20 results on '"Frye, Maik"'
Search Results
2. Optical coherence tomography and convolutional neural networks can differentiate colorectal liver metastases from liver parenchyma ex vivo
- Author
-
Amygdalos, Iakovos, Hachgenei, Enno, Burkl, Luisa, Vargas, David, Goßmann, Paul, Wolff, Laura I., Druzenko, Mariia, Frye, Maik, König, Niels, Schmitt, Robert H., Chrysos, Alexandros, Jöchle, Katharina, Ulmer, Tom F., Lambertz, Andreas, Knüchel-Clarke, Ruth, Neumann, Ulf P., and Lang, Sven A.
- Published
- 2023
- Full Text
- View/download PDF
3. ML-Pipeline for the Quality Assessment of Screwdriving Processes
- Author
-
Wende, Martin, Bender, Marcel, Frye, Maik, Grunert, Dennis, and Schmitt, Robert H.
- Published
- 2024
- Full Text
- View/download PDF
4. On the importance of domain expertise in feature engineering for predictive product quality in production
- Author
-
Mende, Hendrik, Frye, Maik, Vogel, Paul-Alexander, Kiroriwal, Saksham, Schmitt, Robert H., and Bergs, Thomas
- Published
- 2023
- Full Text
- View/download PDF
5. Assessment Framework for Deployability of Machine Learning Models in Production
- Author
-
Heymann, Henrik, Mende, Hendrik, Frye, Maik, and Schmitt, Robert H.
- Published
- 2023
- Full Text
- View/download PDF
6. Guideline for Deployment of Machine Learning Models for Predictive Quality in Production
- Author
-
Heymann, Henrik, Kies, Alexander D., Frye, Maik, Schmitt, Robert H., and Boza, Andrés
- Published
- 2022
- Full Text
- View/download PDF
7. Production rescheduling through product quality prediction
- Author
-
Frye, Maik, Gyulai, Dávid, Bergmann, Júlia, and Schmitt, Robert H.
- Published
- 2021
- Full Text
- View/download PDF
8. Benchmarking of Data Preprocessing Methods for Machine Learning-Applications in Production
- Author
-
Frye, Maik, Mohren, Johannes, and Schmitt, Robert H.
- Published
- 2021
- Full Text
- View/download PDF
9. Selection and Application of Machine Learning- Algorithms in Production Quality
- Author
-
Krauß, Jonathan, Frye, Maik, Beck, Gustavo Teodoro Döhler, Schmitt, Robert H., inIT - Institut für industrielle Informa, Beyerer, Jürgen, editor, Kühnert, Christian, editor, and Niggemann, Oliver, editor
- Published
- 2019
- Full Text
- View/download PDF
10. Machine Learning and Artificial Intelligence in Production: Application Areas and Publicly Available Data Sets
- Author
-
Krauß, Jonathan, Dorißen, Jonas, Mende, Hendrik, Frye, Maik, Schmitt, Robert H., Wulfsberg, Jens Peter, editor, Hintze, Wolfgang, editor, and Behrens, Bernd-Arno, editor
- Published
- 2019
- Full Text
- View/download PDF
11. Selection and Application of Machine Learning- Algorithms in Production Quality
- Author
-
Krauß, Jonathan, primary, Frye, Maik, additional, Beck, Gustavo Teodoro Döhler, additional, and Schmitt, Robert H., additional
- Published
- 2018
- Full Text
- View/download PDF
12. Factory of the Year Prize – A Benchmarking
- Author
-
Gallina, Viola, primary, Viharos, Zsolt János, additional, Nick, Gabor, additional, Frye, Maik, additional, Kluth, Andreas, additional, Szaller, Adam, additional, and Schmitt, Robert H., additional
- Published
- 2023
- Full Text
- View/download PDF
13. Schließen des Kreislaufs mit adaptiver automatisierter Demontage
- Author
-
Schmitt, Robert H., Göppert, Amon, Sohnius, Felix, Frye, Maik, Balzereit, Frank, Elsner, Juliane, Briele, Kristof, Bergs, Lukas, Bitter-Krahe, Jan, Drechsel, Michael, Geyer, Immanuel, Greshake, Thilo, Häring, Tobias, Mishra, Dev, Kokott, Christian, Nilgen, Guido, and Schmitt, Sebastian
- Subjects
Demontage ,Resilienz ,DDC::600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaften ,Automatisierung ,Adaptivität ,Kreislaufwirtschaft - Abstract
Mit der Einführung von gesellschaftlichen und politischen Vorgaben wie dem „European Green Deal“ wird die Umsetzung der Kreislaufwirtschaft zur Unternehmensaufgabe. Deren wirtschaftliche Umsetzung erfordert jedoch die Anpassung industrieller Prozessabläufe hinsichtlich des angestrebten Grades an Adaptivität an eine dann zunehmende Varianz von Eingangsmaterialien in die industrielle Wertschöpfung. Strategien wie das Remanufacturing bieten nicht nur ein ökologisches Potenzial, sondern bewirken eine Steigerung der Resilienz und eröffnen dadurch neue wirtschaftliche Geschäftsperspektiven. Innerhalb des Beitrags wird die Bedeutung geeigneter Demontagesysteme für die Kreislaufwirtschaft aufgezeigt. Aufbauend auf den spezifischen Herausforderungen der Kreislaufstrategien wird ein Zielbild für wirtschaftliche Demontagesysteme abgeleitet. Drei industrielle Use Cases zeigen verschiedene Ausprägungen solcher Systeme auf. Es besteht der Bedarf, die Demontage zu automatisieren und gleichzeitig die Adaptivität des Systems zu maximieren, um verschiedenen Produktzuständen gerecht zu werden. Die adaptive automatisierte Demontage stellt hierfür die zentrale Befähigung dar. Zur Umsetzung dienen Befähigertechnologien wie der Einsatz von Sensorik und KI, aber auch das „Design for Disassembly“. Aus organisatorischer Perspektive sind Standardisierungen notwendig, um die Verfügbarkeit von Daten sowohl aus der Produktion, dem User-Zyklus als auch aus automatisierten Zustandsbewertungen als ein Entscheidungsfundament für adaptive Prozesse nutzbar zu machen. Die Bereitstellung und Analyse der notwendigen Daten stellt folglich ein zentrales Anliegen für die Umsetzung der Demontageprozesse dar., With the introduction of social and political requirements such as the "European Green Deal", the implementation of the circular economy is becoming a corporate task. However, its economic implementation as an answer to regulatory demands requires the adaptation of industrial processes regarding the desired degree of adaptivity to a then increasing variance of input materials in industrial value creation. Strategies such as re-manufacturing not only offer ecological potential, but also bring about an increase in resilience and thus open new economic business perspectives. Within the contribution, the importance of suitable disassembly systems including dismantling abilities for the circular economy is shown. Based on the specific challenges of the circular strategies, a target picture for economic disassembly systems is derived. Three industrial use cases show different forms of such systems. There is a need to automate disassembly while maximizing the adaptivity of the system to cope with different product states. Adaptive automated disassembly is the key enabler for this. Enabling technologies such as the use of sensors, AI or "design for disassembly", serve to implement this. From an organizational perspective, standardization is necessary to make data from production, from the user cycle and from automated condition assessments available and usable as a decision-taking foundation for adaptive processes. Consequently, the provision and analysis of the necessary data represents a central concern for the implementation of disassembly processes.
