217 results on '"Gaillardet J"'
Search Results
2. Ideas and perspectives: Strengthening the biogeosciences in environmental research networks
- Author
-
Richter, DD, Billings, SA, Groffman, PM, Kelly, EF, Lohse, KA, McDowell, WH, White, TS, Anderson, S, Baldocchi, DD, Banwart, S, Brantley, S, Braun, JJ, Brecheisen, ZS, Cook, CS, Hartnett, HE, Hobbie, SE, Gaillardet, J, Jobbagy, E, Jungkunst, HF, Kazanski, CE, Krishnaswamy, J, Markewitz, D, O'Neill, K, Riebe, CS, Schroeder, P, Siebe, C, Silver, WL, Thompson, A, Verhoef, A, and Zhang, G
- Subjects
Meteorology & Atmospheric Sciences ,Earth Sciences ,Environmental Sciences ,Biological Sciences - Abstract
Long-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintain the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long-Term Ecological Research Network programs (ILTERs), critical zone observatories (CZOs), Earth and ecological observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and expanded by interdisciplinary scientists, the preponderance of expertise and funding has gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences.
- Published
- 2018
3. Boron isotope fractionation during the formation of amorphous calcium carbonates and their transformation to Mg-calcite and aragonite
- Author
-
Mavromatis, V., Purgstaller, B., Louvat, P., Faure, L., Montouillout, V., Gaillardet, J., and Schott, J.
- Published
- 2021
- Full Text
- View/download PDF
4. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth
- Author
-
Brantley, SL, McDowell, WH, Dietrich, WE, White, TS, Kumar, P, Anderson, SP, Chorover, J, Ann Lohse, K, Bales, RC, Richter, DD, Grant, G, and Gaillardet, J
- Abstract
The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO enterprise in the United States and identify how such observatories could operate in the future as a network designed to generate critical scientific insights. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a driving question for future CZ science and a hubs-and-campaigns model to address that question and target the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.
- Published
- 2017
5. Denudation and Weathering Rates of Carbonate Landscapes From Meteoric 10Be/9Be Ratios.
- Author
-
Wittmann, H., Bouchez, J., Calmels, D., Gaillardet, J., Frick, D. A., Stroncik, N., and von Blanckenburg, F.
- Subjects
CHEMICAL weathering ,CARBONATE rocks ,COSMOGENIC nuclides ,SURFACE of the earth ,ATMOSPHERIC carbon dioxide - Abstract
Knowledge of the rates of carbonate rock denudation, the relative apportionment of chemical weathering versus physical erosion, and their sensitivity to climate, vegetation, and tectonics is essential for disclosing feedbacks within the carbon cycle and the functioning of karst landscapes that supply important services to humans. Currently, however, for carbonate lithologies, no method exists that allows to simultaneously partition denudation into erosion and weathering fluxes at spatial scales ranging from soil to watersheds. To determine total denudation rates in carbonate landscapes from an individual soil or river sample, we adapted a published framework that combines cosmogenic meteoric 10Be as an atmospheric flux tracer with stable 9Be that is released from rocks by weathering, to the limestone‐dominated French Jura Mountains. By analyzing water, soil, sediment, travertine, and bedrock for 10Be/9Be, major and trace elements, carbon stable isotopes and radiogenic strontium, we quantified contributions of Be from primary versus secondary carbonate phases and its release during weathering from carbonate bedrock versus silicate impurities. We calculated partitioning of Be between solids and solutes, and rates of catchment‐wide (from sediment) and point source (from soil) denudation, weathering and erosion. Our results indicate that average denudation rates are 300–500 t/km2/yr. Denudation is dominated by weathering intensity (W/D) ratios of >0.92, and a non‐negligible contribution from deeper (below soil) weathering. Our rates agree to within less than a factor of two with decadal‐scale denudation rates from combined suspended and dissolved fluxes, highlighting the substantial potential of this method for future Earth surface studies. Plain Language Summary: Carbonate rocks, constituting about 10% of the terrestrial Earth's surface, play a crucial role in the short‐term carbon cycle by absorbing atmospheric CO2 and forming karst landscapes. These landscapes, supporting 10% of the global population with vital services, remain poorly understood due to a lack of tools for assessing erosion and weathering rates. In our study of the French Jura Mountains, we utilized a novel method involving the isotope ratio of 10Be/9Be from the cosmogenic meteoric 10Be, raining onto Earth from the atmosphere at a specific rate, and the stable trace element 9Be released from rocks by weathering, to measure erosion, weathering, and total denudation. Our results indicate an annual soil and sediment erosion of 300–500 tons per square kilometer, with 90% attributed to rock dissolution (weathering) and 10% to physical erosion. A non‐trivial fraction of weathering appears to happen deep (below soil). Our new rates agree closely with rates estimated independently from suspended and dissolved river loads. As such, they demonstrate the considerable potential of the 10Be/9Be technique as a rate meter at Earth's surface. Key Points: Denudation rates from 10Be/9Be in a carbonate landscape agree within a factor of 2 with rates from suspended and dissolved river loadsMeteoric 10Be/9Be‐derived carbonate denudation is dominated by weathering (>0.9 W/D)A non‐negligible contribution in denudation originates in deeper (below soil) weathering [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. A global rate of denudation from cosmogenic nuclides in the Earth's largest rivers
- Author
-
Wittmann, H., Oelze, M., Gaillardet, J., Garzanti, E., and von Blanckenburg, F.
