381 results on '"Galtier, E."'
Search Results
2. Atomistic deformation mechanism of silicon under laser-driven shock compression
- Author
-
Pandolfi, S., Brown, S. Brennan, Stubley, P. G., Higginbotham, A., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Sandberg, R., Yang, W., Mao, W. L., Wark, J. S., and Gleason, A.
- Subjects
Condensed Matter - Materials Science - Abstract
Silicon (Si) is one of the most abundant elements on Earth, and it is the most important and widely used semiconductor, constituting the basis of modern electronic devices. Despite extensive study, some properties of Si remain elusive. For example, the behaviour of Si under high pressure, in particular at the ultra-high strain rates characteristic of dynamic compression, has been a matter of debate for decades. A detailed understanding of how Si deforms is crucial for a variety of fields, ranging from planetary science to materials design. Simulations suggest that in Si the shear stress generated during shock compression is released inelastically, i.e., via a high-pressure phase transition, challenging the classical picture of relaxation via defect-mediated plasticity. However, experiments at the short timescales characteristic of shock compression are challenging, and direct evidence supporting either deformation mechanism remain elusive. Here, we use sub-picosecond, highly-monochromatic x-ray diffraction to study (100)-oriented single-crystal Si under laser-driven shock compression. We provide the first unambiguous, time-resolved picture of Si deformation at ultra-high strain rates, demonstrating the predicted inelastic shear release. Our results resolve the longstanding controversy on silicon deformation under dynamic compression, and provide direct proof of strain rate-dependent deformation mechanisms in a non-metallic system, which is key for the study of planetary-relevant materials.
- Published
- 2021
- Full Text
- View/download PDF
3. Dynamic compression of water to conditions in ice giant interiors
- Author
-
Gleason, AE, Rittman, DR, Bolme, CA, Galtier, E, Lee, HJ, Granados, E, Ali, S, Lazicki, A, Swift, D, Celliers, P, Militzer, B, Stanley, S, and Mao, WL
- Abstract
Recent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H2O at pressure-temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H2O-yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.
- Published
- 2022
4. Mapping the Electronic Structure of Warm Dense Nickel via Resonant Inelastic X-ray Scattering
- Author
-
Humphries, O. S., Marjoribanks, R. S., Berg, Q. van den, Galtier, E. C., Kasim, M. F., Lee, H. J., Miscampbell, A. J. F., Nagler, B., Royle, R., Wark, J. S., and Vinko, S. M.
- Subjects
Physics - Plasma Physics - Abstract
The development of high-brightness free-electron lasers (FEL) has revolutionised our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been very successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the electronic structure of solid-density nickel, heated to temperatures of 10's of eV on femtosecond timescales, can be studied by resonant (Raman) inelastic x-ray scattering (RIXS) using the Linac Coherent Light Source FEL. We present single-shot measurements of the valence density of states in the x-ray-heated transient system, and extract simultaneously electron temperatures, ionization, and ionization potential energies. The RIXS spectrum provides a wealth of information on the valence structure of the HED system that goes beyond what can be extracted from x-ray absorption or emission spectroscopy alone.
- Published
- 2020
- Full Text
- View/download PDF
5. Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures.
- Author
-
Lütgert, J, Vorberger, J, Hartley, NJ, Voigt, K, Rödel, M, Schuster, AK, Benuzzi-Mounaix, A, Brown, S, Cowan, TE, Cunningham, E, Döppner, T, Falcone, RW, Fletcher, LB, Galtier, E, Glenzer, SH, Laso Garcia, A, Gericke, DO, Heimann, PA, Lee, HJ, McBride, EE, Pelka, A, Prencipe, I, Saunders, AM, Schölmerich, M, Schörner, M, Sun, P, Vinci, T, Ravasio, A, and Kraus, D
- Abstract
We present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, [Formula: see text], also called mylar) shock-compressed to ([Formula: see text]) GPa and ([Formula: see text]) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.
- Published
- 2021
6. Optimization of the Gain Medium Delivery System for an X-Ray Laser Oscillator
- Author
-
Yadav, M, Manwani, P, Naranjo, B, Majernik, N, Rosenzweig, J, Halavanau, A, Galtier, E, Pellegrini, C, and Malinouski, A
- Published
- 2021
7. Pulse contrast enhancement via non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier
- Author
-
Cunningham, E., Galtier, E., Dyer, G., Robinson, J., and Fry, A.
