15 results on '"Freynet N"'
Search Results
2. P098 - Topic: AS06-Prognosis/AS06a-Prognostic factors of outcome and risk assessment: TET2 MUTATIONAL STATUS AFFECTS MYELODYSPLASTIC SYNDROME EVOLUTION TO CHRONIC MYELOMONOCYTIC LEUKEMIA
- Author
-
Quang, V. Tran, Podvin, B., Desterke, C., Tarfi, S., Barathon, Q., Bouchra, B., Freynet, N., Parinet, V., Leclerc, M., Sébastien, M., Solary, E., Selimoglu-Buet, D., Duployez, N., Wagner-Ballon, O., and Sloma, I.
- Published
- 2023
- Full Text
- View/download PDF
3. How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients?
- Author
-
Xavier Cahu, Maxime Desmarets, Thibaut Leguay, Philippe Saas, Victoria Raggueneau, Delphine Binda, Maria Alessandra Rosenthal, Chrystelle Vidal, Olivier Adotevi, Fanny Angelot-Delettre, Françoise Solly, Anne-Cécile Galoisy, Alice Garnier, Sylvie Daliphard, Estelle Guérin, Marie-Pierre Gourin, Karim Maloum, Véronique Harrivel, Edouard Cornet, Felipe Suarez, Jacques Vargaftig, Fabrice Jardin, Caroline Mayeur-Rousse, Sylvain Thepot, Maïder Pagadoy, Thorsten Braun, Bernard Drenou, Yuriy Drebit, Marc Maynadié, Caroline Basle, Zehaira Benseddik, Frédéric Féger, Jean Feuillard, Christian Recher, Etienne Lengliné, Catherine Cordonnier, Rémi Letestu, Mathieu Puyade, Isabelle Arnoux, Remy Gressin, Nathalie Contentin, Jerome Tamburini, Pascale Saussoy, Mary Callanan, Elodie Dindinaud, Pierre-Simon Rohrlich, Julien Guy, Hind Bennani, Tony Petrella, Vincent Foissaud, Johann Rose, Natacha Maillard, Lucile Baseggio, Magali Le Garff-Tavernier, Vincent Barlogis, Denis Guyotat, Yohan Desbrosses, Caroline Bonmati, Damien Roos-Weil, Michel Ticchioni, Sandrine Puyraimond, Norbert Vey, Adriana Plesa, Blandine Guffroy, Daniel Lusina, Bérengère Gruson, Anne Roggy, Véronique Salaun, Eric Deconinck, Jean-Yves Cahn, Nathalie Jacques, Caroline Bret, Florian Renosi, Marie-Christine Béné, Alice Eischen, Stefan Wickenhauser, Benjamin Papoular, Francine Garnache-Ottou, François-Xavier Gros, Vahid Asnafi, Celia Salanoubat, Blandine Bénet, Elisabeth Macintyre, Lou Soret, Orianne Wagner-Ballon, Mohamad Mohty, Elsa Bera, Nicolas Freynet, Ludovic Lhermitte, Franck Trimoreau, Claude Preudhomme, Christophe Roumier, Sébastien Maury, Sabrina Bouyer, Eve Poret, Mikael Roussel, Romaric Lacroix, Christine Arnoulet, Françoise Schillinger, Patricia Okamba, Christine Lefebvre, Didier Blaise, Nicolas Lechevalier, Sabine Brechignac, Christophe Ferrand, Estelle Seilles, Richard Veyrat-Masson, Giorgia Battipaglia, Denis Caillot, Véronique Latger-Cannard, Bruno Quesnel, Didier Bouscary, Sophie Brun, Agathe Debliquis, Marie Loosveld, Franck Geneviève, Carinne Lafon, Lydia Campos, Thierry Fest, Ouda Ghoual, Marie-Christine Jacob, Pierre Peterlin, Valérie Bardet, Anne Arnaud, Véronique Dorvaux, Sabeha Biichle, Interactions hôte-greffon-tumeur, ingénierie cellulaire et génique - UFC (UMR INSERM 1098) (RIGHT), Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS [Bourgogne-Franche-Comté])-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre d'Investigation Clinique de Besançon (Inserm CIC 1431), Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS [Bourgogne-Franche-Comté])-Université de Franche-Comté (UFC), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Centre recherche en CardioVasculaire et Nutrition = Center for CardioVascular and Nutrition research (C2VN), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC), Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Microenvironment, Cell Differentiation, Immunology and Cancer (MICMAC), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), CHU Pontchaillou [Rennes], Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM), Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-11-LABX-0024,ParaFrap,Alliance française contre les maladies parasitaires(2011), European Project: IC18CT980373, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS [Bourgogne-Franche-Comté]), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS BFC)-Université de Franche-Comté (UFC), Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS BFC)-Université de Franche-Comté (UFC), Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), UCL - SSS/IREC/SLUC - Pôle St.-Luc, UCL - (SLuc) Service de biologie hématologique, Garnache-Ottou, F., Vidal, C., Biichle, S., Renosi, F., Poret, E., Pagadoy, M., Desmarets, M., Roggy, A., Seilles, E., Soret, L., Schillinger, F., Puyraimond, S., Petrella, T., Preudhomme, C., Roumier, C., Macintyre, E. A., Harrivel, V., Desbrosses, Y., Gruson, B., Genevieve, F., Thepot, S., Drebit, Y., Leguay, T., Gros, F. -X., Lechevalier, N., Saussoy, P., Salaun, V., Cornet, E., Benseddik, Z., Veyrat-Masson, R., Wagner-Ballon, O., Salanoubat, C., Maynadie, M., Guy, J., Caillot, D., Jacob, M. -C., Cahn, J. -Y., Gressin, R., Rose, J., Quesnel, B., Guerin, E., Trimoreau, F., Feuillard, J., Gourin, M. -P., Plesa, A., Baseggio, L., Arnoux, I., Vey, N., Blaise, D., Lacroix, R., Arnoulet, C., Benet, B., Dorvaux, V., Bret, C., Drenou, B., Debliquis, A., Latger-Cannard, V., Bonmati, C., Bene, M. -C., Peterlin, P., Ticchioni, M., Rohrlich, P. -S., Arnaud, A., Wickenhauser, S., Bardet, V., Brechignac, S., Papoular, B., Raggueneau, V., Vargaftig, J., Letestu, R., Lusina, D., Braun, T., Foissaud, V., Tamburini, J., Bennani, H., Freynet, N., Cordonnier, C., Le Garff-Tavernier, M., Jacques, N., Maloum, K., Roos-Weil, D., Bouscary, D., Asnafi, V., Lhermitte, L., Suarez, F., Lengline, E., Feger, F., Battipaglia, G., Mohty, M., Bouyer, S., Ghoual, O., Dindinaud, E., Basle, C., Puyade, M., Lafon, C., Fest, T., Roussel, M., Cahu, X., Bera, E., Daliphard, S., Jardin, F., Campos, L., Solly, F., Guyotat, D., Galoisy, A. -C., Eischen, A., Mayeur-Rousse, C., Guffroy, B., Recher, C., Loosveld, M., Garnier, A., Barlogis, V., Rosenthal, M. A., Brun, S., Contentin, N., Maury, S., Callanan, M., Lefebvre, C., Maillard, N., Okamba, P., Ferrand, C., Adotevi, O., Saas, P., Angelot-Delettre, F., Binda, D., and Deconinck, E.