- Published
- 2020
- Full Text
- View/download PDF
7. 15 years of integrated Terrestrial Environmental Observatories (TERENO) in Germany: Functions, services and lessons learned
- Author
-
Zacharias, Steffen, Loescher, H.W., Bogena, H., Kiese, R., Schrön, Martin, Attinger, Sabine, Blume, T., Borchardt, Dietrich, Borg, E., Bumberger, Jan, Chwala, C., Dietrich, Peter, Fersch, B., Frenzel, Mark, Gaillardet, J., Groh, J., Hajnsek, I., Itzerott, S., Kunkel, R., Kunstmann, H., Kunz, M., Liebner, S., Mirtl, Michael, Montzka, C., Musolff, Andreas, Pütz, T., Rebmann, Corinna, Rinke, Karsten, Rode, Michael, Sachs, T., Samaniego, Luis, Schmid, H.P., Vogel, Hans-Jörg, Weber, Ute, Wollschläger, Ute, Vereecken, H., Zacharias, Steffen, Loescher, H.W., Bogena, H., Kiese, R., Schrön, Martin, Attinger, Sabine, Blume, T., Borchardt, Dietrich, Borg, E., Bumberger, Jan, Chwala, C., Dietrich, Peter, Fersch, B., Frenzel, Mark, Gaillardet, J., Groh, J., Hajnsek, I., Itzerott, S., Kunkel, R., Kunstmann, H., Kunz, M., Liebner, S., Mirtl, Michael, Montzka, C., Musolff, Andreas, Pütz, T., Rebmann, Corinna, Rinke, Karsten, Rode, Michael, Sachs, T., Samaniego, Luis, Schmid, H.P., Vogel, Hans-Jörg, Weber, Ute, Wollschläger, Ute, and Vereecken, H.
- Abstract
The need to develop and provide integrated observation systems to better understand and manage global and regional environmental change is one of the major challenges facing Earth system science today. In 2008, the German Helmholtz Association took up this challenge and launched the German research infrastructure TERrestrial ENvironmental Observatories (TERENO). The aim of TERENO is the establishment and maintenance of a network of observatories as a basis for an interdisciplinary and long-term research programme to investigate the effects of global environmental change on terrestrial ecosystems and their socio-economic consequences. State-of-the-art methods from the field of environmental monitoring, geophysics, remote sensing, and modelling are used to record and analyze states and fluxes in different environmental disciplines from groundwater through the vadose zone, surface water, and biosphere, up to the lower atmosphere. Over the past 15 years we have collectively gained experience in operating a long-term observing network, thereby overcoming unexpected operational and institutional challenges, exceeding expectations, and facilitating new research. Today, the TERENO network is a key pillar for environmental modelling and forecasting in Germany, an information hub for practitioners and policy stakeholders in agriculture, forestry, and water management at regional to national levels, a nucleus for international collaboration, academic training and scientific outreach, an important anchor for large-scale experiments, and a trigger for methodological innovation and technological progress. This article describes TERENO’s key services and functions, presents the main lessons learned from this 15-year effort, and emphasises the need to continue long-term integrated environmental monitoring programmes in the future.
- Published
- 2024
8. Ecosystem controlled soil-rock pCO2 and carbonate weathering – Constraints by temperature and soil water content
- Author
-
Romero-Mujalli, G., Hartmann, J., Börker, J., Gaillardet, J., and Calmels, D.
- Published
- 2019
- Full Text
- View/download PDF
9. Exploring the Critical Zone Heterogeneity and the Hydrological Diversity Using an Integrated Ecohydrological Model in Three Contrasted Long‐Term Observatories
- Author
-
Ackerer, J., primary, Kuppel, S., additional, Braud, I., additional, Pasquet, S., additional, Fovet, O., additional, Probst, A., additional, Pierret, M. C., additional, Ruiz, L., additional, Tallec, T., additional, Lesparre, N., additional, Weill, S., additional, Flechard, C., additional, Probst, J. L., additional, Marçais, J., additional, Riviere, A., additional, Habets, F., additional, Anquetin, S., additional, and Gaillardet, J., additional
- Published
- 2023
- Full Text
- View/download PDF
10. CZ-tope at Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate Critical Zone processes across timescales in a temperate forested landscape
- Author
-
Sullivan, P.L., Ma, L., West, N., Jin, L., Karwan, D.L., Noireaux, J., Steinhoefel, G., Gaines, K.P., Eissenstat, D.M., Gaillardet, J., Derry, L.A., Meek, K., Hynek, S., and Brantley, S.L.
