32 results on '"Fyllas, N.M."'
Search Results
2. Converting treatment wetlands into “treatment gardens”: Use of ornamental plants for greywater treatment
- Author
-
Kotsia, D., Deligianni, A., Fyllas, N.M., Stasinakis, A.S., and Fountoulakis, M.S.
- Published
- 2020
- Full Text
- View/download PDF
3. Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey
- Author
-
Kint, V., Aertsen, W., Fyllas, N.M., Trabucco, A., Janssen, E., Özkan, K., and Muys, B.
- Published
- 2014
- Full Text
- View/download PDF
4. Photosynthetic and defensive responses of two Mediterranean oaks to insect leaf herbivory
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Fyllas, N.M., Chrysafi, D., Avtzis, D.N., Moreira, X., Ministerio de Ciencia, Innovación y Universidades (España), Fyllas, N.M., Chrysafi, D., Avtzis, D.N., and Moreira, X.
- Abstract
Insect herbivory is a dominant interaction across virtually all ecosystems globally and has dramatic effects on plant function such as reduced photosynthesis activity and increased levels of defenses. However, most previous work assessing the link between insect herbivory, photosynthesis and plant defenses has been performed on cultivated model plant species, neglecting a full understanding of patterns in natural systems. In this study, we performed a field experiment to investigate the effects of herbivory by a generalist foliar feeding insect (Lymantria dispar) and leaf mechanical damage on multiple leaf traits associated with defense against herbivory and photosynthesis activity on two sympatric oak species with contrasting leaf habit (the evergreen Quercus coccifera L. and the deciduous Quercus pubescens Willd). Our results showed that, although herbivory treatments and oak species did not strongly affect photosynthesis and dark respiration, these two factors exerted interactive effects. Insect herbivory and mechanical damage (vs control) decreased photosynthesis activity for Q. coccifera but not for Q. pubescens. Insect herbivory and mechanical damage tended to increase chemical (increased flavonoid and lignin concentration) defenses, but these effects were stronger for Q. pubescens. Overall, this study shows that two congeneric oak species with contrasting leaf habit differ in their photosynthetic and defensive responses to insect herbivory. While the evergreen oak species followed a more conservative strategy (reduced photosynthesis and higher physical defenses), the deciduous oak species followed a more acquisitive strategy (maintained photosynthesis and higher chemical defenses).
- Published
- 2022
5. Engaging the senses: The association of urban green space with general health and well-being in urban residents
- Author
-
Kanelli, A.A. Dimitrakopoulos, P.G. Fyllas, N.M. Chrousos, G.P. Kalantzi, O.-I.
- Abstract
This study evaluated the short-term responses of physiological and psychological indices and examined the human senses that are mostly engaged during a green space and urban exposure in residents of Athens, Greece. The forest had beneficial effects for human physiology, anxiety and mood states and was also associated with all five senses and positive reactions, while the opposite was observed in the urban center. The difference of pre-and post-green space exposure salivary cortisol was correlated with the participants’ environmental profile and body mass index. Green spaces can alleviate stress and improve overall mood, while helping individuals experience their surroundings with all five senses. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- Published
- 2021
6. Corrigendum to 'An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies' [Sci. Total Environ. 672 (2019) 583–592] (Science of the Total Environment (2019) 672 (583–592), (S0048969719315438), (10.1016/j.scitotenv.2019.04.030))
- Author
-
Michelaki, C. Fyllas, N.M. Galanidis, A. Aloupi, M. Evangelou, E. Arianoutsou, M. Dimitrakopoulos, P.G.
- Abstract
The authors regret that the printed version of the above article contained a number of errors. The correct and final version follows. The correct unit for Specific Leaf Area is cm^2 * g^-1 (instead of m^2 * kg^-1) and for Leaf Area is cm^2 * 10^-1 (instead of cm^2). These errors in no way affect the comparative analyses that were performed in this manuscript, the reported results, nor the drawn conclusions. The authors would like to apologise for any inconvenience caused. © 2020 Elsevier B.V.
- Published
- 2021
7. Adaptive flammability syndromes in thermo-Mediterranean vegetation, captured by alternative resource-use strategies
- Author
-
Michelaki, C. Fyllas, N.M. Galanidis, A. Aloupi, M. Evangelou, E. Arianoutsou, M. Dimitrakopoulos, P.G.
- Abstract
Fire affects and is affected by leaf functional traits indicative of resource allocation trade-offs. Global change drivers constrain both the resource-use strategies and flammability of coexisting species. However, small attention has been given in identifying links among flammability and plant economics. Ambiguity comes from the fact that flammability is a multidimensional trait. Different flammability attributes (i.e. ignitibility, sustainability, combustibility and consumability) have been used to classify species, but no widely-accepted relationships exist between attributes. We hypothesised that flammability is a spectrum (defined by its four attributes) and the alternative flammability syndromes of coexisting species can be captured by their resource-use strategies. Furthermore, we argue that flammability syndromes are adaptive strategies that ensure persistence in the post-fire community. We conducted a large-scale study to estimate all flammability attributes on leaves from nine, dominant, thermo-Mediterranean species with alternative resource-use and fire-response strategies across a wide environmental and geographic gradient. We assessed the interdependence among attributes, and their variation across ecological scales (genus, species, individual, site and region). Furthermore, we collected 10 leaf functional traits, conducted a soil study and extracted long-term climatological data to quantify their effect on flammability attributes. We found that leaf flammability in thermo-Mediterranean vegetation is a continuous two-dimensional spectrum. The first dimension, driven by leaf shape and size, represents heat release rate (combustibility vs. sustainability), while the second, controlled by leaf economics, presents ignition delay and total heat release (i.e. consumability). Alternative flammability syndromes can increase fitness in fire-prone communities by offering qualitative differences in survival or reproduction. Trade-offs and constraints that control the distribution of resource-use strategies across environmental gradients appeared to drive leaf flammability syndromes as well. Tying the flammability spectrum with resource allocation trade-offs on a global scale can help us predict future ecosystem properties and fire regimes and illustrate evolutionary constraints on flammability. © 2020 Elsevier B.V.
- Published
- 2020
8. Functional Trait Variation Among and Within Species and Plant Functional Types in Mountainous Mediterranean Forests
- Author
-
Fyllas, N.M. Michelaki, C. Galanidis, A. Evangelou, E. Zaragoza-Castells, J. Dimitrakopoulos, P.G. Tsadilas, C. Arianoutsou, M. Lloyd, J.
- Abstract
Plant structural and biochemical traits are frequently used to characterise the life history of plants. Although some common patterns of trait covariation have been identified, recent studies suggest these patterns of covariation may differ with growing location and/or plant functional type (PFT). Mediterranean forest tree/shrub species are often divided into three PFTs based on their leaf habit and form, being classified as either needleleaf evergreen (Ne), broadleaf evergreen (Be), or broadleaf deciduous (Bd). Working across 61 mountainous Mediterranean forest sites of contrasting climate and soil type, we sampled and analysed 626 individuals in order to evaluate differences in key foliage trait covariation as modulated by growing conditions both within and between the Ne, Be, and Bd functional types. We found significant differences between PFTs for most traits. When considered across PFTs and by ignoring intraspecific variation, three independent functional dimensions supporting the Leaf-Height-Seed framework were identified. Some traits illustrated a common scaling relationship across and within PFTs, but others scaled differently when considered across PFTs or even within PFTs. For most traits much of the observed variation was attributable to PFT identity and not to growing location, although for some traits there was a strong environmental component and considerable intraspecific and residual variation. Nevertheless, environmental conditions as related to water availability during the dry season and to a smaller extend to soil nutrient status and soil texture, clearly influenced trait values. When compared across species, about half of the trait-environment relationships were species-specific. Our study highlights the importance of the ecological scale within which trait covariation is considered and suggests that at regional to local scales, common trait-by-trait scaling relationships should be treated with caution. PFT definitions by themselves can potentially be an important predictor variable when inferring one trait from another. These findings have important implications for local scale dynamic vegetation models. © Copyright © 2020 Fyllas, Michelaki, Galanidis, Evangelou, Zaragoza-Castells, Dimitrakopoulos, Tsadilas, Arianoutsou and Lloyd.
- Published
- 2020
9. TRY plant trait database – enhanced coverage and open access
- Author
-
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D.A., Aakala, T., Abedi, M., Acosta, A.T.R., Adamidis, G.C., Adamson, K., Aiba, M., Albert, C.H., Alcántara, J.M., Alcázar, C.C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., Amoroso, M.M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D.M.G., Ashman, T‐L, Asmara, D.H., Asner, G.P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup‐Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W.J., Bakker, J.P., Baldocchi, D., Baltzer, J., Banerjee, A., Baranger, A., Barlow, J., Barneche, D.R., Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M., Benavides, R., Benomar, L., Berdugo‐Lattke, M.L., Berenguer, E., Bergamin, R., Bergmann, J., Bergmann Carlucci, M., Berner, L., Bernhardt‐Römermann, M., Bigler, C., Bjorkman, A.D., Blackman, C., Blanco, C., Blonder, B., Blumenthal, D., Bocanegra‐González, K.T., Boeckx, P., Bohlman, S., Böhning‐Gaese, K., Boisvert‐Marsh, L., Bond, W., Bond‐Lamberty, B., Boom, A., Boonman, C.C.F., Bordin, K., Boughton, E.H., Boukili, V., Bowman, D.M.J.S., Bravo, S., Brendel, M.R., Broadley, M.R., Brown, K.A., Bruelheide, H., Brumnich, F., Bruun, H.H., Bruy, D., Buchanan, S.W., Bucher, S.F., Buchmann, N., Buitenwerf, R., Bunker, D.E., Bürger, J., Burrascano, S., Burslem, D.F.R.P., Butterfield, B.J., Byun, C., Marques, M., Scalon, M.C., Caccianiga, M., Cadotte, M., Cailleret, M., Camac, J., Camarero, J.J., Campany, C., Campetella, G., Campos, J.A., Cano‐Arboleda, L., Canullo, R., Carbognani, M., Carvalho, F., Casanoves, F., Castagneyrol, B., Catford, J.A., Cavender‐Bares, J., Cerabolini, B.E.L., Cervellini, M., Chacón‐Madrigal, E., Chapin, K., Chapin, F.S., Chelli, S., Chen, S‐C, Chen, A., Cherubini, P., Chianucci, F., Choat, B., Chung, K‐S, Chytrý, M., Ciccarelli, D., Coll, L., Collins, C.G., Conti, L., Coomes, D., Cornelissen, J.H.C., Cornwell, W.K., Corona, P., Coyea, M., Craine, J., Craven, D., Cromsigt, J.P.G.M., Csecserits, A., Cufar, K., Cuntz, M., Silva, A.C., Dahlin, K.M., Dainese, M., Dalke, I., Dalle Fratte, M., Dang‐Le, A.T., Danihelka, J., Dannoura, M., Dawson, S., Beer, A.J., De Frutos, A., De Long, J.R., Dechant, B., Delagrange, S., Delpierre, N., Derroire, G., Dias, A.S., Diaz‐Toribio, M.H., Dimitrakopoulos, P.G., Dobrowolski, M., Doktor, D., Dřevojan, P., Dong, N., Dransfield, J., Dressler, S., Duarte, L., Ducouret, E., Dullinger, S., Durka, W., Duursma, R., Dymova, O., E‐Vojtkó, A., Eckstein, R.L., Ejtehadi, H., Elser, J., Emilio, T., Engemann, K., Erfanian, M.B., Erfmeier, A., Esquivel‐Muelbert, A., Esser, G., Estiarte, M., Domingues, T.F., Fagan, W.F., Fagúndez, J., Falster, D.S., Fan, Y., Fang, J., Farris, E., Fazlioglu, F., Feng, Y., Fernandez‐Mendez, F., Ferrara, C., Ferreira, J., Fidelis, A., Finegan, B., Firn, J., Flowers, T.J., Flynn, D.F.B., Fontana, V., Forey, E., Forgiarini, C., François, L., Frangipani, M., Frank, D., Frenette‐Dussault, C., Freschet, G.T., Fry, E.L., Fyllas, N.M., Mazzochini, G.G., Gachet, S., Gallagher, R., Ganade, G., Ganga, F., García‐Palacios, P., Gargaglione, V., Garnier, E., Garrido, J.L., Gasper, A.L., Gea‐Izquierdo, G., Gibson, D., Gillison, A.N., Giroldo, A., Glasenhardt, M‐C, Gleason, S., Gliesch, M., Goldberg, E., Göldel, B., Gonzalez‐Akre, E., Gonzalez‐Andujar, J.L., González‐Melo, A., González‐Robles, A., Graae, B.J., Granda, E., Graves, S., Green, W.A., Gregor, T., Gross, N., Guerin, G.R., Günther, A., Gutiérrez, A.G., Haddock, L., Haines, A., Hall, J., Hambuckers, A., Han, W., Harrison, S.P., Hattingh, W., Hawes, J.E., He, T., He, P., Heberling, J.M., Helm, A., Hempel, S., Hentschel, J., Hérault, B., Hereş, A‐M, Herz, K., Heuertz, M., Hickler, T., Hietz, P., Higuchi, P., Hipp, A.L., Hirons, A., Hock, M., Hogan, J.A., Holl, K., Honnay, O., Hornstein, D., Hou, E., Hough‐Snee, N., Hovstad, K.A., Ichie, T., Igić, B., Illa, E., Isaac, M., Ishihara, M., Ivanov, L., Ivanova, L., Iversen, C.M., Izquierdo, J., Jackson, R.B., Jackson, B., Jactel, H., Jagodzinski, A.M., Jandt, U., Jansen, S., Jenkins, T., Jentsch, A., Jespersen, J.R.P., Jiang, G‐F, Johansen, J.L., Johnson, D., Jokela, E.J., Joly, C.A., Jordan, G.J., Joseph, G.S., Junaedi, D., Junker, R.R., Justes, E., Kabzems, R., Kane, J., Kaplan, Z., Kattenborn, T., Kavelenova, L., Kearsley, E., Kempel, A., Kenzo, T., Kerkhoff, A., Khalil, M.I., Kinlock, N.L., Kissling, W.D., Kitajima, K., Kitzberger, T., Kjøller, R., Klein, T., Kleyer, M., Klimešová, J., Klipel, J., Kloeppel, B., Klotz, S., Knops, J.M.H., Kohyama, T., Koike, F., Kollmann, J., Komac, B., Komatsu, K., König, C., Kraft, N.J.B., Kramer, K.., Kreft, H., Kühn, I., Kumarathunge, D., Kuppler, J., Kurokawa, H., Kurosawa, Y., Kuyah, S., Laclau, J‐P, Lafleur, B., Lallai, E., Lamb, E., Lamprecht, A., Larkin, D.J., Laughlin, D., Le Bagousse‐Pinguet, Y., Maire, G., Roux, P.C., Roux, E., Lee, T., Lens, F., Lewis, S.L., Lhotsky, B., Li, Y., Li, X., Lichstein, J.W., Liebergesell, M., Lim, J.Y., Lin, Y‐S, Linares, J.C., Liu, C., Liu, D., Liu, U., Livingstone, S., Llusià, J., Lohbeck, M., López‐García, Á., Lopez‐Gonzalez, G., Lososová, Z., Louault, F., Lukács, B.A., Lukeš, P., Luo, Y.J., Lussu, M., Ma, S., Maciel Rabelo Pereira, C., Mack, M., Maire, V., Mäkelä, A., Mäkinen, H., Malhado, A.C.M., Mallik, A., Manning, P., Manzoni, S., Marchetti, Z., Marchino, L., Marcilio‐Silva, V., Marcon, E., Marignani, M., Markesteijn, L., Martin, A., Martínez‐Garza, C., Martínez‐Vilalta, J., Mašková, T., Mason, K., Mason, N., Massad, T.J., Masse, J., Mayrose, I., McCarthy, J., McCormack, M.L., McCulloh, K., McFadden, I.R., McGill, B.J., McPartland, M.Y., Medeiros, J.S., Medlyn, B., Meerts, P., Mehrabi, Z., Meir, P., Melo, F.P.L., Mencuccini, M., Meredieu, C., Messier, J., Mészáros, I., Metsaranta, J., Michaletz, S.T., Michelaki, C., Migalina, S., Milla, R., Miller, J.E.D., Minden, V., Ming, R., Mokany, K., Moles, A.T., Molnár, A., Molofsky, J., Molz, M., Montgomery, R.A., Monty, A., Moravcová, L., Moreno‐Martínez, A., Moretti, M., Mori, A.S., Mori, S., Morris, D., Morrison, J., Mucina, L., Mueller, S., Muir, C.D., Müller, S.C., Munoz, F., Myers‐Smith, I.H., Myster, R.W., Nagano, M., Naidu, S., Narayanan, A., Natesan, B., Negoita, L., Nelson, A.S., Neuschulz, E.L., Ni, J., Niedrist, G., Nieto, J., Niinemets, Ü., Nolan, R., Nottebrock, H., Nouvellon, Y., Novakovskiy, A., Nystuen, K.O., O'Grady, A., O'Hara, K., O'Reilly‐Nugent, A., Oakley, S., Oberhuber, W., Ohtsuka, T., Oliveira, R., Öllerer, K., Olson, M.E., Onipchenko, V., Onoda, Y., Onstein, R.E., Ordonez, J.C., Osada, N., Ostonen, I., Ottaviani, G., Otto, S., Overbeck, G.E., Ozinga, W.A., Pahl, A.T., Paine, C.E.T., Pakeman, R.J., Papageorgiou, A.C., Parfionova, E., Pärtel, M., Patacca, M., Paula, S., Paule, J., Pauli, H., Pausas, J.G., Peco, B., Penuelas, J., Perea, A., Peri, P.L., Petisco‐Souza, A.C., Petraglia, A., Petritan, A.M., Phillips, O.L., Pierce, S., Pillar, V.D., Pisek, J., Pomogaybin, A., Poorter, H., Portsmuth, A., Poschlod, P., Potvin, C., Pounds, D., Powell, A.S., Power, S.A., Prinzing, A., Puglielli, G., Pyšek, P., Raevel, V., Rammig, A., Ransijn, J., Ray, C.A., Reich, P.B., Reichstein, M., Reid, D.E. B., Réjou‐Méchain, M., Dios, V.R., Ribeiro, S., Richardson, S., Riibak, K., Rillig, M.C., Riviera, F., Robert, E.M.R., Roberts, S., Robroek, B., Roddy, A., Rodrigues, A.V., Rogers, A., Rollinson, E., Rolo, V., Römermann, C., Ronzhina, D., Roscher, C., Rosell, J.A., Rosenfield, M.F., Rossi, C., Roy, D.B., Royer‐Tardif, S., Rüger, N., Ruiz‐Peinado, R., Rumpf, S.B., Rusch, G.M., Ryo, M., Sack, L., Saldaña, A., Salgado‐Negret, B., Salguero‐Gomez, R., Santa‐Regina, I., Santacruz‐García, A.C., Santos, J., Sardans, J., Schamp, B., Scherer‐Lorenzen, M., Schleuning, M., Schmid, B., Schmidt, M., Schmitt, S., Schneider, J.V., Schowanek, S.D., Schrader, J., Schrodt, F., Schuldt, B., Schurr, F., Selaya