- Subjects
Oncology ,Vincristine ,medicine.medical_specialty ,Myeloid ,Cyclophosphamide ,Clinical Trials and Observations ,medicine.medical_treatment ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Hematopoietic stem cell transplantation ,Plasmacytoid dendritic cell ,Immunophenotyping ,Clonal Evolution ,03 medical and health sciences ,0302 clinical medicine ,Bone Marrow ,hemic and lymphatic diseases ,Internal medicine ,medicine ,Humans ,Neoplasm Metastasis ,Neoplasm Staging ,030304 developmental biology ,Chromosome Aberrations ,0303 health sciences ,Leukemia ,business.industry ,Hematopoietic Stem Cell Transplantation ,Disease Management ,Myeloid leukemia ,Dendritic Cells ,Hematology ,Prognosis ,medicine.disease ,Blood Cell Count ,3. Good health ,Transplantation ,Treatment Outcome ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,Acute Disease ,business ,Biomarkers ,medicine.drug - Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia for which we developed a nationwide network to collect data from new cases diagnosed in France. In a retrospective, observational study of 86 patients (2000-2013), we described clinical and biological data focusing on morphologies and immunophenotype. We found expression of markers associated with plasmacytoid dendritic cell origin (HLA-DRhigh, CD303+, CD304+, and cTCL1+) plus CD4 and CD56 and frequent expression of isolated markers from the myeloid, B-, and T-lymphoid lineages, whereas specific markers (myeloperoxidase, CD14, cCD3, CD19, and cCD22) were not expressed. Fifty-one percent of cytogenetic abnormalities impact chromosomes 13, 12, 9, and 15. Myelemia was associated with an adverse prognosis. We categorized chemotherapeutic regimens into 5 groups: acute myeloid leukemia (AML)–like, acute lymphoid leukemia (ALL)–like, lymphoma (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP])–like, high-dose methotrexate with asparaginase (Aspa-MTX) chemotherapies, and not otherwise specified (NOS) treatments. Thirty patients received allogeneic hematopoietic cell transplantation (allo-HCT), and 4 patients received autologous hematopoietic cell transplantation. There was no difference in survival between patients receiving AML-like, ALL-like, or Aspa-MTX regimens; survival was longer in patients who received AML-like, ALL-like, or Aspa-MTX regimens than in those who received CHOP-like regimens or NOS. Eleven patients are in persistent complete remission after allo-HCT with a median survival of 49 months vs 8 for other patients. Our series confirms a high response rate with a lower toxicity profile with the Aspa-MTX regimen, offering the best chance of access to hematopoietic cell transplantation and a possible cure.
- Published
- 2019
- Full Text
- View/download PDF
4. Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France.
- Author
-
Alcazer V, Le Meur G, Roccon M, Barriere S, Le Calvez B, Badaoui B, Spaeth A, Kosmider O, Freynet N, Eveillard M, Croizier C, Chevalier S, and Sujobert P
- Subjects
- Humans, France, Female, Male, Middle Aged, Adult, Aged, Precursor Cell Lymphoblastic Leukemia-Lymphoma diagnosis, Leukemia, Promyelocytic, Acute diagnosis, Algorithms, Machine Learning, Leukemia, Myeloid, Acute diagnosis
- Abstract
Background: Acute leukaemias are life-threatening haematological cancers characterised by the infiltration of transformed immature haematopoietic cells in the blood and bone marrow. Prompt and accurate diagnosis of the three main acute leukaemia subtypes (ie acute lymphocytic leukaemia [ALL], acute myeloid leukaemia [AML], and acute promyelocytic leukaemia [APL]) is of utmost importance to guide initial treatment and prevent early mortality but requires cytological expertise that is not always available. We aimed to benchmark different machine-learning strategies using a custom variable selection algorithm to propose an extreme gradient boosting model to predict leukaemia subtypes on the basis of routine laboratory parameters., Methods: This multicentre model development and validation study was conducted with data from six independent French university hospital databases. Patients aged 18 years or older diagnosed with AML, APL, or ALL in any one of these six hospital databases between March 1, 2012, and Dec 31, 2021, were recruited. 