- Subjects
Physics - Optics - Abstract
We outline an approach for improving the temporal contrast of a high-intensity laser system by $>$8 orders of magnitude using non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier. We demonstrate the effectiveness of this technique by cleaning pulses from a millijoule-level chirped-pulse amplification system to provide $>$10$^{12}$ intensity contrast relative to all pre-pulses and amplified spontaneous emission $>$5~ps prior to the main pulse. The output maintains percent-level energy stability on the time scales of a typical user experiment at our facility, highlighting the method's reliability and operational efficiency. After temporal cleansing, the pulses are stretched in time before seeding two multi-pass, Ti:sapphire-based amplifiers. After re-compression, the 1~J, 40~fs (25~TW) laser pulses maintain a $>$10$^{10}$ intensity contrast $>$30~ps prior to the main pulse. This technique is both energy-scalable and appropriate for preparing seed pulses for a TW- or PW-level chirped-pulse amplification laser system.
- Published
- 2019
- Full Text
- View/download PDF
8. Impact of free electron degeneracy on collisional rates in plasmas
- Author
-
Williams, Gareth O., Chung, H. -K., Künzel, S., Hilbert, V., Zastrau, U., Scott, H., Daboussi, S., Iwan, B., Gonzalez, A. I., Boutu, W., Lee, H. J., Nagler, B., Granados, E., Galtier, E., Heimann, P., Barbrel, B., Lee, R. W., Cho, B. I., Renaudin, P., Merdji, H., Zeitoun, Ph., and Fajardo, M.
- Subjects
Physics - Plasma Physics - Abstract
Degenerate plasmas, in which quantum effects dictate the behavior of free electrons, are ubiquitous on earth and throughout space. Transitions between bound and free electron states determine basic plasma properties, yet the effects of degeneracy on these transitions have only been theorized. Here, we use an x-ray free electron laser to create and characterize a degenerate plasma. We observe a core electron fluorescence spectrum that cannot be reproduced by models that ignore free electron degeneracy.We show that degeneracy acts to restrict the available electron energy states, thereby slowing the rate of transitions to and from the continuum. We couple degeneracy and bound electron dynamics in an existing collisional-radiative code, which agrees well with observations. The impact of the shape of the cross section, and hence the magnitude of the correction due to degeneracy, is also discussed. This study shows that degeneracy in plasmas can significantly influence experimental observables such as the emission spectra, and that these effects can be included parametrically in well-established atomic physics codes. This work narrows the gap in understanding between the condensed-matter and plasma phases, which coexist in myriad scenarios.
- Published
- 2019
- Full Text
- View/download PDF
9. Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter.
- Author
-
Frydrych, S, Vorberger, J, Hartley, N, Schuster, A, Ramakrishna, K, Saunders, A, van Driel, T, Fletcher, L, Galtier, E, Gamboa, E, Glenzer, S, Granados, E, MacDonald, M, MacKinnon, A, McBride, E, Nam, I, Neumayer, P, Pak, A, Voigt, K, Roth, M, Sun, P, Gericke, D, Döppner, T, Kraus, D, and Falcone, Roger
- Abstract
The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon-hydrogen mixture at a pressure of ~150 GPa and a temperature of ~5000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of [Formula: see text]% of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.
