8 results on '"Gall-Duncan T"'
Search Results
2. Huntingtin is an RNA binding protein and participates in NEAT1 -mediated paraspeckles.
- Author
-
Yadav M, Harding RJ, Li T, Xu X, Gall-Duncan T, Khan M, Bardile CF, Sequiera GL, Duan S, Chandrasekaran R, Pan A, Bu J, Yamazaki T, Hirose T, Prinos P, Tippett L, Turner C, Curtis MA, Faull RLM, Pouladi MA, Pearson CE, He HH, and Arrowsmith CH
- Subjects
- Humans, Protein Binding, Fibroblasts metabolism, Mutation, Huntingtin Protein metabolism, Huntingtin Protein genetics, RNA, Long Noncoding metabolism, RNA, Long Noncoding genetics, RNA-Binding Proteins metabolism, RNA-Binding Proteins genetics, Huntington Disease metabolism, Huntington Disease genetics, Huntington Disease pathology
- Abstract
Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.
- Published
- 2024
- Full Text
- View/download PDF
3. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability.
- Author
-
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, and Pearson CE
- Subjects
- Animals, Humans, Mice, DNA genetics, DNA Mismatch Repair, Huntington Disease genetics, Proteins genetics, Spinocerebellar Ataxias genetics, Trinucleotide Repeat Expansion, Replication Protein A metabolism
- Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. CAG repeat-binding small molecule improves motor coordination impairment in a mouse model of Dentatorubral-pallidoluysian atrophy.
- Author
-
Hasuike Y, Tanaka H, Gall-Duncan T, Mehkary M, Nakatani K, Pearson CE, Tsuji S, Mochizuki H, and Nakamori M
- Subjects
- Animals, Disease Models, Animal, Mice, Motor Skills drug effects, Myoclonic Epilepsies, Progressive genetics, Naphthyridines pharmacology, Phenotype, Protein Aggregates drug effects, Quinolones pharmacology, Motor Skills physiology, Myoclonic Epilepsies, Progressive physiopathology, Nerve Tissue Proteins genetics, Trinucleotide Repeats
- Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine-azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
5. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences.
- Author
-
Gall-Duncan T, Sato N, Yuen RKC, and Pearson CE
- Subjects
- Animals, Base Sequence, Dogs, Humans, Sequence Analysis, DNA, Genomics, Tandem Repeat Sequences genetics
- Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand., (© 2022 Gall-Duncan et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2022
- Full Text
- View/download PDF
6. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
- Author
-
Wright GEB, Black HF, Collins JA, Gall-Duncan T, Caron NS, Pearson CE, and Hayden MR
- Subjects
- Age of Onset, Animals, Genetic Therapy methods, Humans, Huntington Disease therapy, Genetic Therapy trends, Genetic Variation genetics, Huntingtin Protein genetics, Huntington Disease epidemiology, Huntington Disease genetics
- Abstract
Background: Huntington's disease is a fatal neurodegenerative disorder that is caused by CAG-CAA repeat expansion, encoding polyglutamine, in the huntingtin (HTT) gene. Current age-of-clinical-onset prediction models for Huntington's disease are based on polyglutamine length and explain only a proportion of the variability in age of onset observed between patients. These length-based assays do not interrogate the underlying genetic variation, because known genetic variants in this region do not alter the protein coding sequence. Given that individuals with identical repeat lengths can present with Huntington's disease decades apart, the search for genetic modifiers of clinical age of onset has become an active area of research., Recent Developments: Results from three independent genetic studies of Huntington's disease have shown that glutamine-encoding CAA variants that interrupt DNA CAG repeat tracts, but do not alter polyglutamine length or polyglutamine homogeneity, are associated with substantial differences in age of onset of Huntington's disease in carriers. A variant that results in the loss of CAA interruption is associated with early onset and is particularly relevant to individuals that carry alleles in the reduced penetrance range (ie, CAG 36-39). Approximately a third of clinically manifesting carriers of reduced penetrance alleles, defined by current diagnostics, carry this variant. Somatic repeat instability, modified by interrupted CAG tracts, is the most probable cause mediating this effect. This relationship is supported by genome-wide screens for disease modifiers, which have revealed the importance of DNA-repair genes in Huntington's disease (ie, FAN1, LIG1, MLH1, MSH3, PMS1, and PMS2). WHERE NEXT?: Focus needs to be placed on refining our understanding of the effect of the loss-of-interruption and duplication-of-interruption variants and other interrupting sequence variants on age of onset, and assessing their effect in disease-relevant brain tissues, as well as in diverse population groups, such as individuals from Africa and Asia. Diagnostic tests should be augmented or updated, since current tests do not assess the underlying DNA sequence variation, especially when assessing individuals that carry alleles in the reduced penetrance range. Future studies should explore somatic repeat instability and DNA repair as new therapeutic targets to modify age of onset in Huntington's disease and in other repeat-mediated disorders. Disease-modifying therapies could potentially be developed by therapeutically targeting these processes. Promising approaches include therapeutically targeting the expanded repeat or directly perturbing key DNA-repair genes (eg, with antisense oligonucleotides or small molecules). Targeting the CAG repeat directly with naphthyridine-azaquinolone, a compound that induces contractions, and altering the expression of MSH3, represent two viable therapeutic strategies. However, as a first step, the capability of such novel therapeutic approaches to delay clinical onset in animal models should be assessed., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
7. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo.
