1. On perturbation bounds of generalized core inverses of matrices.
- Author
-
Gao, Yuefeng and Wu, Baofeng
- Subjects
- *
MATRIX inversion , *COMPLEX matrices , *GENERALIZED integrals , *ADDITIVES - Abstract
This paper provides additive perturbation bounds for the generalized core inverse $ A^{d,\dag } $ A d , † of a complex matrix A. Given perturbation matrix E, we first present upper bounds for $ \frac {\|(A+E)^{d,\dag }-A^{d,\dag }\|_{2}}{\|A^{d,\dag }\|_{2}} $ ‖ (A + E) d , † − A d , † ‖ 2 ‖ A d , † ‖ 2 under the condition $ \mathcal {R}(E)\subseteq \mathcal {R}(A^k), \mathcal {N}(A^{k}A^{\dag })\subseteq \mathcal {N}(E), {\rm where}\ k=\mathrm {ind}(A) $ R (E) ⊆ R (A k) , N (A k A †) ⊆ N (E) , where k = ind (A) , and then under the condition $ (A+E)(A+E)^{d,\dag }=AA^{d,\dag } $ (A + E) (A + E) d , † = A A d , † . We then explore an integral formula for the generalized core inverse of a perturbed matrix associated with a semi-stable matrix. Furthermore, a perturbation bound for $ \|(A+E)^{d,\dag }-A^{d,\dag }\|_{F} $ ‖ (A + E) d , † − A d , † ‖ F is obtained without conditions. Sufficient conditions for the continuity of the generalized core inverse can be obtained as a result. Finally, numerical examples are presented to illustrate the derived bounds. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF