfall seasonality in the nudged simulations, errors consisting in a cold bias during the dry season over Sahel, an underestimated seasonal variation of surface albedo, and an overestimation of the solar incoming flux remain. The origin of these remaining biases is further investigated by conducting a series of dedicated sensitivity experiments. Results highlight the key role of the soil thermal inertia, the turbulent mixing efficiency, the surface albedo, and the aerosols and clouds radiative effects in the representation of meteorological 2m-variables and surface energy budget.
- Published
- 2017
26. Influence of dry-season vegetation variability on Sahelian dust during 2002-2015
- Author
-
Laurent Kergoat, Françoise Guichard, C. Vassal, and Caroline Pierre
- Subjects
Wet season ,010504 meteorology & atmospheric sciences ,04 agricultural and veterinary sciences ,Vegetation ,15. Life on land ,01 natural sciences ,Normalized Difference Vegetation Index ,Wind speed ,AERONET ,Geophysics ,13. Climate action ,Climatology ,Dry season ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,General Earth and Planetary Sciences ,Environmental science ,Moderate-resolution imaging spectroradiometer ,Transect ,0105 earth and related environmental sciences - Abstract
Key words Non photosynthetic vegetation, Sahel, STI, dust interannual variability, MODIS. North Africa is the largest dust source on Earth. However, the drivers of dust emission interannual variability in this region are still debated. Early studies outlined the role of previous-season rainfall and vegetation growth, while some recent studies emphasize the role of wind variability. Here we use a newly developed estimation of dry-season nonphotosynthetic vegetation cover in the Sahel to address this question [1]. This estimation is based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) shortwave infrared bands and covers the 2002-2015 period. Firstly, we showed that the annual vegetation growth anomalies caused by variability of rainfall in June-September (rainy season) translate into anomalies of dry vegetation cover that persist throughout the dry season until May, i.e. until the very end of it. Secondly, we showed that these vegetation anomalies explain 43% (50%) of the year-to-year variance in Sahelian-mean dry-season aerosol optical depth (AOD) as derived from MODIS Deep Blue (or AERONET Sun photometers). Similar explained variance is found with 10 m wind speed and dust uplift potential from the ECMWF. Wind and dry-season vegetation anomalies are not correlated and are further combined in a linear two-variable model. This model is compared to the independent dust concentration data from the Sahelian Dust Transect. The central Sahel proves more important than the western Sahel for dry-season AOD variability, but no relationship to Land Use was found. Dry-season vegetation, for which we now have large-scale observations, is being implemented in models. Figure: (a) Dry-season STI and corresponding dry-vegetation cover in % from MODIS. Letters mark the AERONET stations. The red lines are the 600 mm and 100 mm isohyets. (b) Map of correlation of dry-season STI (October-June) with previous growing-season NDVI (July-September). (c) Map of correlation between dry-season STI and Sahelian AOD.
- Published
- 2017
27. Morphology of breeze circulations induced by surface flux heterogeneities and their impact on convection initiation
- Author
-
Nicolas Rochetin, Fleur Couvreux, and Françoise Guichard
- Subjects
Convection ,Atmospheric Science ,Daytime ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Flux ,02 engineering and technology ,Sensible heat ,Atmospheric sciences ,01 natural sciences ,020801 environmental engineering ,Circulation (fluid dynamics) ,Mountain breeze and valley breeze ,Wind shear ,Synoptic scale meteorology ,Physics::Atmospheric and Oceanic Physics ,Geology ,0105 earth and related environmental sciences - Abstract
This study analyses the role of breeze circulations induced by a surface sensible heat flux heterogeneity on deep convection initiation. Large-eddy simulations are used to disentangle the processes at play in a typical case of daytime triggering of deep convection over a semi arid land. We show that the presence of a realistic surface sensible heat flux heterogeneity leads to an earlier triggering of convection and induces a strong determinism in the triggering location at the beta meso-scale (i.e 50 km). The transition to deep convection consists of three consecutive stages, each one corresponding to a specific mode of interaction between (i) the boundary-layer thermals (small-scale), (ii) the breeze circulation (meso-scale) and (iii) the background wind (synoptic scale). These stages are both interpreted thermodynamically and morphologically. All along the transition phase, the boundary-layer growth acts to slow down the background wind, which strengthens the breeze circulation. The breeze evolves towards a circular shape which optimizes moisture convergence and cloud formation just prior to triggering. The presence of wind shear leads with a more asymmetric shape of the breeze in the afternoon, associated with a preferential triggering on the down-shear side of the breeze circulation.