- Published
- 2020
10. Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn
- Author
-
Gorman, M, Mcgonegle, D, Smith, R, Singh, S, Jenkins, T, Mcwilliams, R, Albertazzi, B, Ali, S, Antonelli, L, Armstrong, M, Baehtz, C, Ball, O, Banerjee, S, Belonoshko, A, Benuzzi-Mounaix, A, Bolme, C, Bouffetier, V, Briggs, R, Buakor, K, Butcher, T, Di Dio Cafiso, S, Cerantola, V, Chantel, J, Di Cicco, A, Clarke, S, Coleman, A, Collier, J, Collins, G, Comley, A, Coppari, F, Cowan, T, Cristoforetti, G, Cynn, H, Descamps, A, Dorchies, F, Duff, M, Dwivedi, A, Edwards, C, Eggert, J, Errandonea, D, Fiquet, G, Galtier, E, Laso Garcia, A, Ginestet, H, Gizzi, L, Gleason, A, Goede, S, Gonzalez, J, Harmand, M, Hartley, N, Heighway, P, Hernandez-Gomez, C, Higginbotham, A, Höppner, H, Husband, R, Hutchinson, T, Hwang, H, Lazicki, A, Keen, D, Kim, J, Koester, P, Konopkova, Z, Kraus, D, Krygier, A, Labate, L, Lee, Y, Liermann, H, Mason, P, Masruri, M, Massani, B, Mcbride, E, Mcguire, C, Mchardy, J, Merkel, S, Morard, G, Nagler, B, Nakatsutsumi, M, Nguyen-Cong, K, Norton, A, Oleynik, I, Otzen, C, Ozaki, N, Pandolfi, S, Peake, D, Pelka, A, Pereira, K, Phillips, J, Prescher, C, Preston, T, Randolph, L, Ranjan, D, Ravasio, A, Redmer, R, Rips, J, Santamaria-Perez, D, Savage, D, Schoelmerich, M, Schwinkendorf, J, Smith, J, Sollier, A, Spear, J, Spindloe, C, Stevenson, M, Strohm, C, Suer, T, Tang, M, Toncian, M, Toncian, T, Tracy, S, Trapananti, A, Tschentscher, T, Tyldesley, M, Vennari, C, Vinci, T, Vogel, S, Volz, T, Vorberger, J, Walsh, J, Wark, J, Willman, J, Wollenweber, L, Zastrau, U, Brambrink, E, Appel, K, Mcmahon, M, Gorman, M. G., McGonegle, D., Smith, R. F., Singh, S., Jenkins, T., McWilliams, R. S., Albertazzi, B., Ali, S. J., Antonelli, L., Armstrong, M. R., Baehtz, C., Ball, O. B., Banerjee, S., Belonoshko, A. B., Benuzzi-Mounaix, A., Bolme, C. A., Bouffetier, V., Briggs, R., Buakor, K., Butcher, T., Di Dio Cafiso, S., Cerantola, V., Chantel, J., Di Cicco, A., Clarke, S., Coleman, A. L., Collier, J., Collins, G. W., Comley, A. J., Coppari, F., Cowan, T. E., Cristoforetti, G., Cynn, H., Descamps, A., Dorchies, F., Duff, M. J., Dwivedi, A., Edwards, C., Eggert, J. H., Errandonea, D., Fiquet, G., Galtier, E., Laso Garcia, A., Ginestet, H., Gizzi, L., Gleason, A., Goede, S., Gonzalez, J. M., Harmand, M., Hartley, N. J., Heighway, P. G., Hernandez-Gomez, C., Higginbotham, A., Höppner, H., Husband, R. J., Hutchinson, T. M., Hwang, H., Lazicki, A. E., Keen, D. A., Kim, J., Koester, P., Konopkova, Z., Kraus, D., Krygier, A., Labate, L., Lee, Y., Liermann, H. -P., Mason, P., Masruri, M., Massani, B., McBride, E. E., McGuire, C., McHardy, J. D., Merkel, S., Morard, G., Nagler, B., Nakatsutsumi, M., Nguyen-Cong, K., Norton, A. -M., Oleynik, I. I., Otzen, C., Ozaki, N., Pandolfi, S., Peake, D. J., Pelka, A., Pereira, K. A., Phillips, J. P., Prescher, C., Preston, T. R., Randolph, L., Ranjan, D., Ravasio, A., Redmer, R., Rips, J., Santamaria-Perez, D., Savage, D. J., Schoelmerich, M., Schwinkendorf, J. -P., Smith, J., Sollier, A., Spear, J., Spindloe, C., Stevenson, M., Strohm, C., Suer, T. -A., Tang, M., Toncian, M., Toncian, T., Tracy, S. J., Trapananti, A., Tschentscher, T., Tyldesley, M., Vennari, C. E., Vinci, T., Vogel, S. C., Volz, T. J., Vorberger, J., Walsh, J. P. S., Wark, J. S., Willman, J. T., Wollenweber, L., Zastrau, U., Brambrink, E., Appel, K., McMahon, M. I., Gorman, M, Mcgonegle, D, Smith, R, Singh, S, Jenkins, T, Mcwilliams, R, Albertazzi, B, Ali, S, Antonelli, L, Armstrong, M, Baehtz, C, Ball, O, Banerjee, S, Belonoshko, A, Benuzzi-Mounaix, A, Bolme, C, Bouffetier, V, Briggs, R, Buakor, K, Butcher, T, Di