22 routine parameters were collected at the time of initial disease evaluation; variables with more than 25% of missing values in two datasets were not used for model training, leading to the final inclusion of 19 parameters. The performances of the final model were evaluated on internal testing and external validation sets with area under the receiver operating characteristic curves (AUCs), and clinically relevant cutoffs were chosen to guide clinical decision making. The final tool, Artificial Intelligence Prediction of Acute Leukemia (AI-PAL), was developed from this model., Findings: 1410 patients diagnosed with AML, APL, or ALL were included. Data quality control showed few missing values for each cohort, with the exception of uric acid and lactate dehydrogenase for the cohort from Hôpital Cochin. 679 patients from Hôpital Lyon Sud and Centre Hospitalier Universitaire de Clermont-Ferrand were split into the training (n=477) and internal testing (n=202) sets. 731 patients from the four other cohorts were used for external validation. Overall AUCs across all validation cohorts were 0·97 (95% CI 0·95-0·99) for APL, 0·90 (0·83-0·97) for ALL, and 0·89 (0·82-0·95) for AML. Cutoffs were then established on the overall cohort of 1410 patients to guide clinical decisions. Confident cutoffs showed two (0·14%) wrong predictions for ALL, four (0·28%) wrong predictions for APL, and three (0·21%) wrong predictions for AML. Use of the overall cutoff greatly reduced the number of missing predictions; diagnosis was proposed for 1375 (97·5%) of 1410 patients for each category, with only a slight increase in wrong predictions. The final model evaluation across both the internal testing and external validation sets showed accuracy of 99·5% for ALL diagnosis, 98·8% for AML diagnosis, and 99·7% for APL diagnosis in the confident model and accuracy of 87·9% for ALL diagnosis, 86·3% for AML diagnosis, and 96·1% for APL diagnosis in the overall model., Interpretation: AI-PAL allowed for accurate diagnosis of the three main acute leukaemia subtypes. Based on ten simple laboratory parameters, its broad availability could help guide initial therapies in a context where cytological expertise is lacking, such as in low-income countries., Funding: None., Competing Interests: Declaration of interests We declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC 4.0 license. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. TET2 mutational status affects myelodysplastic syndrome evolution to chronic myelomonocytic leukemia.
- Author
-
Quang VT, Podvin B, Desterke C, Tarfi S, Barathon Q, Badaoui B, Freynet N, Parinet V, Leclerc M, Maury S, Solary E, Selimoglu-Buet D, Duployez N, Wagner-Ballon O, and Sloma I
- Subjects
- Humans, Mutation, DNA-Binding Proteins genetics, Leukemia, Myelomonocytic, Chronic genetics, Myelodysplastic Syndromes genetics, Dioxygenases
- Published
- 2023
- Full Text
- View/download PDF
6. Automated Detection of Dysplasia: Data Mining from Our Hematology Analyzers.
- Author
-
Zhu J, Clauser S, Freynet N, and Bardet V
- Abstract
Myelodysplastic syndromes (MDSs) are clonal hematopoietic diseases of the elderly, characterized by chronic cytopenia, ineffective and dysplastic hematopoiesis, recurrent genetic abnormalities and increased risk of progression to acute myeloid leukemia. Diagnosis on a complete blood count (CBC) can be challenging due to numerous other non-neoplastic causes of cytopenias. New generations of hematology analyzers provide cell population data (CPD) that can be exploited to reliably detect MDSs from a routine CBC. In this review, we first describe the different technologies used to obtain CPD. We then give an overview of the currently available data regarding the performance of CPD for each lineage in the diagnostic workup of MDSs. Adequate exploitation of CPD can yield very strong diagnostic performances allowing for faster diagnosis and reduction of time-consuming slide reviews in the hematology laboratory.