- Published
- 2016
28. Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models
- Author
-
Françoise Guichard, Magatte Sow, Diarra Dieng, Amadou Thierno Gaye, and Moussa Diakhaté
- Subjects
Geography ,Climatology ,Annual cycle ,atmospheric_science ,West africa - Abstract
This study analyses uncertainties associated with the annual cycle of West African rainfall characteristics in 15 simulations of the Coupled Model Intercomparison Project phase 5 (CMIP5) over the Sahel and Guinean regions. Indices based on daily rainfall such as the frequency and the ntensity of wet days, the consecutive dry days (CDD) and wet days (CWD), the 95th percentile of daily rainfall (R95) and its contribution to the umulative monsoon rainfall (R95PTOT) have been assessed. Over both regions, TRMM, GPCP and CHIRPS observational datasets provide very consistent results on the annual cycle of precipitation but less so on the frequency of wet days. Conversely, higher uncertainties are noted on the intensity of wet days over both study areas, particularly over the Guinean region. Overall, CMIP5 simulations present much higher uncertainties in the representation of the mean precipitation climatology, often provide too early (late) onset dates over the Sahel (the Guinean region) and overestimate rainfall during the early and late monsoon phases. These errors do not compensate at the annual scale nor when considering West Africa as a hole. Results also reveal that over the Guinean region, the difficulty of models to represent the annual structure of the mean precipitation strongly involves biases in the representation of the annual cycle of the frequency of wet days. We found strong uncertainties in the simulation of the CWD and he CDD over both areas. Conversely for R95p and R95PTOT, the ncertainties in CMIP5 models appear somewhat weaker, but the magnitude f R95 is largely underestimated in most models.
- Published
- 2019
29. Supplementary material to 'Sensitivity of GPS tropospheric estimates to mesoscale convective systems in West Africa'
- Author
-
Samuel Nahmani, Olivier Bock, and Françoise Guichard
- Published
- 2019
30. Towards a Long-Term Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to 2018
- Author
-
Fabien C. C. Hountondji, Bertrand Bonan, Amadou Thierno Gaye, Françoise Guichard, Luc Olivier Sintondji, Mamadou Simina Drame, Jean-Christophe Calvet, Clément Albergel, Yongjun Zheng, Moustapha Tall, Pinghouinde Michel Nikiema, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), China Agricultural University (CAU), Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang (LPAO-SF), École Supérieure Polytechnique de Dakar (ESP), Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), and Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
- Subjects
environmental_sciences ,010504 meteorology & atmospheric sciences ,0207 environmental engineering ,0211 other engineering and technologies ,reanalysis ,data assimilation ,land surface modeling ,remote sensing ,02 engineering and technology ,01 natural sciences ,Data assimilation ,Evapotranspiration ,Leaf area index ,020701 environmental engineering ,lcsh:Science ,Water content ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Topsoil ,Primary production ,Biosphere ,15. Life on land ,Term (time) ,13. Climate action ,Remote sensing (archaeology) ,Climatology ,[SDE]Environmental Sciences ,General Earth and Planetary Sciences ,Soil horizon ,Environmental science ,lcsh:Q - Abstract
International audience; This study focuses on the ability of the global Land Data Assimilation System, LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI) from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25 • × 0.25 • and 0.50 • × 0.50 • spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain (dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences between the model and the observations are the Remote Sens. 2019, 11, 735 2 of 26 largest, prior to any assimilation. These differences are linked to the model failing to represent the behavior of some specific vegetation species, which are known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of evapotranspiration and gross primary production after assimilation.
- Published
- 2019
31. Wind erosion and dust emission in the Sahel: a regional modelling approach to evaluate the impact of climate and land-use
- Author
-
Abdourhamane Touré, Beatrice Marticorena, Siour, G., Caroline Pierre, Christel Bouet, Gilles Bergametti, Abdourhamanetouré, A., Chrisitian Baron, Dominique Bouniol, Couvreux, F., Françoise Guichard, Manuela Grippa, Pierre Hiernaux, Laurent Kergoat, Yann Largeron, Thierry Lebel, Eric Mougin, Guillaume Quantin, J-L, Rajot, Joana Roussillon, Amadou Tidjani, Vischel, T., Christian Valentin, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Mécanismes et Transfert en Géologie (LMTG), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), Institut National de la Recherche Agronomique (INRA)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut d'écologie et des sciences de l'environnement de Paris (IEES (UMR_7618 / UMR_D_242 / UMR_A_1392 / UM_113) ), bergametti, gilles, and Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
[SDE] Environmental Sciences ,[SDU] Sciences of the Universe [physics] ,[SDE.MCG] Environmental Sciences/Global Changes ,Vegetation ,[SDU]Sciences of the Universe [physics] ,Sahel ,[SDE.MCG]Environmental Sciences/Global Changes ,Wind erosion ,Land use ,[SDE]Environmental Sciences ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment ,Dust emission - Abstract
International audience; The semi-arid Sahelian region is particularly prone to wind erosion due to low and variable annual precipitation producing low vegetation cover with a high interannual variability. Surfaces traditionally devoted to livestock grazing are used as croplands, increasing the proportion of bare surface unprotected from wind erosion. Wind erosion could significantly evolve in the future with climate change and the changes in land use and agropastoral management practices expected from the persistent demographic growth. To estimate the wind erosion and dust emission in the Sahel, we have developed a regional modelling approach in the framework of the CAVIARS ANR project (Climate, Agriculture and Vegetation: Impacts on Aeolian eRosion in the Sahel). The approach is based on existing models that were adapted and coupled to represent the main processes involved in the wind erosion and their dependence to climate parameters and agropastoral practices. Natural vegetation (herbaceous) and cropped vegetation (millet) are respectively modelled with the STEP vegetation model and the SARRA-H agronomic model,both models improved to reproduce the dynamics of dry vegetation. The wind erosion model has been tested and adapted to represent the erosion fluxes over typical Sahelian vegetated surfaces. A specific parameterization have been developed to represent the very strong surface winds associated to the convective activity. Grazing pressure maps were established based on national data and/or agro-pastoral census. The spatial and temporal distribution of the simulated dust emissions computed for the period 2000-2014 will be presented. The parameterization of the wind speed distribution associated with the convective activity allows to better capture the seasonal pattern of local wind erosion. The relative weight of climatic parameters and agropastoral management will be estimated by reference to a simulation with no vegetation and no land use.