Dio Cafiso, S, Cerantola, V, Chantel, J, Di Cicco, A, Clarke, S, Coleman, A, Collier, J, Collins, G, Comley, A, Coppari, F, Cowan, T, Cristoforetti, G, Cynn, H, Descamps, A, Dorchies, F, Duff, M, Dwivedi, A, Edwards, C, Eggert, J, Errandonea, D, Fiquet, G, Galtier, E, Laso Garcia, A, Ginestet, H, Gizzi, L, Gleason, A, Goede, S, Gonzalez, J, Harmand, M, Hartley, N, Heighway, P, Hernandez-Gomez, C, Higginbotham, A, Höppner, H, Husband, R, Hutchinson, T, Hwang, H, Lazicki, A, Keen, D, Kim, J, Koester, P, Konopkova, Z, Kraus, D, Krygier, A, Labate, L, Lee, Y, Liermann, H, Mason, P, Masruri, M, Massani, B, Mcbride, E, Mcguire, C, Mchardy, J, Merkel, S, Morard, G, Nagler, B, Nakatsutsumi, M, Nguyen-Cong, K, Norton, A, Oleynik, I, Otzen, C, Ozaki, N, Pandolfi, S, Peake, D, Pelka, A, Pereira, K, Phillips, J, Prescher, C, Preston, T, Randolph, L, Ranjan, D, Ravasio, A, Redmer, R, Rips, J, Santamaria-Perez, D, Savage, D, Schoelmerich, M, Schwinkendorf, J, Smith, J, Sollier, A, Spear, J, Spindloe, C, Stevenson, M, Strohm, C, Suer, T, Tang, M, Toncian, M, Toncian, T, Tracy, S, Trapananti, A, Tschentscher, T, Tyldesley, M, Vennari, C, Vinci, T, Vogel, S, Volz, T, Vorberger, J, Walsh, J, Wark, J, Willman, J, Wollenweber, L, Zastrau, U, Brambrink, E, Appel, K, Mcmahon, M, Gorman, M. G., McGonegle, D., Smith, R. F., Singh, S., Jenkins, T., McWilliams, R. S., Albertazzi, B., Ali, S. J., Antonelli, L., Armstrong, M. R., Baehtz, C., Ball, O. B., Banerjee, S., Belonoshko, A. B., Benuzzi-Mounaix, A., Bolme, C. A., Bouffetier, V., Briggs, R., Buakor, K., Butcher, T., Di Dio Cafiso, S., Cerantola, V., Chantel, J., Di Cicco, A., Clarke, S., Coleman, A. L., Collier, J., Collins, G. W., Comley, A. J., Coppari, F., Cowan, T. E., Cristoforetti, G., Cynn, H., Descamps, A., Dorchies, F., Duff, M. J., Dwivedi, A., Edwards, C., Eggert, J. H., Errandonea, D., Fiquet, G., Galtier, E., Laso Garcia, A., Ginestet, H., Gizzi, L., Gleason, A., Goede, S., Gonzalez, J. M., Harmand, M., Hartley, N. J., Heighway, P. G., Hernandez-Gomez, C., Higginbotham, A., Höppner, H., Husband, R. J., Hutchinson, T. M., Hwang, H., Lazicki, A. E., Keen, D. A., Kim, J., Koester, P., Konopkova, Z., Kraus, D., Krygier, A., Labate, L., Lee, Y., Liermann, H. -P., Mason, P., Masruri, M., Massani, B., McBride, E. E., McGuire, C., McHardy, J. D., Merkel, S., Morard, G., Nagler, B., Nakatsutsumi, M., Nguyen-Cong, K., Norton, A. -M., Oleynik, I. I., Otzen, C., Ozaki, N., Pandolfi, S., Peake, D. J., Pelka, A., Pereira, K. A., Phillips, J. P., Prescher, C., Preston, T. R., Randolph, L., Ranjan, D., Ravasio, A., Redmer, R., Rips, J., Santamaria-Perez, D., Savage, D. J., Schoelmerich, M., Schwinkendorf, J. -P., Smith, J., Sollier, A., Spear, J., Spindloe, C., Stevenson, M., Strohm, C., Suer, T. -A., Tang, M., Toncian, M., Toncian, T., Tracy, S. J., Trapananti, A., Tschentscher, T., Tyldesley, M., Vennari, C. E., Vinci, T., Vogel, S. C., Volz, T. J., Vorberger, J., Walsh, J. P. S., Wark, J. S., Willman, J. T., Wollenweber, L., Zastrau, U., Brambrink, E., Appel, K., and McMahon, M. I.
- Abstract
X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and ∼ 3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of ∼ 1 % at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.