- Published
- 2022
- Full Text
- View/download PDF
7. Machine learning identifies the independent role of dysplasia in the prediction of response to chemotherapy in AML.
- Author
-
Duchmann M, Wagner-Ballon O, Boyer T, Cheok M, Fournier E, Guerin E, Fenwarth L, Badaoui B, Freynet N, Benayoun E, Lusina D, Garcia I, Gardin C, Fenaux P, Pautas C, Quesnel B, Turlure P, Terré C, Thomas X, Lambert J, Renneville A, Preudhomme C, Dombret H, Itzykson R, and Cluzeau T
- Subjects
- Adult, Aged, Cytogenetic Analysis, Female, Humans, Leukemia, Myeloid, Acute genetics, Leukemia, Myeloid, Acute pathology, Machine Learning, Male, Megakaryocytes pathology, Middle Aged, Prognosis, Treatment Outcome, Antineoplastic Agents therapeutic use, Leukemia, Myeloid, Acute diagnosis, Leukemia, Myeloid, Acute drug therapy
- Abstract
The independent prognostic impact of specific dysplastic features in acute myeloid leukemia (AML) remains controversial and may vary between genomic subtypes. We apply a machine learning framework to dissect the relative contribution of centrally reviewed dysplastic features and oncogenetics in 190 patients with de novo AML treated in ALFA clinical trials. One hundred and thirty-five (71%) patients achieved complete response after the first induction course (CR). Dysgranulopoiesis, dyserythropoiesis and dysmegakaryopoiesis were assessable in 84%, 83% and 63% patients, respectively. Multi-lineage dysplasia was present in 27% of assessable patients. Micromegakaryocytes (q = 0.01), hypolobulated megakaryocytes (q = 0.08) and hyposegmented granulocytes (q = 0.08) were associated with higher ELN-2017 risk. Using a supervised learning algorithm, the relative importance of morphological variables (34%) for the prediction of CR was higher than demographic (5%), clinical (2%), cytogenetic (25%), molecular (29%), and treatment (5%) variables. Though dysplasias had limited predictive impact on survival, a multivariate logistic regression identified the presence of hypolobulated megakaryocytes (p = 0.014) and micromegakaryocytes (p = 0.035) as predicting lower CR rates, independently of monosomy 7 (p = 0.013), TP53 (p = 0.004), and NPM1 mutations (p = 0.025). Assessment of these specific dysmegakarypoiesis traits, for which we identify a transcriptomic signature, may thus guide treatment allocation in AML., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2022
- Full Text
- View/download PDF
8. Prognostic value of monocyte subset distribution in chronic myelomonocytic leukemia: results of a multicenter study.
- Author
-
Jestin M, Tarfi S, Duchmann M, Badaoui B, Freynet N, Tran Quang V, Sloma I, Droin N, Morabito M, Leclerc M, Maury S, Fenaux P, Solary E, Selimoglu-Buet D, and Wagner-Ballon O
- Subjects
- Humans, Leukemia, Myelomonocytic, Chronic classification, Leukemia, Myelomonocytic, Chronic metabolism, Prognosis, Survival Rate, Leukemia, Myelomonocytic, Chronic pathology, Monocytes pathology
- Published
- 2021
- Full Text
- View/download PDF
9. Disappearance of slan-positive non-classical monocytes for diagnosis of chronic myelomonocytic leukemia with an associated inflammatory state
- Author
-
Tarfi S, Badaoui B, Freynet N, Morabito M, Lafosse J, Toma A, Etienne G, Micol JB, Sloma I, Fenaux P, Solary E, Selimoglu-Buet D, and Wagner-Ballon O
- Published
- 2020
- Full Text
- View/download PDF
10. Acute myelomonocytic leukemia with uncommon morphological features.
- Author
-
Freynet N, Tarfi S, Badaoui B, Leclerc M, Abermil N, and Wagner-Ballon O
- Subjects
- Abnormal Karyotype, Aged, 80 and over, Antigens, CD analysis, Antigens, Neoplasm analysis, Diagnosis, Differential, Fatal Outcome, Female, Flow Cytometry, Genes, p53, Humans, Leukemia, Myelomonocytic, Acute complications, Leukemia, Myelomonocytic, Acute diagnosis, Leukemia, Myelomonocytic, Acute genetics, Lymphoma, Non-Hodgkin diagnosis, Pancytopenia etiology, Leukemia, Myelomonocytic, Acute pathology, Monocytes pathology