Garvizu, G., Semchenko, M., Seymour, C., Sfair, J.C., Sharpe, J.M., Sheppard, C.S., Sheremetiev, S., Shiodera, S., Shipley, B., Shovon, T.A., Siebenkäs, A., Sierra, C., Silva, V., Silva, M., Sitzia, T., Sjöman, H., Slot, M., Smith, N.G., Sodhi, D., Soltis, P., Soltis, D., Somers, B., Sonnier, G., Sørensen, M.V., Sosinski, E.E., Soudzilovskaia, N.A., Souza, A.F., Spasojevic, M., Sperandii, M.G., Stan, A.B., Stegen, J., Steinbauer, K., Stephan, J.G., Sterck, F., Stojanovic, D.B., Strydom, T., Suarez, M.L., Svenning, J‐C, Svitková, I., Svitok, M., Svoboda, M., Swaine, E., Swenson, N., Tabarelli, M., Takagi, K., Tappeiner, U., Tarifa, R., Tauugourdeau, S., Tavsanoglu, C., Beest, M., Tedersoo, L., Thiffault, N., Thom, D., Thomas, E., Thompson, K., Thornton, P.E., Thuiller, W., Tichý, L., Tissue, D., Tjoelker, M.G., Tng, D.Y.P., Tobias, J., Török, P., Tarin, T., Torres‐Ruiz, J.M., Tóthmérész, B., Treurnicht, M., Trivellone, V., Trolliet, F., Trotsiuk, V., Tsakalos, J.L., Tsiripidis, I., Tysklind, N., Umehara, T., Usoltsev, V., Vadeboncoeur, M., Vaezi, J., Valladares, F., Vamosi, J., Bodegom, P.M., Breugel, M., Van Cleemput, E., Weg, M., Merwe, S., Plas, F., Sande, M.T., Kleunen, M., Van Meerbeek, K., Vanderwel, M., Vanselow, K.A., Vårhammar, A., Varone, L., Vasquez Valderrama, M.Y., Vassilev, K., Vellend, M., Veneklaas, E.J., Verbeeck, H., Verheyen, K., Vibrans, A., Vieira, I., Villacís, J., Violle, C., Vivek, P., Wagner, K., Waldram, M., Waldron, A., Walker, A.P., Waller, M., Walther, G., Wang, H., Wang, F., Wang, W., Watkins, H., Watkins, J., Weber, U., Weedon, J.T., Wei, L., Weigelt, P., Weiher, E., Wells, A.W., Wellstein, C., Wenk, E., Westoby, M., Westwood, A., White, P.J., Whitten, M., Williams, M., Winkler, D.E., Winter, K., Womack, C., Wright, I.J., Wright, S.J., Wright, J., Pinho, B.X., Ximenes, F., Yamada, T., Yamaji, K., Yanai, R., Yankov, N., Yguel, B., Zanini, K.J., Zanne, A.E., Zelený, D., Zhao, Y‐P, Zheng, J., Ziemińska, K., Zirbel, C.R., Zizka, G., Zo‐Bi, I.C., Zotz, G., Wirth, C., Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D.A., Aakala, T., Abedi, M., Acosta, A.T.R., Adamidis, G.C., Adamson, K., Aiba, M., Albert, C.H., Alcántara, J.M., Alcázar, C.C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., Amoroso, M.M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D.M.G., Ashman, T‐L, Asmara, D.H., Asner, G.P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup‐Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W.J., Bakker, J.P., Baldocchi, D., Baltzer, J., Banerjee, A., Baranger, A., Barlow, J., Barneche, D.R., Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M., Benavides, R., Benomar, L., Berdugo‐Lattke, M.L., Berenguer, E., Bergamin, R., Bergmann, J., Bergmann Carlucci, M., Berner, L., Bernhardt‐Römermann, M., Bigler, C., Bjorkman, A.D., Blackman, C., Blanco, C., Blonder, B., Blumenthal, D., Bocanegra‐González, K.T., Boeckx, P., Bohlman, S., Böhning‐Gaese, K., Boisvert‐Marsh, L., Bond, W., Bond‐Lamberty, B., Boom, A., Boonman, C.C.F., Bordin, K., Boughton, E.H., Boukili, V., Bowman, D.M.J.S., Bravo, S., Brendel, M.R., Broadley, M.R., Brown, K.A., Bruelheide, H., Brumnich, F., Bruun, H.H., Bruy, D., Buchanan, S.W., Bucher, S.F., Buchmann, N., Buitenwerf, R., Bunker, D.E., Bürger, J., Burrascano, S., Burslem, D.F.R.P., Butterfield, B.J., Byun, C., Marques, M., Scalon, M.C., Caccianiga, M., Cadotte, M., Cailleret, M., Camac, J., Camarero, J.J., Campany, C., Campetella, G., Campos, J.A., Cano‐Arboleda, L., Canullo, R., Carbognani, M., Carvalho, F., Casanoves, F., Castagneyrol, B., Catford, J.A., Cavender‐Bares, J., Cerabolini, B.E.L., Cervellini, M., Chacón‐Madrigal, E., Chapin, K., Chapin, F.S., Chelli, S., Chen, S‐C, Chen, A., Cherubini, P., Chianucci, F., Choat, B., Chung, K‐S, Chytrý, M., Ciccarelli, D., Coll, L., Collins, C.G., Conti, L., Coomes, D., Cornelissen, J.H.C., Cornwell, W.K., Corona, P., Coyea, M., Craine, J., Craven, D., Cromsigt, J.P.G.M., Csecserits, A., Cufar, K., Cuntz, M., Silva, A.C., Dahlin, K.M., Dainese, M., Dalke, I., Dalle Fratte, M., Dang‐Le, A.T., Danihelka, J., Dannoura, M., Dawson, S., Beer, A.J., De Frutos, A., De Long, J.R., Dechant, B., Delagrange, S., Delpierre, N., Derroire, G., Dias, A.S., Diaz‐Toribio, M.H., Dimitrakopoulos, P.G., Dobrowolski, M., Doktor, D., Dřevojan, P., Dong, N., Dransfield, J., Dressler, S., Duarte, L., Ducouret, E., Dullinger, S., Durka, W., Duursma, R., Dymova, O., E‐Vojtkó, A., Eckstein, R.L., Ejtehadi, H., Elser, J., Emilio, T., Engemann, K., Erfanian, M.B., Erfmeier, A., Esquivel‐Muelbert, A., Esser, G., Estiarte, M., Domingues, T.F., Fagan, W.F., Fagúndez, J., Falster, D.S., Fan, Y., Fang, J., Farris, E., Fazlioglu, F., Feng, Y., Fernandez‐Mendez, F., Ferrara, C., Ferreira, J., Fidelis, A., Finegan, B., Firn, J., Flowers, T.J., Flynn, D.F.B., Fontana, V., Forey, E., Forgiarini, C., François, L., Frangipani, M., Frank, D., Frenette‐Dussault, C., Freschet, G.T., Fry, E.L., Fyllas, N.M., Mazzochini, G.G., Gachet, S., Gallagher, R., Ganade, G., Ganga, F., García‐Palacios, P., Gargaglione, V., Garnier, E., Garrido, J.L., Gasper, A.L., Gea‐Izquierdo, G., Gibson, D., Gillison, A.N., Giroldo, A., Glasenhardt, M‐C, Gleason, S., Gliesch, M., Goldberg, E., Göldel, B., Gonzalez‐Akre, E., Gonzalez‐Andujar, J.L., González‐Melo, A., González‐Robles, A., Graae, B.J., Granda, E., Graves, S., Green, W.A., Gregor, T., Gross, N., Guerin, G.R., Günther, A., Gutiérrez, A.G., Haddock, L., Haines, A., Hall, J., Hambuckers, A., Han, W., Harrison, S.P., Hattingh, W., Hawes, J.E., He, T., He, P., Heberling, J.M., Helm, A., Hempel, S., Hentschel, J., Hérault, B., Hereş, A‐M, Herz, K., Heuertz, M., Hickler, T., Hietz, P., Higuchi, P., Hipp, A.L., Hirons, A., Hock, M., Hogan, J.A., Holl, K., Honnay, O., Hornstein, D., Hou, E., Hough‐Snee, N., Hovstad, K.A., Ichie, T., Igić, B., Illa, E., Isaac, M., Ishihara, M., Ivanov, L., Ivanova, L., Iversen, C.M., Izquierdo, J., Jackson, R.B., Jackson, B., Jactel, H., Jagodzinski, A.M., Jandt, U., Jansen, S., Jenkins, T., Jentsch, A., Jespersen, J.R.P., Jiang, G‐F, Johansen, J.L., Johnson, D., Jokela, E.J., Joly, C.A., Jordan, G.J., Joseph, G.S., Junaedi, D., Junker, R.R., Justes, E., Kabzems, R., Kane, J., Kaplan, Z., Kattenborn, T., Kavelenova, L., Kearsley, E., Kempel, A., Kenzo, T., Kerkhoff, A., Khalil, M.I., Kinlock, N.L., Kissling, W.D., Kitajima, K., Kitzberger, T., Kjøller, R., Klein, T., Kleyer, M., Klimešová, J., Klipel, J., Kloeppel, B., Klotz, S., Knops, J.M.H., Kohyama, T., Koike, F., Kollmann, J., Komac, B., Komatsu, K., König, C., Kraft, N.J.B., Kramer, K.., Kreft, H., Kühn, I., Kumarathunge, D., Kuppler, J., Kurokawa, H., Kurosawa, Y., Kuyah, S., Laclau, J‐P, Lafleur, B., Lallai, E., Lamb, E., Lamprecht, A., Larkin, D.J., Laughlin, D., Le Bagousse‐Pinguet, Y., Maire, G., Roux, P.C., Roux, E., Lee, T., Lens, F., Lewis, S.L., Lhotsky, B., Li, Y., Li, X., Lichstein, J.W., Liebergesell, M., Lim, J.Y., Lin, Y‐S, Linares, J.C., Liu, C., Liu, D., Liu, U., Livingstone, S., Llusià, J., Lohbeck, M., López‐García, Á., Lopez‐Gonzalez, G., Lososová, Z., Louault, F., Lukács, B.A., Lukeš, P., Luo, Y.J., Lussu, M., Ma, S., Maciel Rabelo