- Published
- 2016
- Full Text
- View/download PDF
11. Boron isotopes in Fiji corals and precise ocean acidification reconstruction
- Author
-
Douville, E., Juillet-Leclerc, A., Cabioch, G., Louvat, P., Gaillardet, J., Gehlen, M., Bopp, L., Paterne, M., Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche pour le Développement (IRD), Institut de Physique du Globe de Paris (IPGP), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
1630 GLOBAL CHANGE / Impacts of global change ,9355 GEOGRAPHIC LOCATION / Pacific Ocean ,4806 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL / Carbon cycling ,[SDU]Sciences of the Universe [physics] ,4916 PALEOCEANOGRAPHY / Corals - Abstract
International audience; Within the framework of EPOCA (European Project on OCean Acidification ) and the French INSU project PHARE, we are adapting the boron isotope technique to ancient corals with the scope to reconstruct “past” ocean pH changes. In this study, we applied the technique to surface seawater pH reconstructions based on tropical 20th century corals from Fiji. Models estimated a pH drop close to 0.07 pH units in the South Western Equatorial Pacific since the onset of the industrial era (Sabine et al., 2004). To reconstruct such a change in pH, the isotopic composition of boron (δ11B) in coral material has to be determined with a precision better than ±0.2‰. This analytical criteria was meet on a Multi-Collector ICPMS Neptune. We selected a Porites coral for the reconstruction of the time dependent evolution of pH. Our results show a progressive decrease of seawater pH between 1900 and 2000 of 0.08 +/- 0.02 pH units. This decrease in pH agrees with projections of surface ocean pH for the Fiji area obtained with the biogeochemical ocean circulation model NEMO-PISCES. Our results further reveal that seawater pH changes in the Fiji area are strongly affected by regional processes such as the South Pacific Convergence Zone (SPCZ) tightly linked the Pacific Decadal Oscillation (PDO). This last observation highlights the potential of the δ11B-pH technique for studying past changes of ocean dynamics. Hönisch, B., Hemming, N. G., Grottoli, A. G., Amat, A., Hanson, G. N. & Bijma, J. (2004). Assessing scleractinian corals as recoders for paleo-pH: Empirical calibration and vital effects. Geochimica et Cosmochimica Acta, 68(18), 3675-3685. Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T. & Rios, A. F. (2004). The Oceanic Sink for Anthropogenic CO2. Science, 305, 367-371.
- Published
- 2023
12. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles)
- Author
-
Clergue, C., Dellinger, M., Buss, H.L., Gaillardet, J., Benedetti, M.F., and Dessert, C.
- Published
- 2015
- Full Text
- View/download PDF
13. Corrigendum to “Contrasting physical erosion rates in cratonic catchments: The Ogooué and Mbei rivers, Western Central Africa” [Gondwana Res. 138 (2025) 192–209]
- Author
-
Regard, V., Carretier, S., Moquet, J.-S., Choy, S., Blard, P.-H., Bogning, S., Mbonda, A.P., Mambela, E., Paiz, M.C., Séranne, M., Charreau, J., Rouby, D., Bouchez, J., Gaillardet, J., Braun, J.-J., and Denèle, Y.
- Published
- 2025
- Full Text
- View/download PDF
14. Boron Behavior in the Rivers of Réunion Island, Inferred from Boron Isotope Ratios and Concentrations of Major and Trace Elements
- Author
-
Louvat, P., Gayer, E., and Gaillardet, J.
- Published
- 2014
- Full Text
- View/download PDF
15. The Influence of Hydrothermal Activity on the Li Isotopic Signature of Rivers Draining Volcanic Areas
- Author
-
Henchiri, S., Clergue, C., Dellinger, M., Gaillardet, J., Louvat, P., and Bouchez, J.
- Published
- 2014
- Full Text
- View/download PDF
16. Boron Isotope Fractionation in Soils at Shale Hills CZO
- Author
-
Noireaux, J., Gaillardet, J., Sullivan, P.L., and Brantley, S.L.
- Published
- 2014
- Full Text
- View/download PDF
17. Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds
- Author
-
Lloret, E., Dessert, C., Pastor, L., Lajeunesse, E., Crispi, O., Gaillardet, J., and Benedetti, M.F.
- Published
- 2013
- Full Text
- View/download PDF
18. The dependence of meteoric 10Be concentrations on particle size in Amazon River bed sediment and the extraction of reactive 10Be/9Be ratios
- Author
-
Wittmann, H., von Blanckenburg, F., Bouchez, J., Dannhaus, N., Naumann, R., Christl, M., and Gaillardet, J.
- Published
- 2012
- Full Text
- View/download PDF
19. A global imbalance in potassium and barium river export: the result of biological uptake?
- Author
-
Charbonnier, Q., primary, Bouchez, J., additional, Gaillardet, J., additional, Gayer, E., additional, and Porder, S., additional
- Published
- 2022
- Full Text
- View/download PDF
20. Resiliency of Silica Export Signatures When Low Order Streams Are Subject to Storm Events
- Author
-
Fernandez, N. M., primary, Bouchez, J., additional, Derry, L. A., additional, Chorover, J., additional, Gaillardet, J., additional, Giesbrecht, I., additional, Fries, D., additional, and Druhan, J. L., additional
- Published
- 2022
- Full Text
- View/download PDF
21. Modeling of water-rock interaction in the Mackenzie basin: Competition between sulfuric and carbonic acids
- Author
-
Beaulieu, E., Goddéris, Y., Labat, D., Roelandt, C., Calmels, D., and Gaillardet, J.