- Published
- 2018
32. A 60-year reconstructed high-resolution local meteorological data set in Central Sahel (1950-2009): evaluation, analysis and application to land surface modelling
- Author
-
Jérôme Demarty, Laurent Kergoat, Bernard Cappelaere, Crystèle Leauthaud, I. Bouzou Moussa, Françoise Guichard, Manuela Grippa, M. Mouhaimouni, Cécile Velluet, I. Mainassara, Théo Vischel, and Benjamin Sultan
- Subjects
Atmospheric Science ,Multivariate statistics ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Humidity ,Cru ,02 engineering and technology ,Land cover ,15. Life on land ,01 natural sciences ,Wind speed ,020801 environmental engineering ,Data set ,13. Climate action ,Downwelling ,ERA-40 ,Climatology ,Environmental science ,0105 earth and related environmental sciences - Abstract
The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land–atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950–2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation, latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, ∼1 °C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations. (Resume d'auteur)
- Published
- 2016
33. Changes in Sahelian annual vegetation growth and phenology since 1960: A modeling approach
- Author
-
Caroline Pierre, Laurent Kergoat, Manuela Grippa, Eric Mougin, Françoise Guichard, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Paris (UP)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
2. Zero hunger ,Global and Planetary Change ,010504 meteorology & atmospheric sciences ,Phenology ,0208 environmental biotechnology ,02 engineering and technology ,15. Life on land ,Vegetation phenology ,Oceanography ,Monsoon ,01 natural sciences ,020801 environmental engineering ,13. Climate action ,Climatology ,Tropical vegetation ,Dry season ,Period (geology) ,medicine ,Environmental science ,Moderate-resolution imaging spectroradiometer ,medicine.symptom ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Vegetation (pathology) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
In semi-arid areas like the Sahel, vegetation is particularly sensitive to climate variability and can play an important role in surface-atmosphere coupling. After a wet period extending from 1950 to 1970, the Sahel experienced a severe drought in the 1970s and 1980s, followed by a partial recovery of rainfall and a “re-greening” of vegetation beginning in the 1990s. This study explores how the multidecadal variability of Sahelian rainfall and particularly the drought period have affected vegetation phenology and growth since 1960. The STEP model, which is specifically designed to simulate the Sahelian annual vegetation, including the dry season processes, is run over an area extending from 13°N to 18°N and from 20°W to 20°E. Mean values, interannual variability and phenological characteristics of the Sahelian annual grasslands simulated by STEP are in good agreement with MODIS derived production and phenology over the 2001–2014 period, which demonstrates the skill of the model and allows the analysis of vegetation changes and variability over the last 50 years. It was found that droughts in the 1970s and 1980s shortened the mean vegetation cycle and reduced its amplitude and that, despite the rainfall recovery since the 1990s, the current conditions for green and dry vegetation are still below pre-drought conditions. While the decrease in vegetation production has been largely homogeneous during droughts, vegetation recovery has been heterogeneous over the Sahel since 1990, with specific changes near the western coast and at the eastern edge of the West African monsoon area. Since 1970, the Sahel also experienced an increased interannual variability in vegetation mass and phenology. In terms of phenology, region-averaged End and Length of Season are the most variable, while maximum date and Start of Season are the least variable, although the latter displays a high variability locally.
- Published
- 2016
34. Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions
- Author
-
J. Escribano, Jean-Louis Dufresne, Moussa Gueye, Françoise Guichard, Béatrice Marticorena, Laurent Menut, B. Diallo, Guillaume Siour, Frédéric Hourdin, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Mass flux ,Atmospheric Science ,Turbulent diffusion ,Meteorology ,Astrophysics::High Energy Astrophysical Phenomena ,Subsidence (atmosphere) ,Atmospheric sciences ,Convective Boundary Layer ,Wind speed ,lcsh:QC1-999 ,lcsh:Chemistry ,Boundary layer ,lcsh:QD1-999 ,Diurnal cycle ,[SDU]Sciences of the Universe [physics] ,Climate model ,Physics::Atmospheric and Oceanic Physics ,lcsh:Physics - Abstract
We investigate how the representation of the boundary layer in a climate model impacts the representation of the near-surface wind and dust emission, with a focus on the Sahel/Sahara region. We show that the combination of vertical turbulent diffusion with a representation of the thermal cells of the convective boundary layer by a mass flux scheme leads to realistic representation of the diurnal cycle of wind in spring, with a maximum near-surface wind in the morning. This maximum occurs when the thermal plumes reach the low-level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidence around thermal plumes in typically less than 1 h. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong nonlinearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model coupled to the emission module of the CHIMERE chemistry transport model, in which winds are relaxed toward that of the ERA-Interim reanalyses. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyses used for nudging themselves. It also generates dust emissions in better agreement with current estimates, but the aerosol optical thickness is still significantly underestimated.
- Published
- 2015
35. Can we use surface wind fields from meteorological reanalyses for Sahelian dust emission simulations?
- Author
-
Françoise Guichard, Yann Largeron, Fleur Couvreux, Laurent Kergoat, Dominique Bouniol, and Béatrice Marticorena
- Subjects
Convection ,Geophysics ,Wind shear ,Climatology ,Lead (sea ice) ,General Earth and Planetary Sciences ,Flux ,Aeolian processes ,Environmental science ,Monsoon ,Atmospheric sciences ,Annual cycle ,Wind speed - Abstract
The Sahel is prone to intense soil erosion, and the dust emission flux is very sensitive to the surface wind speed. In this study, we use high-frequency observations acquired across the Sahel to assess the ability of three global reanalyses (ERA-interim, NCEP-CFSR and MERRA) to capture the observed surface wind events that are critical to wind erosion. ERA-Interim is shown to perform best. However, all three reanalyses present a too flat annual cycle, with important season-dependent biases: they overestimate the surface wind during dry season nights and underestimate it during spring and monsoon season days. More importantly, the strongest wind speeds, observed in the morning and during deep convective events, are systematically underestimated. As analyzed wind fields are one of the main inputs of many dust emission models, their too low fraction of high wind speeds will lead to major errors in dust emission simulations.
- Published
- 2015
36. Representation of daytime moist convection over the semi‐arid Tropics by parametrizations used in climate and meteorological models
- Author
-
T. Komori, Fleur Couvreux, Mihaela Caian, Catherine Rio, Peter Bechtold, M. P. Lefebvre, Fabio D'Andrea, Françoise Guichard, Florence Favot, S. H. Derbyshire, Pierre Gentine, and Romain Roehrig
- Subjects
Convection ,Atmospheric Science ,Coupled model intercomparison project ,Daytime ,Mesoscale meteorology ,Atmospheric sciences ,Monsoon ,Physics::Fluid Dynamics ,Troposphere ,Boundary layer ,Diurnal cycle ,Climatology ,Environmental science ,Physics::Atmospheric and Oceanic Physics - Abstract
A case of daytime development of deep convection over tropical semi-arid land is used to evaluate the representation of convection in global and regional models. The case is based on observations collected during the African Monsoon Multidisciplinary Analysis (AMMA) field campaign and includes two distinct transition phases, from clear sky to shallow cumulus and from cumulus to deep convection. Different types of models, run with identical initial and boundary conditions, are intercompared: a reference large-eddy simulation (LES), single-column model (SCM) version of four different Earth system models that participated in the Coupled Model Intercomparison Project 5 exercise, the SCM version of the European Centre for Medium-range Weather Forecasts operational forecast model, the SCM version of a mesoscale model and a bulk model. Surface fluxes and radiative heating are prescribed preventing any atmosphere–surface and cloud–radiation coupling in order to simplify the analyses so that it focuses only on convective processes. New physics packages are also evaluated within this framework. As the LES correctly reproduces the observed growth of the boundary layer, the gradual development of shallow clouds, the initiation of deep convection and the development of cold pools, it provides a basis to evaluate in detail the representation of the diurnal cycle of convection by the other models and to test the hypotheses underlying convective parametrizations. Most SCMs have difficulty in representing the timing of convective initiation and rain intensity, although substantial modifications to boundary-layer and deep-convection parametrizations lead to improvements. The SCMs also fail to represent the mid-level troposphere moistening during the shallow convection phase, which we analyse further. Nevertheless, beyond differences in timing of deep convection, the SCM models reproduce the sensitivity to initial and boundary conditions simulated in the LES regarding boundary-layer characteristics, and often the timing of convection triggering.
- Published
- 2015
37. Chapitre 1. Le réchauffement climatique observé depuis 1950 au Sahel
- Author
-
Eric Mougin, Crystèle Leauthaud, Jessica Barbier, Laurent Kergoat, Françoise Guichard, Frédéric Hourdin, and Birama Diarra
- Subjects
Environmental science - Published
- 2017
38. Local Weather
- Author
-
Douglas J. Parker, Abdou Kassimou, Bernard N. Orji, David Perry Osika, Ibrahim Hamza, Mariane Diop-Kane, Andreas Fink, Jim Galvin, Françoise Guichard, Benjamin L. Lamptey, Hama Hamidou, Roderick van der Linden, Robert Redl, Thierry Lebel, and Chris Tubbs
- Subjects
010504 meteorology & atmospheric sciences ,010502 geochemistry & geophysics ,01 natural sciences ,0105 earth and related environmental sciences - Published
- 2017
39. Chapter 1. Climate warming observed in the Sahel since 1950
- Author
-
Birama Diarra, Françoise Guichard, Eric Mougin, Jessica Barbier, Laurent Kergoat, Frédéric Hourdin, and Crystèle Leauthaud
- Subjects
Climatology ,Global warming ,Environmental science - Published
- 2017
40. Analyse environnement et changement climatique en milieu rural au Niger
- Author
-
Ramatou Hassane, Benedicte Gastineau, Françoise Guichard, Benjamin Sultan, Théo Vishel, Dynamiques Rurales, Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA), Laboratoire Population-Environnement-Développement (LPED), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU), Processus de la variabilité climatique tropicale et impacts (PARVATI), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), PAM - Niger, Université Toulouse - Jean Jaurès (UT2J)-École nationale supérieure agronomique de Toulouse [ENSAT]-École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