Pereira, C., Mack, M., Maire, V., Mäkelä, A., Mäkinen, H., Malhado, A.C.M., Mallik, A., Manning, P., Manzoni, S., Marchetti, Z., Marchino, L., Marcilio‐Silva, V., Marcon, E., Marignani, M., Markesteijn, L., Martin, A., Martínez‐Garza, C., Martínez‐Vilalta, J., Mašková, T., Mason, K., Mason, N., Massad, T.J., Masse, J., Mayrose, I., McCarthy, J., McCormack, M.L., McCulloh, K., McFadden, I.R., McGill, B.J., McPartland, M.Y., Medeiros, J.S., Medlyn, B., Meerts, P., Mehrabi, Z., Meir, P., Melo, F.P.L., Mencuccini, M., Meredieu, C., Messier, J., Mészáros, I., Metsaranta, J., Michaletz, S.T., Michelaki, C., Migalina, S., Milla, R., Miller, J.E.D., Minden, V., Ming, R., Mokany, K., Moles, A.T., Molnár, A., Molofsky, J., Molz, M., Montgomery, R.A., Monty, A., Moravcová, L., Moreno‐Martínez, A., Moretti, M., Mori, A.S., Mori, S., Morris, D., Morrison, J., Mucina, L., Mueller, S., Muir, C.D., Müller, S.C., Munoz, F., Myers‐Smith, I.H., Myster, R.W., Nagano, M., Naidu, S., Narayanan, A., Natesan, B., Negoita, L., Nelson, A.S., Neuschulz, E.L., Ni, J., Niedrist, G., Nieto, J., Niinemets, Ü., Nolan, R., Nottebrock, H., Nouvellon, Y., Novakovskiy, A., Nystuen, K.O., O'Grady, A., O'Hara, K., O'Reilly‐Nugent, A., Oakley, S., Oberhuber, W., Ohtsuka, T., Oliveira, R., Öllerer, K., Olson, M.E., Onipchenko, V., Onoda, Y., Onstein, R.E., Ordonez, J.C., Osada, N., Ostonen, I., Ottaviani, G., Otto, S., Overbeck, G.E., Ozinga, W.A., Pahl, A.T., Paine, C.E.T., Pakeman, R.J., Papageorgiou, A.C., Parfionova, E., Pärtel, M., Patacca, M., Paula, S., Paule, J., Pauli, H., Pausas, J.G., Peco, B., Penuelas, J., Perea, A., Peri, P.L., Petisco‐Souza, A.C., Petraglia, A., Petritan, A.M., Phillips, O.L., Pierce, S., Pillar, V.D., Pisek, J., Pomogaybin, A., Poorter, H., Portsmuth, A., Poschlod, P., Potvin, C., Pounds, D., Powell, A.S., Power, S.A., Prinzing, A., Puglielli, G., Pyšek, P., Raevel, V., Rammig, A., Ransijn, J., Ray, C.A., Reich, P.B., Reichstein, M., Reid, D.E. B., Réjou‐Méchain, M., Dios, V.R., Ribeiro, S., Richardson, S., Riibak, K., Rillig, M.C., Riviera, F., Robert, E.M.R., Roberts, S., Robroek, B., Roddy, A., Rodrigues, A.V., Rogers, A., Rollinson, E., Rolo, V., Römermann, C., Ronzhina, D., Roscher, C., Rosell, J.A., Rosenfield, M.F., Rossi, C., Roy, D.B., Royer‐Tardif, S., Rüger, N., Ruiz‐Peinado, R., Rumpf, S.B., Rusch, G.M., Ryo, M., Sack, L., Saldaña, A., Salgado‐Negret, B., Salguero‐Gomez, R., Santa‐Regina, I., Santacruz‐García, A.C., Santos, J., Sardans, J., Schamp, B., Scherer‐Lorenzen, M., Schleuning, M., Schmid, B., Schmidt, M., Schmitt, S., Schneider, J.V., Schowanek, S.D., Schrader, J., Schrodt, F., Schuldt, B., Schurr, F., Selaya Garvizu, G., Semchenko, M., Seymour, C., Sfair, J.C., Sharpe, J.M., Sheppard, C.S., Sheremetiev, S., Shiodera, S., Shipley, B., Shovon, T.A., Siebenkäs, A., Sierra, C., Silva, V., Silva, M., Sitzia, T., Sjöman, H., Slot, M., Smith, N.G., Sodhi, D., Soltis, P., Soltis, D., Somers, B., Sonnier, G., Sørensen, M.V., Sosinski, E.E., Soudzilovskaia, N.A., Souza, A.F., Spasojevic, M., Sperandii, M.G., Stan, A.B., Stegen, J., Steinbauer, K., Stephan, J.G., Sterck, F., Stojanovic, D.B., Strydom, T., Suarez, M.L., Svenning, J‐C, Svitková, I., Svitok, M., Svoboda, M., Swaine, E., Swenson, N., Tabarelli, M., Takagi, K., Tappeiner, U., Tarifa, R., Tauugourdeau, S., Tavsanoglu, C., Beest, M., Tedersoo, L., Thiffault, N., Thom, D., Thomas, E., Thompson, K., Thornton, P.E., Thuiller, W., Tichý, L., Tissue, D., Tjoelker, M.G., Tng, D.Y.P., Tobias, J., Török, P., Tarin, T., Torres‐Ruiz, J.M., Tóthmérész, B., Treurnicht, M., Trivellone, V., Trolliet, F., Trotsiuk, V., Tsakalos, J.L., Tsiripidis, I., Tysklind, N., Umehara, T., Usoltsev, V., Vadeboncoeur, M., Vaezi, J., Valladares, F., Vamosi, J., Bodegom, P.M., Breugel, M., Van Cleemput, E., Weg, M., Merwe, S., Plas, F., Sande, M.T., Kleunen, M., Van Meerbeek, K., Vanderwel, M., Vanselow, K.A., Vårhammar, A., Varone, L., Vasquez Valderrama, M.Y., Vassilev, K., Vellend, M., Veneklaas, E.J., Verbeeck, H., Verheyen, K., Vibrans, A., Vieira, I., Villacís, J., Violle, C., Vivek, P., Wagner, K., Waldram, M., Waldron, A., Walker, A.P., Waller, M., Walther, G., Wang, H., Wang, F., Wang, W., Watkins, H., Watkins, J., Weber, U., Weedon, J.T., Wei, L., Weigelt, P., Weiher, E., Wells, A.W., Wellstein, C., Wenk, E., Westoby, M., Westwood, A., White, P.J., Whitten, M., Williams, M., Winkler, D.E., Winter, K., Womack, C., Wright, I.J., Wright, S.J., Wright, J., Pinho, B.X., Ximenes, F., Yamada, T., Yamaji, K., Yanai, R., Yankov, N., Yguel, B., Zanini, K.J., Zanne, A.E., Zelený, D., Zhao, Y‐P, Zheng, J., Ziemińska, K., Zirbel, C.R., Zizka, G., Zo‐Bi, I.C., Zotz, G., and Wirth, C.
- Abstract
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
- Published
- 2020
10. An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies
- Author
-
Michelaki, C. Fyllas, N.M. Galanidis, A. Aloupi, M. Evangelou, E. Arianoutsou, M. Dimitrakopoulos, P.G.
- Abstract
Vascular plants have been found to align along globally-recognised resource-allocation trade-offs among specific functional traits. Genetic constrains and environmental pressures limit the spectrum of viable resource-use strategies employed by plant species. While conspecific plants have often been described as identical, intraspecific variation facilitates species coexistence and evolutionary potential. This study attempts to link an individual's phenotype to its environmental tolerance and ecosystem function. We hypothesised that: (1) seasonal variation in water availability has selected for tight phenotypic integration patterns that shape Mediterranean vegetation; however, (2) coexisting species employ alternative resource-use strategies to avoid competitive exclusion; specifically (3) species with smaller climatic niches (i.e. potential distributions) display higher functional diversity. We examined the interdependence among and the sources of variation within 11 functional traits, reflecting whole-plant economics (e.g. construction costs, hydraulics, defences, water storage capacity), from nine dominant, thermo-Mediterranean species measured across a wide environmental and geographic gradient. Furthermore, we delineated the phenotypic and climatic hypervolumes of each studied species to test for climatic niche overlap and functional distinctiveness. By adopting this multidimensional trait-based approach we detected fundamental phenotypic integration patterns that define thermo-Mediterranean species regardless of life history strategy. The studied traits emerged intercorrelated shaping a resource-allocation spectrum. Significant intraspecific variability in most measured traits allowed for functional distinctiveness among the measured species. Higher functional diversity was observed in species restricted within narrower climatic niches. Our results support our initial hypotheses. The studied functional traits collectively formed an integrated space of viable phenotypic expressions; however, phenotypic plasticity enables functionally distinctive species to succeed complementary in a given set of environmental conditions. Functional variability among coexisting individuals defined species’ climatic niches within the trait-spectrum permitted by Mediterranean conditions. Ultimately, a species establishment in a locality depends on the extent that it can shift its trait values. © 2019
- Published
- 2019
11. Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: The case of Mount Taygetos (southern Greece)
- Author
-
Christopoulou, A. Mallinis, G. Vassilakis, E. Farangitakis, G.-P. Fyllas, N.M. Kokkoris, G.D. Arianoutsou, M.