- Published
- 2011
- Full Text
- View/download PDF
22. Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies)
- Author
-
Lloret, E., Dessert, C., Gaillardet, J., Albéric, P., Crispi, O., Chaduteau, C., and Benedetti, M.F.
- Published
- 2011
- Full Text
- View/download PDF
23. Instant sedimentation in a deep Alpine lake (Iseo, Italy) controlled by climate, human and geodynamic forcing
- Author
-
Rapuc, William, Arnaud, Fabien, Sabatier, Pierre, Anselmetti, Flavio S., Piccin, Andrea, Peruzza, Laura, Bastien, Antoine, Augustin, Laurent, R��gnier, Edouard, Gaillardet, J��r��me, Von Grafenstein, Ulrich, and Straub, Kyle
- Subjects
550 Earth sciences & geology - Abstract
The sedimentary processes in the deep basin of large peri-Alpine lakes have not been studied much on long timescales due to high coring complexity of such lake systems. In 2018, a 15.5 m long sediment section was retrieved from the deep basin of Lake Iseo (Italy) at 251 m water depth. A seismic sur- vey associated with a multi-proxy approach using sedimentological and geo- chemical analyses, reveals that event deposits correspond to 61.4% of the total sedimentation during the last 2000 years. The great heterogeneity of textures, colours and grain-size distribution between the different types of event layers can be explained by the high number of potential sources of sediment in this large lake system. By combining a proxy of sediment sources with proxies of transport processes, flood events were distinguished from destabilizations of the slopes and the main delta. The three thickest mass wasting deposits correspond to major regional earthquakes events of 1222 CE, 1117 CE and around 700 CE. From a thorough comparison with regional climatic fluctuations and human activities in the watershed, it appears that periods of high sediment remobilization can be linked to a pre- ceding increase in erosion in the watershed mainly under human forcing. Hence, even in large catchments, human activities play a key role on erosion processes and on sediment availability, disrupting the recording of extreme events in lacustrine archive.
- Published
- 2022
- Full Text
- View/download PDF
24. A global rate of denudation from cosmogenic nuclides in the Earth's largest rivers
- Author
-
Wittmann, H, Oelze, M, Gaillardet, J, Garzanti, E, von Blanckenburg, F, Wittmann H., Oelze M., Gaillardet J., Garzanti E., von Blanckenburg F., Wittmann, H, Oelze, M, Gaillardet, J, Garzanti, E, von Blanckenburg, F, Wittmann H., Oelze M., Gaillardet J., Garzanti E., and von Blanckenburg F.
- Abstract
Cosmogenic nuclide analysis in sediment from the Earth's largest rivers yields mean denudation rates of the sediment-producing areas that average out the local variations commonly found in small rivers. Using this approach, we measured in situ cosmogenic 26Al and 10Be in sand of >50 large rivers over a range of climatic and tectonic regimes covering 32% of the Earth's terrestrial surface. In 35% of the analyzed rivers, we find 26Al/10Be ratios significantly lower than these nuclides ́ surface-production-rate ratio of 6.75 in quartz, indicating radioactive decay over periods exceeding 0.5 Myr. We invoke a combination of slow erosion, shielding in the source area, and sediment storage and burial during long-distance transport to explain these low ratios. In the other 65% of studied rivers we find 26Al/10Be ratios within uncertainty of their surface production-rate ratio, indicating cosmogenic steady state. For these rivers, we obtain a global source area denudation rate of 141 t/km2×yr (54 mm/kyr of rock-equivalent) that translates to a flux of 3.07 ± 0.56 Gt/yr. By assuming that this sub-dataset is representative of the global land surface, we upscale this value to the total surface area for exorheic basins, thereby obtaining a global denudation flux of 15.2 ± 2.8 Gt/yr that integrates over the past 11 kyr. This value is slightly lower than published values from cosmogenic nuclides from small river basins (23 (+53/−16)) Gt/yr) upscaled using a global slope model, and also lower than modern sediment and dissolved loads exported to the oceans (24.0 Gt/yr). Our new approach confirms an estimate of global dissolved and solid matter transfer that converges to an encouragingly narrow range of within 35%; whereas the use of paired nuclides in large rivers provides estimates of the buffering timescales of sediment transport.
- Published
- 2020
25. Osmium isotopic compositions in Ganga river sediments
- Author
-
Chakrapani, G. J., Gaillardet, J., Dupre, B., and Allegre, C. J.
- Published
- 2002
26. Boron isotopes geochemistry of the Changjiang basin rivers
- Author
-
Chetelat, B., Liu, C.-Q., Gaillardet, J., Wang, Q.L., Zhao, Z.Q., Liang, C.S., and Xiao, Y.K.
- Published
- 2009
- Full Text
- View/download PDF
27. Geological evolution of seawater boron isotopic composition recorded in evaporites
- Author
-
Paris, G., Gaillardet, J., and Louvat, P.