- Published
- 2023
- Full Text
- View/download PDF
14. Recommending data preprocessing pipelines for machine learning applications in production
- Author
-
Frye, Maik, Schmitt, Robert H., and Behr, Marek
- Subjects
Produktion ,manufacturing ,machine learning ,Datenvorverarbeitung ,data preprocessing ,maschinelles Lernen ,production ,ddc:620 ,artificial intelligence ,künstliche Intelligenz - Abstract
The era of Industry 4.0 opens up the possibility of optimizing production systems in a data-driven way. To turn data into value, machine learning (ML) models are trained on production data aiming at identifying patterns to optimize processes. A crucial prereq-uisite for achieving performant ML models is the availability of high quality data. Since raw data generated in production exhibits multiple quality issues, data preprocessing (DPP) is required to increase the quality of the data. One of the key design decisions in any ML project is the choice of suitable DPP methods. The search space further increases when DPP methods are configured into DPP pipelines. Due to the high num-ber of possible DPP pipelines, data scientists commonly select suitable pipelines man-ually and via trial and error. For these reasons, DPP nowadays accounts for approximately 80 % of the time in ML projects.To guide data scientists, decision support systems (DSS) have been developed that assist in the selection of suitable DPP pipelines but do not cover productionspecific requirements. Therefore, the main research question was: Can a DSS be developed that supports in recommending DPP pipelines for ML applications in production? To be able to answer the main research question, a meta learning-based decision sup-port system, called Meta-DPP, was developed. Meta-DPP relies on three core compo-nents: the meta target selector, meta features database, and meta model. The meta target selector chooses between two preselected sets of overall well performing pipe-lines, called pipeline pools, for both classification and regression tasks. Further, the meta features database stores learning taskspecific information about the data set, e. g., the number of instances, as well as past ML algorithm and DPP pipeline performances. The meta model then recommends a pipeline from the pipeline pool based on the meta features from the database. When applying Meta-DPP, a user interface enables the data scientist, production expert, or IT expert to input their data set, learning task, ML algorithm and information about explainability. Given these four inputs, Meta-DPP provides a ranked recommendation of the DPP pipelines from the pool. Probabilities provided by the meta model further indicate how certain Meta-DPP is about the recommendation. Verifying and validating revealed the correct development and implementation of Meta-DPP. The validation on 324 production use cases further prove that Meta-DPP outperform essential pipelines on average, whereby essential pipelines ensure the function-ing of ML algorithms by performing minimum DPP. As a conclusion, the main research question was positively answered.
- Published
- 2023
- Full Text
- View/download PDF
15. Optical coherence tomography and convolutional neural networks can differentiate colorectal liver metastases from liver parenchyma ex vivo
- Author
-
Amygdalos, Iakovos, primary, Hachgenei, Enno, additional, Burkl, Luisa, additional, Vargas, David, additional, Goßmann, Paul, additional, Wolff, Laura I., additional, Druzenko, Mariia, additional, Frye, Maik, additional, König, Niels, additional, Schmitt, Robert H., additional, Chrysos, Alexandros, additional, Jöchle, Katharina, additional, Ulmer, Tom F., additional, Lambertz, Andreas, additional, Knüchel-Clarke, Ruth, additional, Neumann, Ulf P., additional, and Lang, Sven A., additional
- Published
- 2022
- Full Text
- View/download PDF
16. Toward Rapid, Widely Available Autologous CAR-T Cell Therapy – Artificial Intelligence and Automation Enabling the Smart Manufacturing Hospital
- Author
-
Hort, Simon, primary, Herbst, Laura, additional, Bäckel, Niklas, additional, Erkens, Frederik, additional, Niessing, Bastian, additional, Frye, Maik, additional, König, Niels, additional, Papantoniou, Ioannis, additional, Hudecek, Michael, additional, Jacobs, John J. L., additional, and Schmitt, Robert H., additional
- Published
- 2022
- Full Text
- View/download PDF
17. Recommending data preprocessing pipelines for machine learning applications in production; 1. Auflage
- Author
-
Frye, Maik
- Subjects
machine learning ,artificial intelligence ,production ,manufacturing ,data preprocessing ,maschinelles Lernen ,künstliche Intelligenz ,Produktion ,Datenvorverarbeitung - Abstract