- Abstract
Fires affecting large areas usually create a mosaic of recovering plant communities reflecting their pre-fire composition and local conditions of burning. However, post-fire recovery patterns may also reveal the effects of landscape heterogeneity on the natural regeneration process of plant communities. This study combines field data and remote sensing image interpretation techniques to assess the role of various landscape characteristics in the post-fire recovery process in a mountainous region of Greece burned by a severe wildfire. Remote sensing techniques were used to accurately map secluded, large burned areas. By introducing a temporal component, we explored the correlation between post-fire regeneration and underlying topography, soils and basement rock. Pre-fire forest cover was reduced by more than half 8 years after fire. Regarding the dominant pre-fire forest trees, Abies cephalonica did not regenerate well after fire and most pre-fire stands were converted to grasslands and shrublands. In contrast, Pinus nigra regenerated sufficiently to return to its pre-fire cover, especially in areas underlain by softer basement rock. The use of different time series of high-resolution images improved the quality of the results obtained, justifying their use despite their high cost. © 2019 Journal compilation IAWF 2019 Open Access.
- Published
- 2019
12. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains
- Author
-
Fyllas, N.M. Christopoulou, A. Galanidis, A. Michelaki, C.Z. Dimitrakopoulos, P.G. Fulé, P.Z. Arianoutsou, M.
- Abstract
In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth – climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6 °C and total annual precipitation from 500 to 950 mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May–August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (PSP). The responsiveness of annual growth to PSP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions. © 2017
- Published
- 2017
13. Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate
- Author
-
Fyllas, N.M. Christopoulou, A. Galanidis, A. Michelaki, C.Z. Giannakopoulos, C. Dimitrakopoulos, P.G. Arianoutsou, M. Gloor, M.
- Abstract
The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species. © 2017, Springer-Verlag Berlin Heidelberg.
- Published
- 2017
14. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)
- Author
-
Christoffersen, B.O. Gloor, M. Fauset, S. Fyllas, N.M. Galbraith, D.R. Baker, T.R. Kruijt, B. Rowland, L. Fisher, R.A. Binks, O.J. Sevanto, S. Xu, C. Jansen, S. Choat, B. Mencuccini, M. McDowell, N.G. Meir, P.
- Abstract
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ϵ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50% loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leafg: sapwood area ratio Al: As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted. © Author(s) 2016.
- Published
- 2016
15. Separating species and environmental determinants of leaf functional traits in temperate rainforest plants along a soil-development chronosequence
- Author
-
Turnbull, M.H. Griffin, K.L. Fyllas, N.M. Lloyd, J. Meir, P. Atkin, O.K.
- Subjects
food and beverages - Abstract
We measured a diverse range of foliar characteristics in shrub and tree species in temperate rainforest communities along a soil chronosequence (six sites from 8 to 120000 years) and used multilevel model analysis to attribute the proportion of variance for each trait into genetic (G, here meaning species-level), environmental (E) and residual error components. We hypothesised that differences in leaf traits would be driven primarily by changes in soil nutrient availability during ecosystem progression and retrogression. Several leaf structural, chemical and gas-exchange traits were more strongly driven by G than E effects. For leaf mass per unit area (MA), foliar [N], net CO2 assimilation and dark respiration rates and foliar carbohydrate concentration, the G component accounted for 60-87% of the total variance, with the variability associated with plot, the E effect, much less important. Other traits, such as foliar [P] and N:P, displayed strong E and residual effects. Analyses revealed significant reductions in the slopes of G-only bivariate relationships when compared with raw relationships, indicating that a large proportion of trait-trait relationships is species based, and not a response to environment per se. This should be accounted for when assessing the mechanistic basis for using such relationships in order to make predictions of responses of plants to short-term environmental change.
- Published
- 2016
16. Variation in plant diversity in mediterranean-climate ecosystems: The role of climatic and topographical stability
- Author
-
Cowling, R.M. Potts, A.J. Bradshaw, P.L. Colville, J. Arianoutsou, M. Ferrier, S. Forest, F. Fyllas, N.M. Hopper, S.D. Ojeda, F. Procheş, S. Smith, R.J. Rundel, P.W. Vassilakis, E. Zutta, B.R.
- Abstract
Aim: Although all five of the major mediterranean-climate ecosystems (MCEs) of the world are recognized as loci of high plant species diversity and endemism, they show considerable variation in regional-scale richness. Here, we assess the role of stable Pleistocene climate and Cenozoic topography in explaining variation in regional richness of the globe's MCEs. We hypothesize that older, more climatically stable MCEs would support more species, because they have had more time for species to accumulate than MCEs that were historically subject to greater topographic upheavals and fluctuating climates. Location: South-western Africa (Cape), south-western Australia, California, central Chile and the eastern (Greece) and western (Spain) Mediterranean Basin. Methods: We estimated plant diversity for each MCE as the intercepts of species-area curves that are homogeneous in slope across all regions. We used two down-scaled global circulation models of the Last Glacial Maximum (LGM) to quantify climate stability by comparing the change in the location of MCEs between the LGM and present. We quantified the Cenozoic topographic stability of each MCE by comparing contemporary topographic profiles with those present in the late Oligocene and the early Pliocene. Results: The most diverse MCEs - Cape and Australia - had the highest Cenozoic environmental stability, and the least diverse - Chile and California - had the lowest stability. Main conclusions: Variation in plant diversity in MCEs is likely to be a consequence not of differences in diversification rates, but rather the persistence of numerous pre-Pliocene clades in the more stable MCEs. The extraordinary plant diversity of the Cape is a consequence of the combined effects of both mature and recent radiations, the latter associated with increased habitat heterogeneity produced by mild tectonic uplift in the Neogene. © 2014 John Wiley & Sons Ltd.
- Published
- 2015
17. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
- Author
-
Atkin, O.K. Bloomfield, K.J. Reich, P.B. Tjoelker, M.G. Asner, G.P. Bonal, D. Bönisch, G. Bradford, M.G. Cernusak, L.A. Cosio, E.G. Creek, D. Crous, K.Y. Domingues, T.F. Dukes, J.S. Egerton, J.J.G. Evans, J.R. Farquhar, G.D. Fyllas, N.M. Gauthier, P.P.G. Gloor, E. Gimeno, T.E. Griffin, K.L. Guerrieri, R. Heskel, M.A. Huntingford, C. Ishida, F.Y. Kattge, J. Lambers, H. Liddell, M.J. Lloyd, J. Lusk, C.H. Martin, R.E. Maksimov, A.P. Maximov, T.C. Malhi, Y. Medlyn, B.E. Meir, P. Mercado, L.M. Mirotchnick, N. Ng, D. Niinemets, U. O'Sullivan, O.S. Phillips, O.L. Poorter, L. Poot, P. Prentice, I.C. Salinas, N. Rowland, L.M. Ryan, M.G. Sitch, S. Slot, M. Smith, N.G. Turnbull, M.H. Vanderwel, M.C. Valladares, F. Veneklaas, E.J. Weerasinghe, L.K. Wirth, C. Wright, I.J. Wythers, K.R. Xiang, J. Xiang, S. Zaragoza-Castells, J.
- Abstract
Summary: Leaf dark respiration (R dark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of R dark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in R dark . Area-based R dark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, R dark at a standard T (25°C, R dark 25 ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher R dark 25 at a given photosynthetic capacity (V cmax 25 ) or leaf nitrogen concentration ([N]) than species at warmer sites. R dark 25 values at any given V cmax 25 or [N] were higher in herbs than in woody plants. The results highlight variation in R dark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of R dark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs). © 2015 New Phytologist Trust.
- Published
- 2015
18. Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, Eastern Mediterranean
- Author
-
Adamidis, G.C. Kazakou, E. Fyllas, N.M. Dimitrakopoulos, P.G.
- Subjects
fungi - Abstract
Shifts in species' traits across contrasting environments have the potential to influence ecosystem functioning. Plant communities on unusually harsh soils may have unique responses to environmental change, through the mediating role of functional plant traits. We conducted a field study comparing eight functional leaf traits of seventeen common species located on both serpentine and non-serpentine environments on Lesbos Island, in the eastern Mediterranean. We focused on species' adaptive strategies across the two contrasting environments and investigated the effect of trait variation on the robustness of core 'leaf economic' relationships across local environmental variability. Our results showed that the same species followed a conservative strategy on serpentine substrates and an exploitative strategy on non-serpentine ones, consistent with the leaf economic spectrum predictions. Although considerable species-specific trait variability emerged, the single-trait responses across contrasting environments were generally consistent. However, multivariate-trait responses were diverse. Finally, we found that the strength of relationships between core 'leaf economic' traits altered across local environmental variability. Our results highlight the divergent trait evolution on serpentine and non-serpentine communities and reinforce other findings presenting species-specific responses to environmental variation. © 2014 Adamidis et al.
- Published
- 2014
19. Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey
- Author
-
Kint, V. Aertsen, W. Fyllas, N.M. Trabucco, A. Janssen, E. Özkan, K. Muys, B.
- Abstract
To investigate the past forest-society interactions in the territory of the ancient city of Sagalassos, situated in the Taurus Mountains in Southwest Turkey, it is necessary to reconstruct forest composition and biomass through time. This paper focuses on modelling the natural vegetation dynamics in the area over the occurring gradient of biophysical site conditions under today's climate, as a first and essential stepping-stone towards this goal. GREFOS, a forest gap dynamics model developed for the North-Eastern Mediterranean Basin, was adapted to the bioclimatic conditions of the Taurus Mountains, adding effects of late frost on species regeneration and adjusting the fire module. The model was parameterized based on an extensive literature review and additional field measurements for the seven most important tree species in the study area (Pinus brutia, Pinus nigra, Cedrus libani, Abies cilicica, Quercus cerris, Quercus coccifera and Juniperus excelsa) resulting in the most complete and documented ecological traits matrix presently available for the studied species. Qualitative and semi-quantitative model validation indicates that simulated species presence, altitude ranges and basal area estimates correspond reasonably well to field observations or expected values based on literature and expert knowledge. Yet validation results also indicate some inaccuracies for simulation of P. nigra and J. excelsa at higher altitudes. Simulations are summarized in a conceptual model with four vegetation zones, which reflects literature and expert opinion, and is interpretable in terms of ecological processes and succession dynamics in the study area. It is concluded that the resulting model is able to realistically predict effects of fire and abiotic site conditions on natural vegetation development in different climate zones in the Taurus mountains. Further model development steps should aim to include important additional drivers of vegetation composition, such as climate change and land use. © 2014 Elsevier B.V.