- Published
- 2020
- Full Text
- View/download PDF
11. Reference Values for WBC Differential by Hematoflow Analysis.
- Author
-
Magierowicz M, Lechevalier N, Freynet N, Pastoret C, Badaoui B, Ly-Sunnaram B, Fest T, Lacombe F, Wagner-Ballon O, and Roussel M
- Subjects
- Adolescent, Adult, Aged, Child, Child, Preschool, Humans, Infant, Leukocyte Count methods, Middle Aged, Reference Values, Young Adult, Flow Cytometry methods, Software, Workflow
- Abstract
Objectives: WBC differentials performed using flow cytometry with monoclonal antibodies have been developed in the last decade and are nowadays integrated into the routine workflow of some laboratories. Definition of reference values for each population is required in order to achieve an automatic validation of the results by laboratory software., Methods: We analyzed 584 samples from three hospitals using the Hematoflow solution to define the reference values., Results: Reference values are presented for five groups according to age (0-5, 6-11, 12-19, 20-69, and >69 years)., Conclusions: These normal values will be helpful in the definition of relevant threshold for the automatic validation of samples analyzed by flow cytometry and the flagging of pathologic samples.
- Published
- 2019
- Full Text
- View/download PDF
12. A case of B-cell precursor acute lymphoblastic leukemia with IL3-IGH rearrangement revealed by thromboembolism and marked eosinophilia.
- Author
-
Derrieux C, Freynet N, Frayfer J, Delabesse E, Clappier E, Defasque S, Broutier H, and Fouillard L
- Subjects
- Adult, Bone Marrow pathology, Eosinophilia etiology, Gene Rearrangement, Humans, Immunoglobulin Heavy Chains genetics, Interleukin-3 genetics, Male, Precursor B-Cell Lymphoblastic Leukemia-Lymphoma blood, Precursor B-Cell Lymphoblastic Leukemia-Lymphoma complications, Precursor B-Cell Lymphoblastic Leukemia-Lymphoma genetics, Eosinophilia blood, Oncogene Proteins, Fusion genetics, Precursor B-Cell Lymphoblastic Leukemia-Lymphoma diagnosis, Thromboembolism etiology
- Published
- 2018
- Full Text
- View/download PDF
13. High sensitivity of the Hematoflow™ solution for chronic myelomonocytic leukemia screening.
- Author
-
Vazquez R, Roussel M, Badaoui B, Freynet N, Tarfi S, Solary E, Selimoglu-Buet D, and Wagner-Ballon O
- Subjects
- Humans, Leukemia, Myelomonocytic, Chronic blood, Sensitivity and Specificity, Solutions, Flow Cytometry, Leukemia, Myelomonocytic, Chronic diagnosis
- Abstract
Background: Accumulation of classical monocytes CD14
++ CD16- (also called MO1) ≥ 94% can accurately distinguish chronic myelomonocytic leukemia (CMML) from reactive monocytosis. The HematoFlow™ solution, able to quantify CD16 negative monocytes, could be a useful tool to manage monocytosis which remains a common issue in routine laboratories., Methods: Classical monocytes were quantified from 153 whole blood samples collected on EDTA using both flow cytometry methods, either MO1 percentage determination by the multiparameter assay previously published and regarded here as the reference method, or CD16 negative monocyte percentage determination by the means of HematoFlow™., Results: Both methods of classical monocyte percentage determination were highly and significantly correlated (r = 0.87, P < 0.0001). The HematoFlow™ solution leant toward an overestimation of the genuine classical monocyte percentages obtained by the reference method. Percentages of CD16 negative monocytes provided by HematoFlow were higher than 94% for all the 73 patients displaying classical monocytes MO1 found ≥94% by the reference method, indicating a sensitivity of 100%. Furthermore, the calculation of CD16 negative monocyte percentage can be easily computerized and integrated to the middleware., Conclusions: We propose a new application of the Hematoflow™ solution that can be used as a flag system for monocytosis management and CMML detection. © 2017 International Clinical Cytometry Society., (© 2017 International Clinical Cytometry Society.)- Published
- 2018
- Full Text
- View/download PDF
14. Multicentric study underlining the interest of adding CD5, CD7 and CD56 expression assessment to the flow cytometric Ogata score in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms.