- Subjects
Sea-water -- Research ,Ocean -- Research ,Evaporites -- Research ,Submarine geology -- Research ,Earth sciences - Abstract
The abundance of boron isotopes in ancient marine carbonates can be used to estimate oceanic pH that reflects atmospheric C[O.sub.2] levels. This proxy requires that the boron isotopic composition of seawater at the time the carbonate has formed is known, and thus the past changes in seawater chemistry. Here we report the boron isotopic composition of selected ancient marine halites and modern sea salts. The signal, interpreted as marine, reveals a clear evolution of the boron isotopic composition of seawater (to 8[per thousand] variations over the Cenozoic). Comparison between this reconstructed curve and the Mg/Ca ratio reveals a high level of consistency that will help to better define oceanic geochemical cycles. doi: 10.1130/G31321.1
- Published
- 2010
28. From water rock-interaction to methanogenesis: How climate induced raise of groundwater inputs might favor CH4 fluxes in the mid latitude/altitude Frasne peatland, Jura Mountains, France
- Author
-
Lhosmot, Alexandre, Jean-S��bastien Moquet, Gandois, Laure, Bouchez Julien, Steinmann, Marc, Lavastre, V��ronique, Vanessa, Stefani, Boetch, Anne, Binet, Philippe, Marie-Laure Toussaint, Gaillardet, J��r��me, Bertrand, Guillaume, Laboratoire Chrono-environnement (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Jean Monnet - Saint-Étienne (UJM), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDE.MCG]Environmental Sciences/Global Changes ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
29. Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers
- Author
-
Viers, J., primary, Oliva, P., additional, Dandurand, J.-L., additional, Dupré, B., additional, and Gaillardet, J., additional
- Published
- 2014
- Full Text
- View/download PDF
30. Trace Elements in River Waters
- Author
-
Gaillardet, J., primary, Viers, J., additional, and Dupré, B., additional
- Published
- 2014
- Full Text
- View/download PDF
31. Geochemistry of the Congo River, estuary, and plume
- Author
-
Spencer, R. G. M., primary, Stubbins, A., additional, and Gaillardet, J., additional
- Published
- 2013
- Full Text
- View/download PDF
32. Chemical weathering of silicate rocks in Karelia region and Kola peninsula, NW Russia: Assessing the effect of rock composition, wetlands and vegetation
- Author
-
Zakharova, E.A., Pokrovsky, O.S., Dupré, B., Gaillardet, J., and Efimova, L.E.
- Published
- 2007
- Full Text
- View/download PDF
33. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series
- Author
-
Dosseto, A., Bourdon, B., Gaillardet, J., Allègre, C.J., and Filizola, N.
- Published
- 2006
- Full Text
- View/download PDF
34. Storm-induced precipitation variability control of long-term erosion
- Author
-
Gayer, E., Michon, L., Louvat, P., and Gaillardet, J.
- Published
- 2019
- Full Text
- View/download PDF
35. Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers
- Author
-
Viers, J., primary, Oliva, P., additional, Dandurand, J.-L., additional, Dupré, B., additional, and Gaillardet, J., additional
- Published
- 2007
- Full Text
- View/download PDF
36. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH
- Author
-
Lemarchand, D., Gaillardet, J., Lewin, E., and Allegre, C. J.
- Subjects
Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): D. Lemarchand (corresponding author); J. Gaillardet; Ã. Lewin; C. J. Allègre Ocean pH is particularly sensitive to atmospheric carbon dioxide content [1, 2, 3]. Records of ocean pH can [...]
- Published
- 2000
- Full Text
- View/download PDF
37. Trace Elements in River Waters
- Author
-
Gaillardet, J., primary, Viers, J., additional, and Dupré, B., additional
- Published
- 2003
- Full Text
- View/download PDF
38. Denudation and Weathering Rates of Carbonate Landscapes From Meteoric 10Be/9Be Ratios
- Author
-
Wittmann, H., Bouchez, J., Calmels, D., Gaillardet, J., Frick, D. A., Stroncik, N., and Blanckenburg, F.