- Subjects
[SHS.ENVIR]Humanities and Social Sciences/Environmental studies - Published
- 2017
41. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
- Author
-
O. Traulle, Piero Toscano, Arnold F. Moene, E Bargain, Beniamino Gioli, Eric Moulin, Solène Derrien, H.P. Pietersen, Joachim Reuder, Pierre Durand, Fabien Gibert, Fabienne Lohou, Diane Tzanos, Aurélien Bourdon, Gert-Jan Steeneveld, D. C. Alexander, J. Vilà-Guerau de Arellano, A. Butet, Hervé Delbarre, Clara Darbieu, A. C. van den Kroonenberg, Y. Bezombes, Bruno Piguet, Patrick Augustin, Marc Fourmentin, Yann Seity, Marius Opsanger Jonassen, Sabrina Martin, Pascal Flament, Marie Lothon, Eric Bazile, Ian Faloona, E. Blay-Carreras, Carlos Román-Cascón, Alexander Graf, J. L. Boichard, B. Campistron, Joël Barrié, Norman Wildmann, Donald H. Lenschow, F. Molinos, Alessandro Zaldei, Oscar Hartogensis, O. de Coster, Alain Dabas, David Pino, Carlos Yagüe, D. Legain, Frédérique Saïd, Vincenzo Magliulo, Maria A. Jiménez, Fleur Couvreux, Eric R. Pardyjak, D. Martinez, Anirban Garai, Françoise Guichard, M. Sastre-Marugán, C. Rufin-Soler, Joan Cuxart, Wayne M. Angevine, Karine Deboudt, S. Wacker, E. Pique, A. van de Boer, J. Groebner, L. Mastrorillo, Universitat Politècnica de Catalunya. Departament de Física Aplicada, and Universitat Politècnica de Catalunya. DF - Dinàmica No Lineal de Fluids
- Subjects
Meteorologie en Luchtkwaliteit ,Atmospheric Science ,large-eddy-simulation ,observed evening transition ,Meteorology and Air Quality ,Meteorology ,Mathematics and natural scienses: 400::Geosciences: 450::Meteorology: 453 [VDP] ,Planetary boundary layer ,drainage flow ,kinetic-energy ,Boundary layer (Meteorology) ,Sunset ,Atmospheric sciences ,Convective Boundary Layer ,Atmospheric Sciences ,lcsh:Chemistry ,Matematikk og naturvitenskap: 400::Geofag: 450::Meteorologi: 453 [VDP] ,Troposphere ,Diurnal cycle ,Capa límit (Meteorologia) ,Synoptic scale meteorology ,ddc:550 ,Meteorology & Atmospheric Sciences ,convective turbulence ,intermittent turbulence ,WIMEK ,Física [Àrees temàtiques de la UPC] ,Advection ,Meteorología ,Geofísica ,low-level jets ,lcsh:QC1-999 ,surface-layer ,Boundary layer ,lcsh:QD1-999 ,length scales ,Physics::Space Physics ,Environmental science ,Astrophysics::Earth and Planetary Astrophysics ,doppler spectral width ,lcsh:Physics ,Astronomical and Space Sciences - Abstract
Lothon, Marie et al., © 2014 Author(s). Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso-or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations., The BLLAST field experiment was made possible thanks to the contribution of several institutions and supports: INSU-CNRS (Institut National des Sciences de l’Univers, Centre national de la Recherche Scientifique, LEFE-IMAGO program), Météo-France, Observatoire Midi-Pyrénées (University of Toulouse), EUFAR (EUropean Facility for Airborne Research) BLLATE-1&2, COST ES0802 (European Cooperation in the field of Scientific and Technical) and the Spanish MINECO projects CGL2009–08609, CGL2012–37416–C04–03, CGL2012–37416– C04–02 and CGL2011-13477-E
- Published
- 2014
42. Modelling of the Thermodynamical Diurnal Cycle in the Lower Atmosphere: A Joint Evaluation of Four Contrasted Regimes in the Tropics Over Land
- Author
-
Fleur Couvreux, Amanda Gounou, Françoise Guichard, Dominique Bouniol, Philippe Peyrillé, M. Köhler, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and Deutscher Wetterdienst [Offenbach] (DWD)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Atmospheric Science ,Scale (ratio) ,Surface-atmosphere-cloud interactions ,Mode (statistics) ,African Monsoon ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,Monsoon ,Atmospheric sciences ,Single-column model ,Diurnal cycle ,Atmosphere ,Multidisciplinary Analysis campaign ,Temperature gradient ,13. Climate action ,Environmental science ,Boundary value problem ,Representation (mathematics) - Abstract
International audience; The diurnal cycle is an important mode of variability in the Tropics that is not correctly predicted by numerical weather prediction models. The African Monsoon Multidisciplinary Analyses program provided for the first time a large dataset to document the diurnal cycle over West Africa. In order to assess the processes and mechanisms that are crucial for the representation of the diurnal cycle, four different regimes that characterize the varying conditions encountered over land along a surface-temperature gradient are selected. A single-column modelling framework is used in order to relate the features of the simulated diurnal cycle to physical processes in these four distinct cases. Particular attention is given to providing realistic initial and boundary conditions at the surface and in the atmosphere, enabling the use of independent data for the evaluation of the simulations. The study focuses on the simulation of the surface energy budget and low-level characteristics and analyzes the balance between cloud/surface/boundary-layer processes at the sub-diurnal time scale. The biases and drawbacks of the simulations are found to change along the temperature gradient but they always involve the representation of clouds. They also explain parts of the bias obtained with the same model when used in a less constrained configuration. Surface-atmosphere-cloud interactions arising at the sub-diurnal time scale are invoked to explain the distinct features of the low-level diurnal cycle observed over West Africa.
- Published
- 2013
43. Phenomenology of Sahelian convection observed in Niamey during the early monsoon
- Author
-
Daouda Badiane, C. Dione, Marie Lothon, Saïdou Moustapha Sall, Françoise Guichard, Bernard Campistron, and Fleur Couvreux
- Subjects
Convection ,Atmospheric Science ,Convective inhibition ,13. Climate action ,Atmospheric convection ,Planetary boundary layer ,Climatology ,Wind profiler ,Atmospheric sciences ,Convective available potential energy ,Geology ,Free convective layer ,Convection cell - Abstract
Thisstudyaimstoachieveabetterunderstandingoftheinitiationofdeepconvection in the Sahel by using the African Monsoon Multidisciplinary Analyses (AMMA) dataset. Based on the Massachusetts Institute of Technology (MIT) radar, wind profiler,satellitedata,surfacefluxandmeteorologicalstations,wehavecharacterised the atmospheric convection which occurred over Niamey during the onset period of the monsoon. From 6 to 31 July, radar reflectivity fields combined with brightness temperatures were used to classify the type of convection observed each day within a 50km radius of the MIT radar location. Four types of convection have been identified: fair weather (FW) with a clear sky throughout the entire day, shallow convection (SH), afternoon locally initiated deep convection (LC), and propagating deep convection (PC). Subsequently, the mechanisms responsible for the initiation of local deep convection were investigated. Neither early morning convective available potential energy nor the convective triggering potential allowed the onset of local deep convection to be predicted correctly. In effect, they were both favourable to deep convection most of the time, while convective inhibition was typically quite large. Our results show that the daytime growth of the atmospheric boundary layer needed to be sufficient for local deep convection to occur during that period. Convergence lines, which grew within the morning clear-air roll organisation, were found to be precursors of local deep convection. Classes FW, SH and LC ultimately behaved quite similarly, with notable convergence in the lower troposphere, but FW showed smaller boundarylayer growth, and FW and SH classes revealed a significant divergence above the boundary layer. Most cases of LC generated a circular gust front. These density currents almost always generated new convective cells. Copyright c � 2013 Royal
- Published
- 2013
44. PIETRO D’ABANO TRADUIT ET RECYCLÉ PAR ÉVRART DE CONTY
- Author
-
Françoise Guichard-Tesson
- Published
- 2016
45. The past, present and future of African dust
- Author
-
Marco Gaetani, Françoise Guichard, Cyrille Flamant, Amato T. Evan, Scripps Institution of Oceanography (SIO - UC San Diego), University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), ANR (Agence Nationale de la Recherche, ANR-10-LABX-0018,L-IPSL,LabEx Institut Pierre Simon Laplace (IPSL): Understand climate and anticipate future changes(2010), Scripps Institution of Oceanography (SIO), University of California-University of California, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), and Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Greenhouse Effect ,Earth's energy budget ,010504 meteorology & atmospheric sciences ,Climate ,Rain ,Climate change ,Wind ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Feedback ,Humans ,Precipitation ,Greenhouse effect ,Ecosystem ,0105 earth and related environmental sciences ,Orographic lift ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Multidisciplinary ,Atmosphere ,Cyclonic Storms ,Intertropical Convergence Zone ,Dust ,Models, Theoretical ,15. Life on land ,13. Climate action ,North Atlantic oscillation ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,Africa ,Environmental science ,Climate model ,Desert Climate - Abstract
International audience; African dust emission and transport exhibits variability on diurnal to decadal timescales and is known to influence processes such as Amazon productivity, Atlantic climate modes, regional atmospheric composition and radiative balance and precipitation in the Sahel. To elucidate the role of African dust in the climate system, it is necessary to understand the factors governing its emission and transport. However, African dust is correlated with seemingly disparate atmospheric phenomena, including the El Niño/Southern Oscillation, the North Atlantic Oscillation, the meridional position of the intertropical convergence zone, Sahelian rainfall8 and surface temperatures over the Sahara Desert, all of which obfuscate the connection between dust and climate. Here we show that the surface wind field responsible for most of the variability in North African dust emission reflects the topography of the Sahara, owing to orographic acceleration of the surface flow. As such, the correlations between dust and various climate phenomena probably arise from the projection of the winds associated with these phenomena onto an orographically controlled pattern of wind variability. A 161-year time series of dust from 1851 to 2011, created by projecting this wind field pattern onto surface winds from a historical reanalysis, suggests that the highest concentrations of dust occurred from the 1910s to the 1940s and the 1970s to the 1980s, and that there have been three periods of persistent anomalously low dust concentrations—in the 1860s, 1950s and 2000s. Projections of the wind pattern onto climate models give a statistically significant downward trend in African dust emission and transport as greenhouse gas concentrations increase over the twenty-first century, potentially associated with a slow-down of the tropical circulation. Such a dust feedback, which is not represented in climate models, may be of benefit to human and ecosystem health in West Africa via improved air quality and increased rainfall6. This feedback may also enhance warming of the tropical North Atlantic, which would make the basin more suitable for hurricane formation and growth.
- Published
- 2016
46. Boundary-layer turbulent processes and mesoscale variability represented by Numerical Weather Prediction models during the BLLAST campaign
- Author
-
Guylaine Canut, Fabienne Lohou, Fleur Couvreux, Yann Seity, Erik Nilsson, Eric Bazile, Marie Lothon, and Françoise Guichard
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,Advection ,Cloud cover ,0208 environmental biotechnology ,Meteorologi och atmosfärforskning ,Mesoscale meteorology ,02 engineering and technology ,Sensible heat ,Atmospheric sciences ,01 natural sciences ,lcsh:QC1-999 ,020801 environmental engineering ,lcsh:Chemistry ,Boundary layer ,lcsh:QD1-999 ,Meteorology and Atmospheric Sciences ,Latent heat ,Turbulence kinetic energy ,Environmental science ,Spatial variability ,lcsh:Physics ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences - Abstract
This study evaluates the ability of three operational models, AROME, ARPEGE and ECMWF, to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence (BLLAST) field campaign. AROME is a 2.5 km limited area non-hydrostatic model operated over France, ARPEGE a global model with a 10 km grid-size over France and ECMWF a global model with a 16 km grid-size. We analyze the representation of the vertical profiles of temperature and humidity and the time evolution of near surface atmospheric variables as well as the radiative and turbulent fluxes for a total of 12 24h-long Intensive Observing Periods. Special attention is paid to the evolution of the turbulent kinetic energy that was sampled by a combination of independent instruments. For the first time, this variable, which is a central variable in the turbulence scheme used in AROME and ARPEGE, is evaluated with observations. In general, the 24h-forecasts succeed in reproducing the variability from one day to the other in term of cloud cover, temperature, boundary-layer depth. However, they exhibit some systematic biases, in particular a cold bias within the daytime boundary layer for all models. An overestimation of the sensible heat flux is noted for two points in ARPEGE, partly related to an inaccurate simplification of surface characteristics and over-predominance of forests. AROME shows a moist bias within the daytime boundary layer, consistently with overestimated latent heat fluxes. ECMWF presents a dry bias at 2 m above surface and also overestimates the sensible heat flux. The high-resolution model AROME better resolves the vertical structures, in particular the strong daytime inversion and the evening thin stable boundary layer. This model is also capable to capture the peculiar observed features, such as the orographically-driven subsidence and a well-defined maximum in water vapor mixing ratio in the upper part of the residual layer that arises during the evening due to mesoscale advection. The mesoscale variability is analyzed and the order of magnitude is also well reproduced in AROME. AROME provides a good simulation of the diurnal variability of the turbulent kinetic energy while ARPEGE shows a right order of magnitude.
- Published
- 2016
47. Diurnal and Seasonal Cycles of Cloud Occurrences, Types, and Radiative Impact over West Africa
- Author
-
Fleur Couvreux, Dominique Bouniol, Madeleine Leplay, Françoise Guichard, Florence Favot, Ewan O'Connor, and Pierre-Honoré Kamsu-Tamo
- Subjects
Saharan Air Layer ,Atmospheric Science ,Lidar ,Diurnal cycle ,Cloud cover ,International Satellite Cloud Climatology Project ,Longwave ,Environmental science ,Radiative forcing ,Monsoon ,Atmospheric sciences - Abstract
This study focuses on the occurrence and type of clouds observed in West Africa, a subject that has been neither much documented nor quantified. It takes advantage of data collected above Niamey, Niger, in 2006 with the Atmospheric Radiation Measurement (ARM) Mobile Facility. A survey of cloud characteristics inferred from ground measurements is presented with a focus on their seasonal evolution and diurnal cycle. Four types of clouds are distinguished: high-level clouds, deep convective clouds, shallow convective clouds, and midlevel clouds. A frequent occurrence of the latter clouds located at the top of the Saharan air layer is highlighted. High-level clouds are ubiquitous throughout the period whereas shallow convective clouds are mainly noticeable during the core of the monsoon. The diurnal cycle of each cloud category and its seasonal evolution are investigated. CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to demonstrate that these four cloud types (in addition to stratocumulus clouds over the ocean) are not a particularity of the Niamey region and that midlevel clouds are present over the Sahara during most of the monsoon season. Moreover, using complementary datasets, the radiative impact of each type of clouds at the surface level has been quantified in the short- and longwave domains. Midlevel clouds and anvil clouds have the largest impact, respectively, in longwave (about 15 W m−2) and shortwave (about 150 W m−2) radiation. Furthermore, midlevel clouds exert a strong radiative forcing during the spring at a time when the other cloud types are less numerous.