Dissertation, RWTH Aachen University, 2022; Aachen : Apprimus Verlag, Ergebnisse aus der Produktionstechnik 3/2023, 1 Online-Ressource : Illustrationen, Diagramme (2023). = Dissertation, RWTH Aachen University, 2022, The era of Industry 4.0 opens up the possibility of optimizing production systems in a data-driven way. To turn data into value, machine learning (ML) models are trained on production data aiming at identifying patterns to optimize processes. A crucial prereq-uisite for achieving performant ML models is the availability of high quality data. Since raw data generated in production exhibits multiple quality issues, data preprocessing (DPP) is required to increase the quality of the data. One of the key design decisions in any ML project is the choice of suitable DPP methods. The search space further increases when DPP methods are configured into DPP pipelines. Due to the high num-ber of possible DPP pipelines, data scientists commonly select suitable pipelines man-ually and via trial and error. For these reasons, DPP nowadays accounts for approximately 80 % of the time in ML projects.To guide data scientists, decision support systems (DSS) have been developed that assist in the selection of suitable DPP pipelines but do not cover productionspecific requirements. Therefore, the main research question was: Can a DSS be developed that supports in recommending DPP pipelines for ML applications in production? To be able to answer the main research question, a meta learning-based decision sup-port system, called Meta-DPP, was developed. Meta-DPP relies on three core compo-nents: the meta target selector, meta features database, and meta model. The meta target selector chooses between two preselected sets of overall well performing pipe-lines, called pipeline pools, for both classification and regression tasks. Further, the meta features database stores learning taskspecific information about the data set, e. g., the number of instances, as well as past ML algorithm and DPP pipeline performances. The meta model then recommends a pipeline from the pipeline pool based on the meta features from the database. When applying Meta-DPP, a user interface enables the data scientist, production expert, or IT expert to input their data set, learning task, ML algorithm and information about explainability. Given these four inputs, Meta-DPP provides a ranked recommendation of the DPP pipelines from the pool. Probabilities provided by the meta model further indicate how certain Meta-DPP is about the recommendation. Verifying and validating revealed the correct development and implementation of Meta-DPP. The validation on 324 production use cases further prove that Meta-DPP outperform essential pipelines on average, whereby essential pipelines ensure the function-ing of ML algorithms by performing minimum DPP. As a conclusion, the main research question was positively answered., Published by Apprimus Verlag, Aachen
- Published
- 2022
- Full Text
- View/download PDF
18. Recommending data preprocessing pipelines for machine learning applications in production; [korrigierte 1. Auflage]
- Author
-
Frye, Maik
- Subjects
Datenvorverarbeitung ,Produktion ,artificial intelligence ,data preprocessing ,künstliche Intelligenz ,machine learning ,manufacturing ,maschinelles Lernen ,production - Abstract
Dissertation, RWTH Aachen University, 2022; Aachen : Apprimus Verlag, Ergebnisse aus der Produktionstechnik Band 8/2023, 1 Online-Ressource : Illustrationen, Diagramme (2023). doi:10.18154/RWTH-2023-02364 = Dissertation, RWTH Aachen University, 2022, The era of Industry 4.0 opens up the possibility of optimizing production systems in a data-driven way. To turn data into value, machine learning (ML) models are trained on production data aiming at identifying patterns to optimize processes. A crucial prereq-uisite for achieving performant ML models is the availability of high quality data. Since raw data generated in production exhibits multiple quality issues, data preprocessing (DPP) is required to increase the quality of the data. One of the key design decisions in any ML project is the choice of suitable DPP methods. The search space further increases when DPP methods are configured into DPP pipelines. Due to the high num-ber of possible DPP pipelines, data scientists commonly select suitable pipelines man-ually and via trial and error. For these reasons, DPP nowadays accounts for approximately 80 % of the time in ML projects.To guide data scientists, decision support systems (DSS) have been developed that assist in the selection of suitable DPP pipelines but do not cover productionspecific requirements. Therefore, the main research question was: Can a DSS be developed that supports in recommending DPP pipelines for ML applications in production? To be able to answer the main research question, a meta learning-based decision sup-port system, called Meta-DPP, was developed. Meta-DPP relies on three core compo-nents: the meta target selector, meta features database, and meta model. The meta target selector chooses between two preselected sets of overall well performing pipe-lines, called pipeline pools, for both classification and regression tasks. Further, the meta features database stores learning taskspecific information about the data set, e. g., the number of instances, as well as past ML algorithm and DPP pipeline performances. The meta model then recommends a pipeline from the pipeline pool based on the meta features from the database. When applying Meta-DPP, a user interface enables the data scientist, production expert, or IT expert to input their data set, learning task, ML algorithm and information about explainability. Given these four inputs, Meta-DPP provides a ranked recommendation of the DPP pipelines from the pool. Probabilities provided by the meta model further indicate how certain Meta-DPP is about the recommendation. Verifying and validating revealed the correct development and implementation of Meta-DPP. The validation on 324 production use cases further prove that Meta-DPP outperform essential pipelines on average, whereby essential pipelines ensure the function-ing of ML algorithms by performing minimum DPP. As a conclusion, the main research question was positively answered., Published by Apprimus Verlag, Aachen
- Published
- 2022
- Full Text
- View/download PDF
19. Despliegue de modelos de aprendizaje automático para la predicción de la calidad en la producción
- Author
-
Boza García, Andrés, Frye, Maik, Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Heymann, Henrik, Boza García, Andrés, Frye, Maik, Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, and Heymann, Henrik
- Abstract
[ES] Asegurar la calidad de la producción es uno de los elementos clave para la fabricación, especialmente en los países altamente desarrollados. Al mismo tiempo, el aprendizaje automático es un tema emergente en la investigación. Un área de aplicación importante para el aprendizaje automático es la predicción de la calidad en la producción. En la práctica, el despliegue de un modelo de alto rendimiento desde la fase de desarrollo hasta la producción en el mundo real se ejecuta a menudo de forma infructuosa debido a la falta de una metodología claramente estructurada que cubra todo el proceso de principio a fin, así como las decisiones y pasos necesarios en detalle. Este trabajo final de máster tiene como objetivo proporcionar una metodología para el despliegue de modelos de aprendizaje automático aplicada al contexto de la predicción de la calidad en base a datos recogidos durante el proceso de producción. Para facilitar la calidad predictiva teniendo en cuenta las necesidades y restricciones específicas de la empresa, la metodología servirá de guía durante el proceso de selección de la opción de despliegue más adecuada. Para lograr el objetivo, una revisión de la literatura académica y gris identifica las opciones y conceptos disponibles para el despliegue. A partir de la revisión, se desarrolla una metodología que analiza y estructura las posibles soluciones. Para validar la metodología, se discute con expertos y se implementa un caso de uso de un modelo de aprendizaje automático de un proceso de fabricación del mundo real. La metodología desarrollada proporciona una estructura clara y ofrece una visión general de las decisiones y tareas que deben realizarse para el despliegue de modelos de aprendizaje automático para la predicción de la calidad en la producción. Futuras investigaciones podrían profundizar en fases individuales de la metodología, como la implementación con un enfoque de ingeniería de software., [EN] Assuring production quality is one of the key elements for manufacturing, especially in highly developed countries. At the same time, machine learning is an emerging subject in investigation. An important area of application for machine learning is the prediction of quality in production. In practice, deploying a performant model from the development stage into real world production is often executed unsuccessfully due to the lack of a clearly structured methodology covering the whole end-to-end process but also the necessary decisions and steps in detail. This thesis aims to provide a methodology for machine learning model deployment applied to the context of predictive quality based on data collected during the production process. To facilitate predictive quality under consideration of the company¿s specific needs and restrictions, the methodology shall serve as a guideline during the selection process of the most adequate deployment option. In order to achieve the goal, a review of academic and gray literature identifies available options and concepts for deployment. Based on the review, a methodology which analyzes and structures the possible solutions is developed. For validating purposes, the methodology is discussed with experts and a use case of a machine learning model from a real-world manufacturing process is implemented. The developed methodology provides a clear structure and gives an overview of decisions and tasks that need to be made for the deployment of machine learning models for predictive quality in production. Further research could deep dive into individual phases of the methodology such as the implementation with a software engineering focus.
- Published
- 2021
20. Maschinelles Lernen in der Produktion. Anwendungsgebiete und frei verfügbare Datensätze
- Author
-
Krauß, Jonathan, Dorißen, Jonas, Mende, Hendrik, Frye, Maik, Schmitt, Robert H., and Publica
- Subjects
Big Data ,machine learning ,use cases ,Künstliche Intelligenz ,Produktionstechnologie ,Anwendungsgebiet ,data analytics - Abstract
Steigende Rechenleistungen und bessere Datengrundlagen bei gleichzeitig sinkenden Kosten für Rechen- und Speicherkapazitäten stellen die Basis für den Einsatz von Machine Learning (ML) in der Produktion dar. Herausforderungen bestehen in der Identifizierung aussichtsreicher Anwendungsgebiete, dem Erkennen der mit diesen verbundenen Learning Tasks sowie dem Aufdecken passender Datensätze. In diesem Beitrag werden daher folgende Fragen beantwortet: Welche Anwendungsgebiete in der Produktion bieten das größte Potenzial für den Einsatz von ML? Welche frei zugänglichen Datensätze eignen sich, um eigene Erfahrungen zu sammeln und welche Learning Tasks sind damit verbunden? Was sind Best Practices für die Anwendungsgebiete?
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.