1. 3D Sketching using Multi-View Deep Volumetric Prediction
- Author
-
Adrien Bousseau, Mathieu Aubry, Phillip Isola, Johanna Delanoy, Alexei A. Efros, GRAPHics and DEsign with hEterogeneous COntent ( GRAPHDECO ), Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Laboratoire d'Informatique Gaspard-Monge ( LIGM ), Université Paris-Est Marne-la-Vallée ( UPEM ) -École des Ponts ParisTech ( ENPC ) -ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique ( CNRS ), UC Berkeley, European Project : ERC-2016-STG 714221,D3, GRAPHics and DEsign with hEterogeneous COntent (GRAPHDECO), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), OpenAI, Lawrence Berkeley National Laboratory [Berkeley] (LBNL), European Project: 714221,H2020 Pilier ERC,ERC-2016-STG-714221,D3(2017), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE23-0008,EnHerit,Exploitation des bases d'images patrimoniales(2017)
- Subjects
FOS: Computer and information sciences ,Computer science ,media_common.quotation_subject ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,ACM : I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling ,02 engineering and technology ,computer.software_genre ,[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Convolutional neural network ,CCS CONCEPTS • Computing methodologies → Shape modeling ,Rendering (computer graphics) ,Computer Science - Graphics ,Voxel ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,3D reconstruction ,media_common ,ComputingMethodologies_COMPUTERGRAPHICS ,business.industry ,I.3.5 ,ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling ,deep learning ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,020207 software engineering ,Ambiguity ,computer.file_format ,[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR] ,Grid ,Computer Graphics and Computer-Aided Design ,Sketch ,Graphics (cs.GR) ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Computer Science Applications ,ccs:I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling ,line drawing ,Bitmap ,020201 artificial intelligence & image processing ,Artificial intelligence ,sketch-based modeling ,business ,computer - Abstract
Sketch-based modeling strives to bring the ease and immediacy of drawing to the 3D world. However, while drawings are easy for humans to create, they are very challenging for computers to interpret due to their sparsity and ambiguity. We propose a data-driven approach that tackles this challenge by learning to reconstruct 3D shapes from one or more drawings. At the core of our approach is a deep convolutional neural network (CNN) that predicts occupancy of a voxel grid from a line drawing. This CNN provides us with an initial 3D reconstruction as soon as the user completes a single drawing of the desired shape. We complement this single-view network with an updater CNN that refines an existing prediction given a new drawing of the shape created from a novel viewpoint. A key advantage of our approach is that we can apply the updater iteratively to fuse information from an arbitrary number of viewpoints, without requiring explicit stroke correspondences between the drawings. We train both CNNs by rendering synthetic contour drawings from hand-modeled shape collections as well as from procedurally-generated abstract shapes. Finally, we integrate our CNNs in a minimal modeling interface that allows users to seamlessly draw an object, rotate it to see its 3D reconstruction, and refine it by re-drawing from another vantage point using the 3D reconstruction as guidance. The main strengths of our approach are its robustness to freehand bitmap drawings, its ability to adapt to different object categories, and the continuum it offers between single-view and multi-view sketch-based modeling., Comment: See our accompanying video on https://youtu.be/DGIYzmlm2pQ, networks and databases available at https://ns.inria.fr/d3/3DSketching/. To appear in PACMCGIT
- Published
- 2018
- Full Text
- View/download PDF