- Published
- 2024
11. Setup for meV-resolution inelastic X-ray scattering measurements at the Matter in Extreme Conditions Endstation at the LCLS
- Author
-
McBride, E. E., White, T. G., Descamps, A., Fletcher, L. B., Appel, K., Condamine, F., Curry, C. B., Dallari, F., Funk, S., Galtier, E., Gauthier, M., Goede, S., Kim, J. B., Lee, H. J., Ofori-Okai, B. K., Oliver, M., Rigby, A., Schoenwaelder, C., Sun, P., Tschentscher, Th., Witte, B. B. L., Zastrau, U., Gregori, G., Nagler, B., Hastings, J., Glenzer, S. H., and Monaco, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
We describe a setup for performing inelastic X-ray scattering measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source (LCLS). This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ~50 meV over a range of ~500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter, and subsequently measure ion acoustic modes., Comment: Proceedings for High Temperature Plasma Diagnostics
- Published
- 2018
- Full Text
- View/download PDF
12. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures
- Author
-
Hartley, N. J., Vorberger, J., Doppner, T., Cowan, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Rohatsch, K., Saunders, A. M., Schuster, A.‰ K., Sun, P., van Driel, T., and Kraus, D.
- Published
- 2018
13. Atomistic deformation mechanism of silicon under laser-driven shock compression
- Author
-
Pandolfi, Silvia, Brown, S. Brennan, Stubley, P. G., Higginbotham, Andrew, Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Sandberg, R. L., Yang, W., Mao, W. L., Wark, J. S., and Gleason, A. E.
- Published
- 2022
- Full Text
- View/download PDF
14. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion
- Author
-
Kraus, D., Hartley, N. J, Frydrych, S., Schuster, A. K, Rohatsch, K., Rödel, M., Cowan, T. E, Brown, S., Cunningham, E., van Driel, T., Fletcher, L. B, Galtier, E., Gamboa, E. J, Laso Garcia, A., Gericke, D. O, Granados, E., Heimann, P. A, Lee, H. J, MacDonald, M. J, MacKinnon, A. J, McBride, E. E, Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Redmer, R., Saunders, A. M, Schölmerich, M., Schörner, M., Sun, P., Turner, S. J, Zettl, A., Falcone, R. W, Glenzer, S. H, T. Döppner, T., and Vorberger, J.
- Published
- 2018
15. Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn
- Author
-
Gorman, M. G., primary, McGonegle, D., additional, Smith, R. F., additional, Singh, S., additional, Jenkins, T., additional, McWilliams, R. S., additional, Albertazzi, B., additional, Ali, S. J., additional, Antonelli, L., additional, Armstrong, M. R., additional, Baehtz, C., additional, Ball, O. B., additional, Banerjee, S., additional, Belonoshko, A. B., additional, Benuzzi-Mounaix, A., additional, Bolme, C. A., additional, Bouffetier, V., additional, Briggs, R., additional, Buakor, K., additional, Butcher, T., additional, Di Dio Cafiso, S., additional, Cerantola, V., additional, Chantel, J., additional, Di Cicco, A., additional, Clarke, S., additional, Coleman, A. L., additional, Collier, J., additional, Collins, G. W., additional, Comley, A. J., additional, Coppari, F., additional, Cowan, T. E., additional, Cristoforetti, G., additional, Cynn, H., additional, Descamps, A., additional, Dorchies, F., additional, Duff, M. J., additional, Dwivedi, A., additional, Edwards, C., additional, Eggert, J. H., additional, Errandonea, D., additional, Fiquet, G., additional, Galtier, E., additional, Laso Garcia, A., additional, Ginestet, H., additional, Gizzi, L., additional, Gleason, A., additional, Goede, S., additional, Gonzalez, J. M., additional, Harmand, M., additional, Hartley, N. J., additional, Heighway, P. G., additional, Hernandez-Gomez, C., additional, Higginbotham, A., additional, Höppner, H., additional, Husband, R. J., additional, Hutchinson, T. M., additional, Hwang, H., additional, Lazicki, A. E., additional, Keen, D. A., additional, Kim, J., additional, Koester, P., additional, Konopkova, Z., additional, Kraus, D., additional, Krygier, A., additional, Labate, L., additional, Lee, Y., additional, Liermann, H.-P., additional, Mason, P., additional, Masruri, M., additional, Massani, B., additional, McBride, E. E., additional, McGuire, C., additional, McHardy, J. D., additional, Merkel, S., additional, Morard, G., additional, Nagler, B., additional, Nakatsutsumi, M., additional, Nguyen-Cong, K., additional, Norton, A.-M., additional, Oleynik, I. I., additional, Otzen, C., additional, Ozaki, N., additional, Pandolfi, S., additional, Peake, D. J., additional, Pelka, A., additional, Pereira, K. A., additional, Phillips, J. P., additional, Prescher, C., additional, Preston, T. R., additional, Randolph, L., additional, Ranjan, D., additional, Ravasio, A., additional, Redmer, R., additional, Rips, J., additional, Santamaria-Perez, D., additional, Savage, D. J., additional, Schoelmerich, M., additional, Schwinkendorf, J.-P., additional, Smith, J., additional, Sollier, A., additional, Spear, J., additional, Spindloe, C., additional, Stevenson, M., additional, Strohm, C., additional, Suer, T.-A., additional, Tang, M., additional, Toncian, M., additional, Toncian, T., additional, Tracy, S. J., additional, Trapananti, A., additional, Tschentscher, T., additional, Tyldesley, M., additional, Vennari, C. E., additional, Vinci, T., additional, Vogel, S. C., additional, Volz, T. J., additional, Vorberger, J., additional, Walsh, J. P. S., additional, Wark, J. S., additional, Willman, J. T., additional, Wollenweber, L., additional, Zastrau, U., additional, Brambrink, E., additional, Appel, K., additional, and McMahon, M. I., additional
- Published
- 2024
- Full Text
- View/download PDF
16. Radiation and heat transport in divergent shock–bubble interactions
- Author
-
Kurzer-Ogul, K., primary, Haines, B. M., additional, Montgomery, D. S., additional, Pandolfi, S., additional, Sauppe, J. P., additional, Leong, A. F. T., additional, Hodge, D., additional, Kozlowski, P. M., additional, Marchesini, S., additional, Cunningham, E., additional, Galtier, E., additional, Khaghani, D., additional, Lee, H. J., additional, Nagler, B., additional, Sandberg, R. L., additional, Gleason, A. E., additional, Aluie, H., additional, and Shang, J. K., additional
- Published
- 2024
- Full Text
- View/download PDF
17. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
- Author
-
Kraus, D, Vorberger, J, Pak, A, Hartley, NJ, Fletcher, LB, Frydrych, S, Galtier, E, Gamboa, EJ, Gericke, DO, Glenzer, SH, Granados, E, MacDonald, MJ, MacKinnon, AJ, McBride, EE, Nam, I, Neumayer, P, Roth, M, Saunders, AM, Schuster, AK, Sun, P, Van Driel, T, Döppner, T, and Falcone, RW
- Abstract
© 2017 The Author(s). The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades1. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres2, are believed to undergo structural transitions3,4that release hydrogen from deeper layers and may lead to compact stratified cores5-7. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature-pressure regime in which methane first transforms into a mixture of hydrocarbon polymers8, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8)nsamples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus9. Our findings demonstrate the necessity of high pressures for initiating carbon-hydrogen separation3and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments4,8,10. Our results will inform mass-radius relationships of carbon-bearing exoplanets11, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon-hydrogen separation could influence the convective heat transport7.
- Published
- 2017
18. Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate
- Author
-
(0000-0001-6363-1780) Heuser, B., Bergermann, A., Stevenson, M. G., Ranjan, D., He, Z., Lütgert, J., Schumacher, S., Bethkenhagen, M., Descamps, A., Galtier, E., Gleason, A. E., Khaghani, D., Glenn, G. D., Cunningham, E. F., Glenzer, S. H., Hartley, N. J., Hernandez, J.-A., Humphries, O. S., Katagiri, K., Ja Lee, H., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., Thomas May, P., Redmer, R., Schoenwaelder, C., Sueda, K., Yabuuchi, T., Yabashi, M., Lukic, B., Rack, A., Zinta, L. M. V., Vinci, T., Benuzzi-Mounaix, A., Ravasio, A., (0000-0002-6350-4180) Kraus, D., (0000-0001-6363-1780) Heuser, B., Bergermann, A., Stevenson, M. G., Ranjan, D., He, Z., Lütgert, J., Schumacher, S., Bethkenhagen, M., Descamps, A., Galtier, E., Gleason, A. E., Khaghani, D., Glenn, G. D., Cunningham, E. F., Glenzer, S. H., Hartley, N. J., Hernandez, J.-A., Humphries, O. S., Katagiri, K., Ja Lee, H., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., Thomas May, P., Redmer, R., Schoenwaelder, C., Sueda, K., Yabuuchi, T., Yabashi, M., Lukic, B., Rack, A., Zinta, L. M. V., Vinci, T., Benuzzi-Mounaix, A., Ravasio, A., and (0000-0002-6350-4180) Kraus, D.
- Abstract
Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.