- Author
-
Bardet V, Wagner-Ballon O, Guy J, Morvan C, Debord C, Trimoreau F, Benayoun E, Chapuis N, Freynet N, Rossi C, Mathis S, Gourin MP, Toma A, Béné MC, Feuillard J, and Guérin E
- Subjects
- Aged, Aged, 80 and over, Antigens, CD7 genetics, CD5 Antigens genetics, CD56 Antigen genetics, Diagnosis, Differential, Flow Cytometry, Gene Expression, Humans, Middle Aged, Myelodysplastic Syndromes genetics, Myelodysplastic-Myeloproliferative Diseases genetics, Sensitivity and Specificity, Antigens, CD7 metabolism, CD5 Antigens metabolism, CD56 Antigen metabolism, Immunophenotyping methods, Myelodysplastic Syndromes diagnosis, Myelodysplastic Syndromes metabolism, Myelodysplastic-Myeloproliferative Diseases diagnosis, Myelodysplastic-Myeloproliferative Diseases metabolism
- Abstract
Although numerous recent publications have demonstrated interest in multiparameter flow cytometry in the investigation of myelodysplastic disorders, it is perceived by many laboratory hematologists as difficult and expensive, requiring a high level of expertise. We report a multicentric open real-life study aimed at evaluating the added value of the technically simple flow cytometry score described by the Ogata group for the diagnosis of myelodysplastic syndromes. A total of 652 patients were recruited prospectively in four different centers: 346 myelodysplastic syndromes, 53 myelodysplastic/myeloproliferative neoplasms, and 253 controls. The Ogata score was assessed using CD45 and CD34 staining, with the addition of CD10 and CD19. Moreover, labeling of CD5, CD7 and CD56 for the evaluation of myeloid progenitors and monocytes was tested on a subset of 294 patients. On the whole series, the specificity of Ogata score reached 89%. Respective sensitivities were 54% for low-risk myelodysplastic syndromes, 68% and 84% for type 1 and type 2 refractory anemia with excess of blasts, and 72% for myelodysplastic/myeloproliferative neoplasms. CD5 expression was poorly informative. When adding CD56 or CD7 labeling to the Ogata score, sensitivity rose to 66% for low-risk myelodysplastic syndromes, to 89% for myelodysplastic/myeloproliferative neoplasms and to 97% for refractory anemia with excess of blasts. This large multicenter study confirms the feasibility of Ogata scoring in routine flow cytometry diagnosis but highlights its poor sensitivity in low-risk myelodysplastic syndromes. The addition of CD7 and CD56 in flow cytometry panels improves the sensitivity but more sophisticated panels would be more informative., (Copyright© Ferrata Storti Foundation.)
- Published
- 2015
- Full Text
- View/download PDF
15. Perceived dimensions of parenting and non-suicidal self-injury in young adults.
- Author
-
Bureau JF, Martin J, Freynet N, Poirier AA, Lafontaine MF, and Cloutier P
- Subjects
- Adult, Anger, Communication, Empirical Research, Fear, Female, Humans, Male, Multivariate Analysis, Social Alienation, Trust, Young Adult, Parent-Child Relations, Parenting psychology, Self-Injurious Behavior psychology
- Abstract
Family experiences are influential in the development of non-suicidal self-injury (NSSI). The current study aimed to identify specific dimensions underlying early parent-child relationships in association with NSSI. It was hypothesized that all relationship dimensions would be related with NSSI, with some dimensions being stronger predictors when accounting for shared variance. Gender differences were also assessed. Participants were grouped according to the endorsement of NSSI in the past 6 months, resulting in a Non-NSSI group (n = 1133) and a NSSI group (n = 105). Significant differences were found for the relationship dimensions between the two groups. When shared variance was accounted for, fear and alienation were the only dimensions predicting NSSI. Similar results were found for females (n = 887), while no analyses using males (n = 351) were significant. These results emphasize the need to acknowledge the role of parent-child relationships in prevention programs and intervention models for NSSI.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.