1. Quantification of evolved DNA-editing enzymes at scale with DEQSeq
- Author
-
Lukas Theo Schmitt, Aksana Schneider, Jonas Posorski, Felix Lansing, Milica Jelicic, Manavi Jain, Shady Sayed, Frank Buchholz, and Duran Sürün
- Subjects
Deep sequencing ,Directed evolution ,Site-specific recombination ,Cre recombinase ,CRISPR ,Base editing ,Biology (General) ,QH301-705.5 ,Genetics ,QH426-470 - Abstract
Abstract We introduce DEQSeq, a nanopore sequencing approach that rationalizes the selection of favorable genome editing enzymes from directed molecular evolution experiments. With the ability to capture full-length sequences, editing efficiencies, and specificities from thousands of evolved enzymes simultaneously, DEQSeq streamlines the process of identifying the most valuable variants for further study and application. We apply DEQSeq to evolved libraries of Cas12f-ABEs and designer-recombinases, identifying variants with improved properties for future applications. Our results demonstrate that DEQSeq is a powerful tool for accelerating enzyme discovery and advancing genome editing research.
- Published
- 2023
- Full Text
- View/download PDF