- Published
- 2014
20. Viticulture-climate relationships in Greece: The impacts of recent climate trends on harvest date variation
- Author
-
Koufos, G. Mavromatis, T. Koundouras, S. Fyllas, N.M. Jones, G.V.
- Abstract
Climate characteristics and relationships with indigenous varieties in Greece are examined to better understand how these varieties perform in their native climate and assess the impact regional climate change has on the Greek wine industry. Thus, harvest dates (ΔH) for eight indigenous varieties and regions, along with climate data, were gathered and systematically explored using linear regression models and principal component analysis for three 'effective' growing season time period definitions (calendar year, growing season and ripening period). The eight study regions had marked differences in their general climatic characteristics, mainly between mainland and island areas. ΔH response was not particularly sensitive to time period definition. In five out of eight regions, a systematic shift of ΔH was identified (earlier harvest), mainly driven by changes in maximum and minimum temperatures. Significant trends in climate parameters and viticulture-climate relationships were more evident for island regions when compared to mainland locations. Moreover, areas with late ripening varieties were shown to be less sensitive to climate changes. Only in one region harvest was delayed, possibly due to non-climate factors. The identification of up-to-date climate and grapevine phenology relationships could be an important step for broader and more confident future assessments of climate suitability for viticulture and climate change impacts in Greece, and provide insights into how lesser known varieties might perform in other regions. © 2013 Royal Meteorological Society.
- Published
- 2014
21. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)
- Author
-
Fyllas, N.M. Gloor, E. Mercado, L.M. Sitch, S. Quesada, C.A. Domingues, T.F. Galbraith, D.R. Torre-Lezama, A. Vilanova, E. Ramírez-Angulo, H. Higuchi, N. Neill, D.A. Silveira, M. Ferreira, L. Aymard C., G.A. Malhi, Y. Phillips, O.L. Lloyd, J.
- Abstract
Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status. Sensitivity studies showed a clear importance of an accurate parameterisation of within- and between-stand trait variability on the fidelity of model predictions. For example, when functional tree diversity was not included in the model (i.e. with just a single plant functional type with mean basin-wide trait values) the predictive ability of the model was reduced. This was also the case when basin-wide (as opposed to site-specific) trait distributions were applied within each stand. We conclude that models of tropical forest carbon, energy and water cycling should strive to accurately represent observed variations in functionally important traits across the range of relevant scales. © Author(s) 2014.
- Published
- 2014
22. Post-fire regeneration patterns of Pinus nigra in a recently burned area in Mount Taygetos, Southern Greece: The role of unburned forest patches
- Author
-
Christopoulou, A. Fyllas, N.M. Andriopoulos, P. Koutsias, N. Dimitrakopoulos, P.G. Arianoutsou, M.
- Subjects
fungi - Abstract
Pinus nigra (black pine) is an ecologically and economically important species widely distributed around the Mediterranean Basin. P. nigra ecosystems have recently been affected by high severity fires occurring over the mountainous forest ecosystems of Southern Europe. The aim of this study is to investigate the post-fire regeneration patterns of black pine after a high severity crown fire which occurred on Mt Taygetos in Southern Greece. A network of 18 sites was selected to study black pine natural post-fire regeneration. Regeneration density was higher at the edges of patches that have remained unburned within the periphery of fire (0.406 individuals/m2) as compared to isolated burned areas (0.007 individuals/m2) although a significant between sites heterogeneity was recorded. Boosted regression trees analysis was used to explore the effects of environmental and microhabitat variables on black pine post-fire regeneration. The number of fires a site has experienced had a negative effect on regeneration density, while the presence of recovering ferns had a positive effect. The most important variable related to the black pine post-fire regeneration was distance from unburned patches. The result of the current study substantiates the importance of maintaining fire-resistant stands with large trees that are more likely to survive after a surface fire and which can also serve as seed sources for the recolonization of the burned area after severe crown fires. © 2014 Elsevier B.V.
- Published
- 2014
23. Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: An analysis using the Kok method
- Author
-
Atkin, O.K. Turnbull, M.H. Zaragoza-Castells, J. Fyllas, N.M. Lloyd, J. Meir, P. Griffin, K.L.
- Abstract
Background and aims: Our study quantified variations leaf respiration in darkness (R D) and light (R L), and associated traits along the Franz Josef Glacier soil development chronosequence in New Zealand. Methods: At six sites along the chronosequence (soil age: 6, 60, 150, 500, 12,000 and 120,000 years old), we measured rates of leaf R D, R L (using Kok method), light-saturated CO2 assimilation rates (A), leaf mass per unit area (M A), and concentrations of leaf nitrogen ([N]), phosphorus ([P]), soluble sugars and starch. Results: The chronosequence was characterised by decreasing R D, R L and A, reduced [N] and [P] and increasing M A as soil age increased. Light inhibition of R occurred across the chronosequence (mean inhibition = 16 %), resulting in ratios of R L:A being lower than for R D:A. Importantly, the degree of light inhibition differed across the chronosequence, being lowest at young sites and highest at old sites. This resulted in R L:A ratios being relatively constant across the chronosequence, whereas R D:A ratios increased with increasing soil age. Log-log R-A-M A-[N] relationships remained constant along the chronosequence. By contrast, relationships linking rates of leaf R to [P] differed among leaves with low vs high [N]:[P] ratios. Slopes of log-log bivariate relationships linking R L to A, M A, [N] and [P] were steeper than that for R D. Conclusions: Our findings have important implications for predictive models that seek to account for light inhibition of R, and for our understanding of how environmental gradients impact on leaf trait relationships © 2013 Springer Science+Business Media Dordrecht.
- Published
- 2013
24. TRY - a global database of plant traits
- Author
-
Kattge, J., Diaz, S., Lavorel, S., Prentices, I.C., Leadley, P., Bönisch, G., Garnier, E., Westobys, M., Reich, P.B., Wrights, I.J., Cornelissen, C., Violle, C., Harisson, S.P., van Bodegom, P.M., Reichstein, M., Enquist, B.J., Soudzilovskaia, N.A., Ackerly, D.D., Anand, M., Atkin, O., Bahn, M., Baker, T.R., Baldochi, D., Bekker, R., Blanco, C.C., Blonders, B., Bond, W.J., Bradstock, R., Bunker, D.E., Casanoves, F., Cavender-Bares, J., Chambers, J.Q., Chapin III, F.S., Chave, J., Coomes, D., Cornwell, W.K., Craine, J.M., Dobrin, B.H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W.F., Fang, J., Fernadez-Mendez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, T., Fyllas, N.M., Gallagher, R.V., Green, W.A., Gutierrez, A.G., Hickler, T., Higgins, S.I., Hodgson, J.G., Jalili, A., Jansen, S., Joly, C.A., Kerkhoff, A.J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J.M.H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T.D., Leishman, M., Lens, F., Lewis, S.L., Lloyd, J., Llusia, J., Louault, F., Ma, S., Mahecha, M.D., Manning, P., Massad, T., Medlyn, B.E., Messier, J., Moles, A.T., Müller, S.C., Nadrowski, K., Naeem, S., Niinemets, Ü., Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V.G., Onoda, Y., Ordonez Barragan, J.C., Ozinga, W.A., and Poorter, L.
- Subjects
litter decomposition rates ,hawaiian metrosideros-polymorpha ,leaf economics spectrum ,relative growth-rate ,PE&RC ,Law Group ,Forest Ecology and Forest Management ,Centrum Ecosystemen ,tropical rain-forest ,Centre for Ecosystem Studies ,CE - Vegetation and Landscape Ecology ,Recht ,terrestrial biosphere ,wide-range ,Bosecologie en Bosbeheer ,sub-arctic flora ,Wageningen Environmental Research ,functional traits ,old-field succession - Abstract
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
- Published
- 2011
25. Structural, physiognomic and above-ground biomass variation in savanna-forest transition zones on three continents - how different are co-occurring savanna and forest formations?
- Author
-
Veenendaal, E.M., Torello-Raventos, M., Feldpausch, T.R., Domingues, T.F., Gerard, F., Schrodt, F., Saiz, G., Quesada, C.A., Djagbletey, G., Ford, A., Kemp, J., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Ratter, J.A., Maracahipes, L., Sasaki, D., Sonke, B., Zapfack, L., Villarroel, D., Schwarz, M., Ishida, F. Yoko, Gilpin, M., Nardoto, G.B., Affum-Baffoe, K., Arroyo, L., Bloomfield, K., Ceca, G., Compaore, H., Davies, K., Diallo, A., Fyllas, N.M., Gignoux, J., Hien, F., Johnson, M., Mougin, E., Hiernaux, P., Killeen, T., Metcalfe, D., Miranda, H.S., Steininger, M., Sykora, K., Bird, M.I., Grace, J., Lewis, S., Phillips, O.L., Lloyd, J., Veenendaal, E.M., Torello-Raventos, M., Feldpausch, T.R., Domingues, T.F., Gerard, F., Schrodt, F., Saiz, G., Quesada, C.A., Djagbletey, G., Ford, A., Kemp, J., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Ratter, J.A., Maracahipes, L., Sasaki, D., Sonke, B., Zapfack, L., Villarroel, D., Schwarz, M., Ishida, F. Yoko, Gilpin, M., Nardoto, G.B., Affum-Baffoe, K., Arroyo, L., Bloomfield, K., Ceca, G., Compaore, H., Davies, K., Diallo, A., Fyllas, N.M., Gignoux, J., Hien, F., Johnson, M., Mougin, E., Hiernaux, P., Killeen, T., Metcalfe, D., Miranda, H.S., Steininger, M., Sykora, K., Bird, M.I., Grace, J., Lewis, S., Phillips, O.L., and Lloyd, J.