- Published
- 2024
19. ACCEPTCARDIO1: Criteria associated with patient willingness to participate in biomedical research in cardiology
- Author
-
Soltani, S., primary, Morand, O., additional, Galtier, E., additional, Desmoulins, G., additional, Cardeur, L., additional, Faucanie, M., additional, Molinari, N., additional, Vidal, C., additional, Vachier, I., additional, Bourdin, A., additional, Delbaere, Q., additional, Leclercq, F., additional, Pasquié, J.-L., additional, and Roubille, F., additional
- Published
- 2024
- Full Text
- View/download PDF
20. Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering
- Author
-
Zastrau, U, Gamboa, EJ, Kraus, D, Benage, JF, Drake, RP, Efthimion, P, Falk, K, Falcone, RW, Fletcher, LB, Galtier, E, Gauthier, M, Granados, E, Hastings, JB, Heimann, P, Hill, K, Keiter, PA, Lu, J, MacDonald, MJ, Montgomery, DS, Nagler, B, Pablant, N, Schropp, A, Tobias, B, Gericke, DO, Glenzer, SH, and Lee, HJ
- Subjects
Physical Sciences ,Engineering ,Technology ,Applied Physics - Abstract
We present results from time-resolved X-ray imaging and inelastic scattering on collective excitations. These data are then employed to infer the mass density evolution within laser-driven shock waves. In our experiments, thin carbon foils are first strongly compressed and then driven into a dense state by counter-propagating shock waves. The different measurements agree that the graphite sample is about twofold compressed when the shock waves collide, and a sharp increase in forward scattering indicates disassembly of the sample 1 ns thereafter. We can benchmark hydrodynamics simulations of colliding shock waves by the X-ray scattering methods employed.
- Published
- 2016
21. Melting of iron close to Earth's inner core boundary conditions and beyond
- Author
-
Harmand, M., Ravasio, A., Mazevet, S., Bouchet, J., Denoeud, A., Dorchies, F., Feng, Y., Fourment, C., Galtier, E ., Gaudin, J., Guyot, F., Kodama, R., Koenig, M., Lee, H. J., Miyanishi, K., Morard, G., Musella, R., Nagler, B., Nakatsutsumi, M., Ozaki, N., Recoules, V., Toleikis, S., Vinci, T., Zastrau, U., Zhu, D., and Benuzzi-Mounaix, A.
- Subjects
Physics - Geophysics ,Condensed Matter - Materials Science - Abstract
Several important geophysical features such as heat flux at the Core-Mantle Boundary or geodynamo production are intimately related with the temperature profile in the Earth's core. However, measuring the melting curve of iron at conditions corresponding to the Earth inner core boundary under pressure of 330 GPa has eluded scientists for several decades. Significant discrepancies in previously reported iron melting temperatures at high pressure have called into question the validity of dynamic measurements. We report measurements made with a novel approach using X-ray absorption spectroscopy using an X-ray free electron laser source coupled to a laser shock experiment. We determine the state of iron along the shock Hugoniot up to 420 GPa (+/- 50) and 10800 K (+/- 1390) and find an upper boundary for the melting curve of iron by detecting solid iron at 130 GPa and molten at 260, 380 and 420 GPa along the shock Hugoniot. Our result establishes unambiguous agreement between dynamic measurement and recent extrapolations from static data thus resolving the long-standing controversy over the reliability of using dynamic compression to study the melting of iron at conditions close to the Earth's inner core boundary and beyond., Comment: 9 pages 3 figures
- Published
- 2014
22. Carbon clusters formed from shocked benzene
- Author
-
Dattelbaum, D. M., Watkins, E. B., Firestone, M. A., Huber, R. C., Gustavsen, R. L., Ringstrand, B. S., Coe, J. D., Podlesak, D., Gleason, A. E., Lee, H. J., Galtier, E., and Sandberg, R. L.
- Published
- 2021
- Full Text
- View/download PDF
23. Phase transition lowering in dynamically compressed silicon
- Author
-
McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H. J., Liermann, H.-P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R. F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J. S., and Higginbotham, A.
- Published
- 2019
- Full Text
- View/download PDF
24. Reply to: Reconsidering X-ray plasmons
- Author
-
Fletcher, L. B., Lee, H. J., Döppner, T., Galtier, E., Nagler, B., Heimann, P., Fortmann, C., LePape, S., Ma, T., Millot, M., Pak, A., Turnbull, D., Chapman, D. A., Gericke, D. O., Vorberger, J., White, T., Gregori, G., Wei, M., Barbrel, B., Falcone, R. W., Kao, C.-C., Nuhn, H., Welch, J., Zastrau, U., Neumayer, P., Hastings, J. B., and Glenzer, S. H.