- Abstract
Knowledge of the rates of carbonate rock denudation, the relative apportionment of chemical weathering versus physical erosion, and their sensitivity to climate, vegetation, and tectonics is essential for disclosing feedbacks within the carbon cycle and the functioning of karst landscapes that supply important services to humans. Currently, however, for carbonate lithologies, no method exists that allows to simultaneously partition denudation into erosion and weathering fluxes at spatial scales ranging from soil to watersheds. To determine total denudation rates in carbonate landscapes from an individual soil or river sample, we adapted a published framework that combines cosmogenic meteoric 10Be as an atmospheric flux tracer with stable 9Be that is released from rocks by weathering, to the limestone‐dominated French Jura Mountains. By analyzing water, soil, sediment, travertine, and bedrock for 10Be/9Be, major and trace elements, carbon stable isotopes and radiogenic strontium, we quantified contributions of Be from primary versus secondary carbonate phases and its release during weathering from carbonate bedrock versus silicate impurities. We calculated partitioning of Be between solids and solutes, and rates of catchment‐wide (from sediment) and point source (from soil) denudation, weathering and erosion. Our results indicate that average denudation rates are 300–500 t/km2/yr. Denudation is dominated by weathering intensity (W/D) ratios of >0.92, and a non‐negligible contribution from deeper (below soil) weathering. Our rates agree to within less than a factor of two with decadal‐scale denudation rates from combined suspended and dissolved fluxes, highlighting the substantial potential of this method for future Earth surface studies. Carbonate rocks, constituting about 10% of the terrestrial Earth’s surface, play a crucial role in the short‐term carbon cycle by absorbing atmospheric CO2and forming karst landscapes. These landscapes, supporting 10% of the global population with vital services, remain poorly understood due to a lack of tools for assessing erosion and weathering rates. In our study of the French Jura Mountains, we utilized a novel method involving the isotope ratio of 10Be/9Be from the cosmogenic meteoric 10Be, raining onto Earth from the atmosphere at a specific rate, and the stable trace element 9Be released from rocks by weathering, to measure erosion, weathering, and total denudation. Our results indicate an annual soil and sediment erosion of 300–500 tons per square kilometer, with 90% attributed to rock dissolution (weathering) and 10% to physical erosion. A non‐trivial fraction of weathering appears to happen deep (below soil). Our new rates agree closely with rates estimated independently from suspended and dissolved river loads. As such, they demonstrate the considerable potential of the 10Be/9Be technique as a rate meter at Earth’s surface. Denudation rates from 10Be/9Be in a carbonate landscape agree within a factor of 2 with rates from suspended and dissolved river loadsMeteoric 10Be/9Be‐derived carbonate denudation is dominated by weathering (>0.9 W/D)A non‐negligible contribution in denudation originates in deeper (below soil) weathering Denudation rates from 10Be/9Be in a carbonate landscape agree within a factor of 2 with rates from suspended and dissolved river loads Meteoric 10Be/9Be‐derived carbonate denudation is dominated by weathering (>0.9 W/D) A non‐negligible contribution in denudation originates in deeper (below soil) weathering
- Published
- 2024
- Full Text
- View/download PDF
39. OZCAR: The French network of critical zone observatories
- Author
-
Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., de Dreuzy, J.R., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F., and Laggoun, F.
- Subjects
Hidrología ,Scientific community ,purl.org/pe-repo/ocde/ford#1.05.11 [https] ,Strategic development ,Scientific activity ,Climatic regimes ,Development programs ,Research infrastructure ,Wicked problems ,Monitoring strategy - Abstract
The French critical zone initiative, called OZCAR (Observatoires de la Zone Critique–Application et Recherche or Critical Zone Observatories–Application and Research) is a National Research Infrastructure (RI). OZCAR-RI is a network of instrumented sites, bringing together 21 pre-existing research observatories monitoring different compartments of the zone situated between “the rock and the sky,” the Earth’s skin or critical zone (CZ), over the long term. These observatories are regionally based and have specific initial scientific questions, monitoring strategies, databases, and modeling activities. The diversity of OZCAR-RI observatories and sites is well representative of the heterogeneity of the CZ and of the scientific communities studying it. Despite this diversity, all OZCAR-RI sites share a main overarching mandate, which is to monitor, understand, and predict (“earthcast”) the fluxes of water and matter of the Earth’s near surface and how they will change in response to the “new climatic regime.” The vision for OZCAR strategic development aims at designing an open infrastructure, building a national CZ community able to share a systemic representation of the CZ, and educating a new generation of scientists more apt to tackle the wicked problem of the Anthropocene. OZCAR articulates around: (i) a set of common scientific questions and cross-cutting scientific activities using the wealth of OZCAR-RI observatories, (ii) an ambitious instrumental development program, and (iii) a better interaction between data and models to integrate the different time and spatial scales. Internationally, OZCAR-RI aims at strengthening the CZ community by providing a model of organization for pre-existing observatories and by offering CZ instrumented sites. OZCAR is one of two French mirrors of the European Strategy Forum on Research Infrastructure (eLTER-ESFRI) project. OZCAR-RI is