- Abstract
Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent “alternative stable states” is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savannah and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna–forest species discontinuum is observed compared to that inferred when trees of a basal diameter > 0:1m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover haracteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much aboveground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna–forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless,consistent across all three continents coexistence was
- Published
- 2015
26. Simulating regeneration and vegetation dynamics in Mediterranean coniferous forests
- Author
-
Fyllas, N.M. Politi, P.I. Galanidis, A. Dimitrakopoulos, P.G. Arianoutsou, M.
- Abstract
This study aims to provide a quantitative framework to model the dynamics of Mediterranean coniferous forests by integrating existing ecological data within a generic mathematical simulator. We developed an individual-based vegetation dynamics model, constrained on long-term field regeneration data, analyses of tree-rings and seed germination experiments. The simulator implements an asymmetric competition algorithm which is based on the location and size of each individual. Growth is parameterized through the analysis of tree-rings from more than thirty individuals of each of the three species of interest. A super-individual approach is implemented to simulate regeneration dynamics, constrained with available regeneration data across time-since-disturbance and light-availability gradients. The study concerns an insular population of an endemic to Greece Mediterranean fir (Abies cephalonica Loudon) on the island of Cephalonia (Ionian Sea) and two interacting populations of a Mediterranean pine (Pinus brutia Ten.) and a more temperate-oriented pine (Pinus nigra Arn. ssp. pallasiana) on the island of Lesbos (NE Aegean Sea), Greece. The model was validated against plot-level observations in terms of species standing biomass and regeneration vigour and adequately captured regeneration patterns and overall vegetation dynamics in both study sites. The potential effects of changing climatic patterns on the regeneration dynamics of the three species of interest were subsequently explored. With the assumption that a warmer future would probably cause changes in the duration of cold days, we tested how this change would affect the overall dynamics of the study sites, by focusing on the process of cold stratification upon seed germination. Following scenarios of a warmer future and under the current model parameterization, changes in the overall regeneration vigour controlled by a reduction in the amount of cold days, did not alter the overall dynamics in all plant populations studied. No changes were identified in the relative dominance of the interacting pine populations on Lesbos, while the observed reduction in the amount of emerging seedlings of A. cephalonica on Cephalonia did not affect biomass yield at later stages of stand development. © 2010 Elsevier B.V. All rights reserved.
- Published
- 2010
27. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
- Author
-
Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patiño, S., Fyllas, N.M., Hodnett, M.G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K.J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E.M., Killeen, T., Lezama, A.T., Lloyd, G., López-González, G., Luizão, F., Malhi, Y., Monteagudo, A., Neill, D.A., Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M.C., Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramírez, H., Rudas, A., Salomão, R., Santos, A.J.B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., Lloyd, J., Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patiño, S., Fyllas, N.M., Hodnett, M.G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K.J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E.M., Killeen, T., Lezama, A.T., Lloyd, G., López-González, G., Luizão, F., Malhi, Y., Monteagudo, A., Neill, D.A., Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M.C., Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramírez, H., Rudas, A., Salomão, R., Santos, A.J.B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., and Lloyd, J.
- Abstract
Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interactin
- Published
- 2012
28. Height-diameter allometry of tropical forest trees
- Author
-
Feldpausch, T.R., Banin, L., Phillips, O.L., Baker, T.R., Lewis, S.L., Quesada, C.A., Affum-Baffoe, K., Arets, E.J.M.M., Berry, N.J., Bird, M., Brondizio, E.S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T.F., Drescher, M., Fearnside, P.M., Franca, M.B., Fyllas, N.M., Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M.O., Iida, Y., Salim, K.A., Kassim, A.R., Keller, M., Kemp, J., King, D.A., Lovett, J.C., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Metcalfe, D.J., Mitchard, E.T.A., Moran, E.F., Nelson, B.W., Nilus, R., Nogueira, E.M., Palace, M., Patino, S., Peh, K.S.H., Raventos, M.T., Reitsma, J.M., Saiz, G., Schrodt, F., Sonké, B., Taedoumg, H.E., Tan, S., White, L., Wöll, H., Lloyd, J., Feldpausch, T.R., Banin, L., Phillips, O.L., Baker, T.R., Lewis, S.L., Quesada, C.A., Affum-Baffoe, K., Arets, E.J.M.M., Berry, N.J., Bird, M., Brondizio, E.S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T.F., Drescher, M., Fearnside, P.M., Franca, M.B., Fyllas, N.M., Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M.O., Iida, Y., Salim, K.A., Kassim, A.R., Keller, M., Kemp, J., King, D.A., Lovett, J.C., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Metcalfe, D.J., Mitchard, E.T.A., Moran, E.F., Nelson, B.W., Nilus, R., Nogueira, E.M., Palace, M., Patino, S., Peh, K.S.H., Raventos, M.T., Reitsma, J.M., Saiz, G., Schrodt, F., Sonké, B., Taedoumg, H.E., Tan, S., White, L., Wöll, H., and Lloyd, J.
- Abstract
Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian -2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical con
- Published
- 2011
29. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis
- Author
-
Quesada, C.A., Lloyd, J., Schwarz, M., Patino, S., Baker, T.R., Czimczik, C., Fyllas, N.M., Martinelli, L., Nardoto, G.B., Schmerler, J., Santos, A.J.B., Hodnett, M.G., Herrera, R., Luizao, F.J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W.A., Geilmann, H., Moraes Filho, J.O., Carvalho, F.P., Araujo Filho, R.N., Chaves, J.E., Cruz Junior, O.F., Pimentel, T.P., Paiva, R., Quesada, C.A., Lloyd, J., Schwarz, M., Patino, S., Baker, T.R., Czimczik, C., Fyllas, N.M., Martinelli, L., Nardoto, G.B., Schmerler, J., Santos, A.J.B., Hodnett, M.G., Herrera, R., Luizao, F.J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W.A., Geilmann, H., Moraes Filho, J.O., Carvalho, F.P., Araujo Filho, R.N., Chaves, J.E., Cruz Junior, O.F., Pimentel, T.P., and Paiva, R.
- Abstract
Soil samples were collected in six South American countries in a total of 71 different 1 ha forest plots across the Amazon Basin as part of the RAINFOR project. They were analysed for total and exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality proposed. A diverse range of soils was found. For the western areas near the Andean cordillera and the southern and northern fringes, soils tend to be distributed among the lower pedogenetic levels, while the central and eastern areas of Amazonia have more intensely weathered soils. This gives rise to a large variation of soil chemical and physical properties across the Basin, with soil properties varying predictably along a gradient of pedogenic development. Nutrient pools generally increased slightly in concentration from the youngest to the intermediate aged soils after which a gradual decline was observed with the lowest values found in the most weathered soils. Soil physical properties were strongly correlated with soil fertility, with favourable physical properties occurring in highly weathered and nutrient depleted soils and with the least weathered, more fertile soils having higher incidence of limiting physical properties. Soil phosphorus concentrations varied markedly in accordance with weathering extent and appear to exert an important influence on the nitrogen cycle of Amazon forest soils
- Published
- 2010
30. Structural, physiognomic and aboveground biomass variation in savanna-forest transition zones on three continents. How different are co-occuring savanna and forest formations?
- Author
-
Veenendaal, E.M., Torello-Raventos, M., Feldpausch, T.R., Domingues, T.F., Gerard, F., Schrodt, F., Saiz, G., Quesada, C.A., Djagbletey, G., Ford, A., Kemp, J., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Ratter, J.A., Maracahipes, L., Sasaki, D., Sonke, B., Zapfack, L., Villaroel, D., Schwarz, M., Ishida, F.Y., Gilpin, M., Nardoto, G.B., Affum-Baffoe, K., Arroyo, L., Bloomfield, K., Ceca, G., Compaore, H., Davies, K., Diallo, A., Fyllas, N.M., Gignoux, J., Hien, F., Johnson, M., Mugin, E., Hiernaux, P., Killeen, T., Metcalfe, D., Miranda, H.S., Steininger, M., Sykora, K., Bird, M.I., Grace, J., Lewis, S., Phillips, O.L., and Lloyd, J.