- Author
-
Nakamori M, Panigrahi GB, Lanni S, Gall-Duncan T, Hayakawa H, Tanaka H, Luo J, Otabe T, Li J, Sakata A, Caron MC, Joshi N, Prasolava T, Chiang K, Masson JY, Wold MS, Wang X, Lee MYWT, Huddleston J, Munson KM, Davidson S, Layeghifard M, Edward LM, Gallon R, Santibanez-Koref M, Murata A, Takahashi MP, Eichler EE, Shlien A, Nakatani K, Mochizuki H, and Pearson CE
- Subjects
- Animals, Corpus Striatum drug effects, DNA metabolism, DNA Mismatch Repair drug effects, DNA Replication drug effects, Disease Models, Animal, Humans, Huntingtin Protein metabolism, Huntington Disease drug therapy, Huntington Disease pathology, Male, Mice, Mice, Transgenic, Microsatellite Instability, Mutation, Ribonucleases metabolism, TATA-Box Binding Protein genetics, Transcription, Genetic, Huntingtin Protein genetics, Huntington Disease genetics, Naphthyridines pharmacology, Quinolones pharmacology, Trinucleotide Repeat Expansion drug effects
- Abstract
In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
- Published
- 2020
- Full Text
- View/download PDF
8. Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31.
- Author
-
Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, Tokuda E, Zamiri B, Gall-Duncan T, Mirceta M, Furukawa Y, Yokota T, Wada K, Taylor JP, Pearson CE, Charlet-Berguerand N, Mizusawa H, Nagai Y, and Ishikawa K
- Subjects
- Aged, Aged, 80 and over, Animals, Animals, Genetically Modified, DNA Repeat Expansion, Drosophila Proteins genetics, Drosophila melanogaster, Female, Humans, Male, Middle Aged, Molecular Chaperones genetics, PC12 Cells, Protein Biosynthesis genetics, RNA-Binding Proteins genetics, Rats, DNA-Binding Proteins genetics, Heterogeneous-Nuclear Ribonucleoprotein Group A-B genetics, Microsatellite Repeats genetics, Motor Neuron Disease genetics, RNA Folding genetics, RNA-Binding Protein FUS genetics, Spinocerebellar Ataxias genetics
- Abstract
Microsatellite expansion disorders are pathologically characterized by RNA foci formation and repeat-associated non-AUG (RAN) translation. However, their underlying pathomechanisms and regulation of RAN translation remain unknown. We report that expression of expanded UGGAA (UGGAA
exp ) repeats, responsible for spinocerebellar ataxia type 31 (SCA31) in Drosophila, causes neurodegeneration accompanied by accumulation of UGGAAexp RNA foci and translation of repeat-associated pentapeptide repeat (PPR) proteins, consistent with observations in SCA31 patient brains. We revealed that motor-neuron disease (MND)-linked RNA-binding proteins (RBPs), TDP-43, FUS, and hnRNPA2B1, bind to and induce structural alteration of UGGAAexp . These RBPs suppress UGGAAexp -mediated toxicity in Drosophila by functioning as RNA chaperones for proper UGGAAexp folding and regulation of PPR translation. Furthermore, nontoxic short UGGAA repeat RNA suppressed mutated RBP aggregation and toxicity in MND Drosophila models. Thus, functional crosstalk of the RNA/RBP network regulates their own quality and balance, suggesting convergence of pathomechanisms in microsatellite expansion disorders and RBP proteinopathies., (Copyright © 2017 Elsevier Inc. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.