supported by the French Ministry of Education and Research, through the Allenvi Alliance. OZCAR observatories have benefited from numerous sources of funding coming from the different research institutions supporting the infrastructure (ANDRA, BRGM, CEA, CNES, CNRS, Ifsttar, INRA, IPEV, IPGP, IRD, IRSN, Irstea, Météo-France, LNE), universities (Avignon Pays de Vaucluse, Bourgogne Franche-Comté, Bretagne Occidentale, Grenoble-Alpes, La Réunion, Lyon, Montpellier, Orléans, Paris Diderot, Pierre et Marie Curie, Rennes, Rouen-Normandie, Savoie-Mont Blanc, Strasbourg, Toulouse, Clermont-Auvergne), and institutes (INP-Toulouse, Mines Telecom, VetAgroSup, IPGP). In the southern countries, the following universities—UCAM, TREMA International Joint Laboratory, Morocco; lNRGREF, INAT, Tunisia; Univ. Abdou Moumouni, Niger; Univ. Abomey-Calavi, Bénin; Univ. des Sciences des Techniques et des Technologies de Bamako, Mali; UFAM in Manaus, Brazil; UFF in Rio de Ja-neiro, Brazil; UNALM in Lima, Peru; UMSA in La Paz, Bolivia; UCV in Caracas, Venezuela; UMNG in Brazaville, Republic of the Congo—as well as the following national hydrological services—ANA, CPRM in Brazil, SENAMHI in Peru and Bolivia, INAMHI in Ecuador, and DREAL in France—are thanked for making international collaboration possible. The French Ministry of Ecological and Inclusive Transition (AFB/ONEMA) is supporting the piezometer network (ROSES). A number of sites were supported by the ANR and PIA (Programme Investisse-ment d’Avenir): Equipex CRITEX (ANR-11-EQPX-0011), LabexOSUG@2020, Labex DRIIHM–OHM du Haut Vicdessos. We also thank the administrative and scientific staff of all institutions contributing to the collection, analysis, and diffusion of the data collected within OZCAR. Tim White and two anonymous reviewers are thanked for their suggestions that improved the manuscript. Lin Ma and Nicole Fernadez are thanked in particular for their careful proofreadings. Por pares
- Published
- 2018
40. Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic
- Author
-
Lemarchand, D, Gaillardet, J, Lewin, É, and Allègre, C.J
- Published
- 2002
- Full Text
- View/download PDF
41. An optimized procedure for boron separation and mass spectrometry analysis for river samples
- Author
-
Lemarchand, D, Gaillardet, J, Göpel, C, and Manhès, G
- Published
- 2002
- Full Text
- View/download PDF
42. Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise
- Author
-
Musche, Martin, Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W.D., Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, P., Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, M., White, T., Zobel, M., Klotz, Stefan, Musche, Martin, Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W.D., Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, P., Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, M., White, T., Zobel, M., and Klotz, Stefan
- Abstract
Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.
- Published
- 2019
43. Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise
- Author
-
Musche, M., Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W. Daniel, Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, Petr, Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, Montserrat, White, T., Zobel, M., Klotz, S., Musche, M., Adamescu, M., Angelstam, P., Bacher, S., Bäck, J., Buss, H.L., Duffy, C., Flaim, G., Gaillardet, J., Giannakis, G.V., Haase, P., Halada, L., Kissling, W. Daniel, Lundin, L., Matteucci, G., Meesenburg, H., Monteith, D., Nikolaidis, N.P., Pipan, T., Pyšek, Petr, Rowe, E.C., Roy, D.B., Sier, A., Tappeiner, U., Vilà, Montserrat, White, T., Zobel, M., and Klotz, S.
- Abstract
Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.
- Published
- 2019
44. OZCAR: French network of Critical Zone Observatories exploring the human's habitat
- Author
-
Hankard, F., Gaillardet, J., Braud, I., Anquetin, S., Batiot, C., Boithias, L., Boudevillain, B., Bour, O., Galle, S., Galy, C., Gogo, Sébastien, Gourcy, Laurence, Grippa, M., Habets, F., Le Bouteiller, C., Longuevergne, Laurent, Martinez, J. M., Molenat, Jérôme, Naaim-Bouvet, F., Probst, A., Ruiz, L., Six, D., Tallec, T., Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Centre d'études spatiales de la biosphère (CESBIO), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Water management ,HYDROLOGY ,Instruments and techniques: monitoring ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Catchment ,Watershed - Abstract
International audience; OZCAR (Critical Zone Observatories - Application and Research) is a national Research Infrastructure dedicated to providing an integrated understanding of the Earth's surface processes ranging from the subsurface to the lower atmosphere and from high mountains to coastal areas. It includes over 100 highly instrumented sites distributed among 21 observatories for long-term measurements of biological, chemical and physical parameters of groundwater, river water, glaciers, soils, and wetlands in France and overseas. Based on long-term observations at the landscape scale, OZCAR sites address specific environmental question of local societal relevance but all share the same overarching goal of better predicting the response of the Critical Zone to perturbations across a range of timescales. Diversity of OZCAR observation sites allows exploring laterally and vertically all compartments of the CZ from mountains to costal areas. This enables data acquisition on water, soils, agricultural practices and exchanges with the atmosphere. Thus, OZCAR proposes a great variety of models that ultimately will help reproducing observations and predict the evolution of the CZ. Through its wealth of environmental data portal and modelling platerforms, OZCAR aims at advising policy makers and stakeholers on the water, soil, and biodiversity resource. Recently, OZCAR integrated together with the French LTSER network (Zones Ateliers) the pan-European eLTER-ESFRI project.