- Subjects
13. Climate action ,15. Life on land
31. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient
- Author
-
Owen K. Atkin, Oliver L. Phillips, Nikolaos M. Fyllas, Brian J. Enquist, Norma Salinas, Lisa Patrick Bentley, Sandra Díaz, Yoko Ishida, Rossella Guerrieri, Miles R. Silman, Emanuel Gloor, Gregory P. Asner, William Farfan-Rios, Joana Zaragoza-Castells, Roberta E. Martin, Alexander Shenkin, Yadvinder Malhi, Lasantha K. Weerasinghe, Patrick Meir, Walter Huaraca Huasco, Fyllas N.M., Bentley L.P., Shenkin A., Asner G.P., Atkin O.K., Diaz S., Enquist B.J., Farfan-Rios W., Gloor E., Guerrieri R., Huasco W.H., Ishida Y., Martin R.E., Meir P., Phillips O., Salinas N., Silman M., Weerasinghe L.K., Zaragoza-Castells J., Malhi Y., and Swenson, DN
- Subjects
0106 biological sciences ,tropical forest ,010504 meteorology & atmospheric sciences ,Otras Ciencias Biológicas ,TROPICAL FORESTS ,Forests ,010603 evolutionary biology ,01 natural sciences ,Trees ,Ciencias Biológicas ,modelling ,Tropical climate ,GLOBAL ECOSYSTEM MONITORING ,Ecosystem ,ANDES ,functional trait ,TFS ,climate ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,2. Zero hunger ,Tropical Climate ,Ecology ,Ande ,Elevation ,MODELLING ,food and beverages ,15. Life on land ,CLIMATE ,Plant Leaves ,Variation (linguistics) ,FUNCTIONAL TRAITS ,Productivity (ecology) ,13. Climate action ,global ecosystem monitoring ,Trait ,Environmental science ,Spatial variability ,Scale (map) ,Plant Leave ,CIENCIAS NATURALES Y EXACTAS ,Tree - Abstract
One of the major challenges in ecology is to understand how ecosystems respond to changes inenvironmental conditions, and how taxonomic and functional diversity mediate these changes. Inthis study, we use a trait-spectra and individual-based model, to analyse variation in forest primaryproductivity along a 3.3 km elevation gradient in the Amazon-Andes. The model accuratelypredicted the magnitude and trends in forest productivity with elevation, with solar radiation andplant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, andwood density) collectively accounting for productivity variation. Remarkably, explicit representationof temperature variation with elevation was not required to achieve accurate predictions offorest productivity, as trait variation driven by species turnover appears to capture the effect oftemperature. Our semi-mechanistic model suggests that spatial variation in traits can potentiallybe used to estimate spatial variation in productivity at the landscape scale. Fil: Fyllas, Nikolaos M.. University of Oxford; Reino Unido Fil: Patrick Bentley, Lisa. University of Oxford; Reino Unido Fil: Shenkin, Alexander. University of Oxford; Reino Unido Fil: Asner, Gregory P.. Carnegie Institution for Science. Department of Global Ecology; Reino Unido Fil: Atkin, Owen K.. The Australian National University. ARC Centre of Excellence in Plant Energy Biology. Research School of Biology; Australia Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Enquist, Brian J.. Arizona State University; Estados Unidos Fil: Farfan Rios, William. University Wake Forest; Estados Unidos Fil: Gloor, Emanuel. University of Leeds; Reino Unido Fil: Guerrieri, Rossella. Universitat Autònoma de Barcelona; España. University of Edinburgh; Reino Unido Fil: Huaraca Huasco, Walter. Universidad Nacional de San Antonio Abad del Cusco; Perú Fil: Ishida, Yoko. James Cook University; Australia Fil: Martin, Roberta E.. Carnegie Institution for Science. Department of Global Ecology; Estados Unidos Fil: Meir, Patrick. University of Edinburgh; Reino Unido. The Australian National University. Research School of Biology. Division of Plant Sciences; Australia Fil: Phillips, Oliver. University of Leeds; Reino Unido Fil: Salinas, Norma. University of Oxford; Reino Unido. Pontificia Universidad Católica de Perú; Perú Fil: Silman, Miles. University Wake Forest; Estados Unidos Fil: Weerasinghe, Lasantha K.. The Australian National University. Research School of Biology. Division of Plant Sciences; Australia Fil: Zaragoza Castells, Joana. The Australian National University. Research School of Biology. Division of Plant Sciences; Australia. University of Exeter; Reino Unido Fil: Malhi, Yadvinder. University of Oxford; Reino Unido
- Published
- 2016
- Full Text
- View/download PDF
32. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
- Author
-
Shuang Xiang, Trofim C. Maximov, Lucy Rowland, Stephen Sitch, Keith J. Bloomfield, Emanuel Gloor, Christopher H. Lusk, Danielle Creek, Nicholas Mirotchnick, Ülo Niinemets, Michael G. Ryan, Peter B. Reich, Jon Lloyd, Fernando Valladares, Joana Zaragoza-Castells, Mary A. Heskel, John J. G. Egerton, Matthew H. Turnbull, Erik J. Veneklaas, John R. Evans, Roberta E. Martin, Jens Kattge, Françoise Yoko Ishida, Kevin L. Griffin, Gerhard Bönisch, Norma Salinas, Michael J. Liddell, Desmond Ng, Jeffrey S. Dukes, Martijn Slot, Hans Lambers, Lina M. Mercado, Pieter Poot, Mark C. Vanderwel, Kirk R. Wythers, Ian J. Wright, Nicholas G. Smith, Lasantha K. Weerasinghe, Rossella Guerrieri, Chris Huntingford, Jen Xiang, Teresa E. Gimeno, Yadvinder Malhi, Paul P. G. Gauthier, Patrick Meir, Eric G. Cosio, Odhran S. O'Sullivan, Gregory P. Asner, Mark G. Tjoelker, Damien Bonal, Lucas A. Cernusak, Graham D. Farquhar, Christian Wirth, Lourens Poorter, Matt Bradford, I. Colin Prentice, Oliver L. Phillips, Tomas F. Domingues, Belinda E. Medlyn, Nikolaos M. Fyllas, Owen K. Atkin, Kristine Y. Crous, Ayal P. Maksimov, Atkin O.K., Bloomfield K.J., Reich P.B., Tjoelker M.G., Asner G.P., Bonal D., Bonisch G., Bradford M.G., Cernusak L.A., Cosio E.G., Creek D., Crous K.Y., Domingues T.F., Dukes J.S., Egerton J.J.G., Evans J.R., Farquhar G.D., Fyllas N.M., Gauthier P.P.G., Gloor E., Gimeno T.E., Griffin K.L., Guerrieri R., Heskel M.A., Huntingford C., Ishida F.Y., Kattge J., Lambers H., Liddell M.J., Lloyd J., Lusk C.H., Martin R.E., Maksimov A.P., Maximov T.C., Malhi Y., Medlyn B.E., Meir P., Mercado L.M., Mirotchnick N., Ng D., Niinemets U., O'Sullivan O.S., Phillips O.L., Poorter L., Poot P., Prentice I.C., Salinas N., Rowland L.M., Ryan M.G., Sitch S., Slot M., Smith N.G., Turnbull M.H., Vanderwel M.C., Valladares F., Veneklaas E.J., Weerasinghe L.K., Wirth C., Wright I.J., Wythers K.R., Xiang J., Xiang S., Zaragoza-Castells J., Australian National University (ANU), Hawkesbury Institute for the Environment [Richmond] (HIE), Western Sydney University, University of Minnesota [Twin Cities] (UMN), University of Minnesota System, Carnegie Institution for Science [Washington], Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Max-Planck-Institut für Biogeochemie (MPI-BGC), CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), James Cook University (JCU), Pontificia Universidad Católica del Perú (PUCP), Universidade de São Paulo (USP), Purdue University [West Lafayette], National and Kapodistrian University of Athens (NKUA), Department of Geosciences [Princeton], Princeton University, School of Geography [Leeds], University of Leeds, Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], School of Geosciences [Edinburgh], University of Edinburgh, University of New Hampshire (UNH), Centre for Ecology and Hydrology [Wallingford] (CEH), Natural Environment Research Council (NERC), School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, The University of Western Australia (UWA), Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK, University of Waikato [Hamilton], Institute of Biological Problems of the Cryolithozone, Russian Academy of Sciences [Moscow] (RAS), School of Geography and the Environment [Oxford] (SoGE), University of Oxford [Oxford], Macquarie University, College of Life and Environmental Sciences, University of Exeter, Department of Ecology and Evolutionary Biology [University of Toronto] (EEB), University of Toronto, Wageningen University and Research [Wageningen] (WUR), School of Biological Sciences, University of Canterbury, Colorado State University [Fort Collins] (CSU), Department of Biology [Gainesville] (UF|Biology), University of Florida [Gainesville] (UF), Smithsonian Tropical Research Institute, University of Regina (UR), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Peradeniya, Universität Leipzig [Leipzig], Chinese Academy of Sciences [Beijing] (CAS), Western Sydney University (UWS), University of Minnesota [Twin Cities], National and Kapodistrian University of Athens = University of Athens (NKUA | UoA), School of Geography and the Environment [Oxford], Estonian University of Life Sciences, Wageningen University and Research Centre [Wageningen] (WUR), Department of Biology (University of Florida), University of Florida [Gainesville], Smithsonian Tropical Research Institute, Panama City, Republic of Panama., Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and AXA Research Fund
- Subjects
temperature sensitivity ,Physiology ,[SDV]Life Sciences [q-bio] ,Acclimatization ,Climate ,Plant Science ,Photosynthesis ,Aridity ,Temperatures ,Ecology ,Respiration ,Temperature ,Biosphere ,Plants ,PE&RC ,Phenotype ,nitrogen concentration ,Leaf nitrogen (N) ,Plant Leave ,Life Sciences & Biomedicine ,Woody plant ,terrestrial carbon-cycle ,thermal-acclimation ,Nitrogen ,Plant Biology & Botany ,Cell Respiration ,Climate change ,Biology ,FOTOSSÍNTESE ,Climate model ,Ecology and Environment ,tropical rain-forests ,Carbon cycle ,Climate models ,Carbon Cycle ,Photosynthesi ,07 Agricultural and Veterinary Sciences ,Bosecologie en Bosbeheer ,Plant functional types (PFTs) ,elevated atmospheric co2 ,photosynthetic capacity ,Science & Technology ,Plant Sciences ,Tropics ,scaling relationships ,Plant ,15. Life on land ,Herbaceous plant ,06 Biological Sciences ,Carbon Dioxide ,Models, Theoretical ,vegetation models ,Photosynthetic capacity ,Arid ,Forest Ecology and Forest Management ,Plant Leaves ,Biology and Microbiology ,13. Climate action ,dark respiration ,Acclimation - Abstract
Owen K. Atkin [et al.].- Received: 8 July 2014, Accepted: 29 November 2014, Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits., Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark., Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8–28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants., The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.