- Published
- 2012
48. Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations
- Author
-
Catherine Rio, Marie Lothon, Guylaine Canut, Dominique Bouniol, Fleur Couvreux, Amanda Gounou, and Françoise Guichard
- Subjects
Convection ,Atmospheric Science ,Daytime ,010504 meteorology & atmospheric sciences ,0207 environmental engineering ,Mesoscale meteorology ,Lapse rate ,02 engineering and technology ,Sensible heat ,Atmospheric sciences ,01 natural sciences ,Boundary layer ,13. Climate action ,Diurnal cycle ,Climatology ,Environmental science ,Precipitation ,020701 environmental engineering ,0105 earth and related environmental sciences - Abstract
A modelling case study designed from observations from the African Monsoon Multidisciplinary Analysis (AMMA) is presented and discussed. It aims at investigating the issue of initiation of convection in a semi-arid environment. This case corresponds to the development of local daytime convection mainly controlled by boundary layer characteristics rather than by atmospheric synoptic scales. A high-resolution three-dimensional simulation is presented and extensively evaluated against the numerous observations available for 10 July 2006 from the AMMA campaign. The simulation, run over a domain of100 × 100 km, is able to represent main boundary layer structures and processes leading to deep convection initiation as well as the formation of density currents. Sensitivity tests point to the key role of the sensible heat flux, the humidity of low to mid levels, the lapse rate at low levels and of a mesoscale ascent to initiate deep convection in those semi-arid conditions, while evaporation of precipitation is shown to play a minor role. This study thus provides a case to investigate the ability of parametrizations to handle the initiation of convection in a semi-arid environment. Copyright c � 2011 Royal Meteorological
- Published
- 2011
49. Monsoon Multidisciplinary Analysis (AMMA) : an integrated project for understanding of the West African climate system and its human dimension
- Author
-
Hartmut Höller, Nicholas M. J. Hall, Dominique Bouniol, Andreas H. Fink, Jean-Philippe Lafore, Frédérique Saïd, Frank Roux, Sarah C. Jones, Cyrille Flamant, Marielle Gosset, Alain Protat, Vincent Giraud, Chris D. Thorncroft, Françoise Guichard, Rémy Roca, Douglas J. Parker, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Environment [Leeds] (SEE), University of Leeds, Laboratoire de météorologie physique (LaMP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), HYBIS, Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Océan du Large et Variabilité Climatique (OLVAC), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), Centre for Australian Weather and Climate Research (CAWCR), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Laboratoire d'aérologie (LA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, University at Albany [SUNY], State University of New York (SUNY), Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire d'aérologie (LAERO), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP)
- Subjects
Atmospheric Science ,Reversed flow ,010504 meteorology & atmospheric sciences ,0207 environmental engineering ,02 engineering and technology ,Atmospheric boundary layer ,Convection ,Monsoon ,01 natural sciences ,West africa ,Tropical-extratropical interactions ,atmospheric boundary layer ,African monsoon ,heat low ,Diurnal cycle ,African easterly jet ,tropical-extratropical interactions ,Heat low ,020701 environmental engineering ,convection ,0105 earth and related environmental sciences ,Upstream (petroleum industry) ,Multidisciplinary analysis ,Geography ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,13. Climate action ,Middle latitudes ,Climatology ,Wolkenphysik und Verkehrsmeteorologie - Abstract
International audience; The major advances achieved during African monsoon multidisciplinary analysis in our physical understanding of the West African monsoon (WAM) system are reviewed. Recent research provides an advanced understanding of key WAM features. The Saharan heat low, the interactions of the monsoon flow with the surface and the reversed flow on top of it, all play a more important role than previously assumed, and interact according to the phase of the diurnal cycle of convection. Recent studies also emphasise the significance of upstream conditions in Central and East Africa, as well as strong interactions between midlatitudes and the WAM.
- Published
- 2011
50. Understanding the Daily Cycle of Evapotranspiration: A Method to Quantify the Influence of Forcings and Feedbacks
- Author
-
Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Amanda Gounou, Françoise Guichard, and Fleur Couvreux
- Subjects
Meteorologie en Luchtkwaliteit ,Atmospheric Science ,Meteorology and Air Quality ,Planetary boundary layer ,entrainment ,Forcing (mathematics) ,land-atmosphere interaction ,Atmospheric sciences ,diurnal time scales ,Convective Boundary Layer ,evaporation ,inversion ,Evapotranspiration ,surface ,Surface layer ,Penman–Monteith equation ,WIMEK ,model ,Advection ,parameterization ,Boundary layer ,convective boundary-layer ,Climatology ,soil-moisture ,Environmental science - Abstract
A method to analyze the daily cycle of evapotranspiration over land is presented. It quantifies the influence of external forcings, such as radiation and advection, and of internal feedbacks induced by boundary layer, surface layer, and land surface processes on evapotranspiration. It consists of a budget equation for evapotranspiration that is derived by combining a time derivative of the Penman–Monteith equation with a mixed-layer model for the convective boundary layer. Measurements and model results for days at two contrasting locations are analyzed using the method: midlatitudes (Cabauw, Netherlands) and semiarid (Niamey, Niger). The analysis shows that the time evolution of evapotranspiration is a complex interplay of forcings and feedbacks. Although evapotranspiration is initiated by radiation, it is significantly regulated by the atmospheric boundary layer and the land surface throughout the day. In both cases boundary layer feedbacks enhance the evapotranspiration up to 20 W m−2 h−1. However, in the case of Niamey this is offset by the land surface feedbacks since the soil drying reaches −30 W m−2 h−1. Remarkably, surface layer feedbacks are of negligible importance in a fully coupled system. Analysis of the boundary layer feedbacks hints at the existence of two regimes in this feedback depending on atmospheric temperature, with a gradual transition region in between the two. In the low-temperature regime specific humidity variations induced by evapotranspiration and dry-air entrainment have a strong impact on the evapotranspiration. In the high-temperature regime the impact of humidity variations is less pronounced and the effects of boundary layer feedbacks are mostly determined by temperature variations.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.