- Published
- 2018
45. The high frequency Equipex CRITEX toolbox, an example of Critical Zone instrumental devices, ORACLE/BVRE Orgeval Observatory
- Author
-
Tallec, G., Ansart, P., Barral, H., Baudin, A., Asma Berrhouma, Blanchouin, A., Bodet, L., Cappelaere, B., P Chazarin, J., Clément, R., M Cohard, J., Cucchi, K., Dangeard, M., Demarty, J., Nicolas Flipo, Floury, P., Gaillardet, J., Guérin, A., Guillon, S., Henine, H., M Mouchel, J., Agnès Rivière, Seraphin, P., Tales, E., Neira, J. M. T., Zahm, A., Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Irstea, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de Géosciences (GEOSCIENCES), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Chimie de l'Eau et de l'Environnement (LCEE), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Hydrosystèmes et Bioprocédés (UR HBAN), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Insitut Français des Productions Cidricoles (IFPC), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), MINES ParisTech - École nationale supérieure des mines de Paris-PSL Research University (PSL), Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers, Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Hydrosystèmes et bioprocédés (UR HBAN), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut Français des Productions Cidricoles (IFPC), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), MINES ParisTech - École nationale supérieure des mines de Paris, Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
46. Long term monitoring of soil electrical resistivity in a Laotian catchment of the OZCAR network : impact of land use change, soil type and rainfall [poster]
- Author
-
Robain, Henri, Ribolzi, Olivier, de Rouw, Anneke, Silvera, Norbert, Latchasak, K., Sengtaheuanghoung, O., Valentin, Christian, Gaillardet, J., Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and HORIZON, IRD
- Subjects
[SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/Hydrology ,LAOS ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDV.SA.SDS] Life Sciences [q-bio]/Agricultural sciences/Soil study - Abstract
EGU. European Geosciences Union General Assembly, Vienne, AUT, 23-/04/2017 - 28/04/2017
- Published
- 2017
47. Long term (2006-2016) seasonal and inter-annual variability of soil electrical resistivity in a Laotian catchment of the OZCAR network : impact of land use change, soil type and rainfall [résumé]
- Author
-
Robain, Henri, Ribolzi, Olivier, De Rouw, Anneke, Silvera, Norbert, Souniaphong, P., Soulileuth, B., Latchasak, K., Sengtaheuanghoung, O., Valentin, Christian, Gaillardet, J., Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and HORIZON, IRD
- Subjects
ZONE TROPICALE ,[SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/Hydrology ,LAOS ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDV.SA.SDS] Life Sciences [q-bio]/Agricultural sciences/Soil study - Abstract
EGU. European Geosciences Union General Assembly, Vienne, AUT, 23-/04/2017 - 28/04/2017
- Published
- 2017
48. Ecosystem controlled soil-rock p CO 2 and carbonate weathering – Constraints by temperature and soil water content
- Author
-
Romero-Mujalli, G., Hartmann, J., Börker, J., Gaillardet, J., Calmels, D., Romero-Mujalli, G., Hartmann, J., Börker, J., Gaillardet, J., and Calmels, D.
- Abstract
Carbonate dissolution in soil-groundwater systems depends dominantly on pH, temperature and the saturation state of the solution with respect to abundant minerals. The pH of the solution is, in general, controlled by partial pressure of CO2 (pCO2) produced by ecosystem respiration, which is controlled by temperature and water availability. In order to better understand the control of land temperature on carbonate weathering, a database of published spring water hydrogeochemistry was built and analysed. Assuming that spring water is in equilibrium with the soil-water-rock-atmosphere, the soil pCO2 can be back-calculated. Based on a database of spring water chemistry, the average soil-rock CO2 was calculated by an inverse model framework and a strong relationship with temperature was observed. The identified relationship suggests a temperature control on carbonate weathering as a result of variations in soil-rock pCO2, which is itself controlled by ecosystem respiration processes. The findings are relevant for global scale analysis of carbonate weathering and carbon fluxes to the ocean, because concentration of weathering products from the soil-rock-system into the river system in humid, high temperature regions, are suggested to be larger than in low temperature regions. Furthermore, results suggest that, in specific spring samples, the hydrochemical evolution of rain water percolating through the soil-rock complex can best be described by an open system with pCO2 controlled by the ecosystem. Abundance of evaporites and pyrite sources influence significantly the chemistry of spring water and corrections must be taken into account in order to implement the inverse model framework presented in this study. Annual surface temperature and soil water content were identified as suitable variables to develop the parameterization of soil-rock pCO2, mechanistically consistent with soil respiration rate findings.
- Published
- 2018
- Full Text
- View/download PDF
49. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling
- Author
-
Baatz, R., Sullivan, P.L., Li, L., Weintraub, S.R., Loescher, H.W., Mirtl, Michael, Groffman, P.M., Wall, D.H., Young, M., White, T., Wen, H., Zacharias, Steffen, Kühn, Ingolf, Tang, J., Gaillardet, J., Braud, I., Flores, A.N., Kumar, P., Lin, H., Ghezzehei, T., Jones, J., Gholz, H.L., Vereecken, H., Van Looy, K., Baatz, R., Sullivan, P.L., Li, L., Weintraub, S.R., Loescher, H.W., Mirtl, Michael, Groffman, P.M., Wall, D.H., Young, M., White, T., Wen, H., Zacharias, Steffen, Kühn, Ingolf, Tang, J., Gaillardet, J., Braud, I., Flores, A.N., Kumar, P., Lin, H., Ghezzehei, T., Jones, J., Gholz, H.L., Vereecken, H., and Van Looy, K.
- Abstract
Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.
- Published
- 2018
50. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers
- Author
-
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C.J.
- Published
- 1999
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.