- Published
- 2019
- Full Text
- View/download PDF
25. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons
- Author
-
Kraus, D., primary, Vorberger, J., additional, Hartley, N. J., additional, Lütgert, J., additional, Rödel, M., additional, Chekrygina, D., additional, Döppner, T., additional, van Driel, T., additional, Falcone, R. W., additional, Fletcher, L. B., additional, Frydrych, S., additional, Galtier, E., additional, Gericke, D. O., additional, Glenzer, S. H., additional, Granados, E., additional, Inubushi, Y., additional, Kamimura, N., additional, Katagiri, K., additional, MacDonald, M. J., additional, MacKinnon, A. J., additional, Matsuoka, T., additional, Miyanishi, K., additional, McBride, E. E., additional, Nam, I., additional, Neumayer, P., additional, Ozaki, N., additional, Pak, A., additional, Ravasio, A., additional, Saunders, A. M., additional, Schuster, A. K., additional, Stevenson, M. G., additional, Sueda, K., additional, Sun, P., additional, Togashi, T., additional, Voigt, K., additional, Yabashi, M., additional, and Yabuuchi, T., additional
- Published
- 2023
- Full Text
- View/download PDF
26. High deuteron and neutron yields from the interaction of a petawatt laser with a cryogenic deuterium jet
- Author
-
Jiao, X., Curry, C. B., Gauthier, M., Chou, H.-G. J., Fiuza, F., Kim, J. B., Phan, D. D., McCary, E., Galtier, E. C., Dyer, G. M., Ofori-Okai, B. K., Labun, L., Labun, O. Z., Schoenwaelder, C., Roycroft, R., Tiwari, G., Glenn, G. D., Treffert, F., Glenzer, S. H., Hegelich, B. M., Jiao, X., Curry, C. B., Gauthier, M., Chou, H.-G. J., Fiuza, F., Kim, J. B., Phan, D. D., McCary, E., Galtier, E. C., Dyer, G. M., Ofori-Okai, B. K., Labun, L., Labun, O. Z., Schoenwaelder, C., Roycroft, R., Tiwari, G., Glenn, G. D., Treffert, F., Glenzer, S. H., and Hegelich, B. M.
- Abstract
A compact high-flux, short-pulse neutron source would have applications from nuclear astrophysics to cancer therapy. Laser-driven neutron sources can achieve fluxes much higher than spallation and reactor neutron sources by reducing the volume and time in which the neutron-producing reactions occur by orders of magnitude. We report progress towards an efficient laser-driven neutron source in experiments with a cryogenic deuterium jet on the Texas Petawatt laser. Neutrons were produced both by laser-accelerated multi-MeV deuterons colliding with Be and mixed metallic catchers and by d (d,n)³He fusion reactions within the jet. We observed deuteron yields of 10¹³/shot in quasi-Maxwellian distributions carrying ∼ 8 − 10 % of the input laser energy. We obtained neutron yields greater than 10¹⁰/shot and found indications of a deuteron-deuteron fusion neutron source with high peak flux (> 10²² cm⁻² s⁻¹). The estimated fusion neutron yield in our experiment is one order of magnitude higher than any previous laser-induced dd fusion reaction. Though many technical challenges will have to be overcome to convert this proof-of-principle experiment into a consistent ultra-high flux neutron source, the neutron fluxes achieved here suggest laser-driven neutron sources can support laboratory study of the rapid neutron-capture process, which is otherwise thought to occur only in astrophysical sites such as core-collapse supernova, and binary neutron star mergers.
- Published
- 2023
27. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons
- Author
-
(0000-0002-6350-4180) Kraus, D., (0000-0001-5926-9192) Vorberger, J., Hartley, N. J., Lütgert, J., Rödel, M., Chekrygina, D., Döppner, T., Driel, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gericke, D. O., Glenzer, S. H., Granados, E., Inubushi, Y., Kamimura, N., Katagiri, K., Macdonald, M. J., Mackinnon, A. J., Matsuoka, T., Miyanishi, K., McBride, E. E., Nam, I., Neumayer, P., Ozaki, N., Pak, A., Ravasio, A., Saunders, A. M., Schuster, A. K., Stevenson, M. G., Sueda, K., Sun, P., Togashi, T., Voigt, K., Yabashi, M., Yabuuchi, T., (0000-0002-6350-4180) Kraus, D., (0000-0001-5926-9192) Vorberger, J., Hartley, N. J., Lütgert, J., Rödel, M., Chekrygina, D., Döppner, T., Driel, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gericke, D. O., Glenzer, S. H., Granados, E., Inubushi, Y., Kamimura, N., Katagiri, K., Macdonald, M. J., Mackinnon, A. J., Matsuoka, T., Miyanishi, K., McBride, E. E., Nam, I., Neumayer, P., Ozaki, N., Pak, A., Ravasio, A., Saunders, A. M., Schuster, A. K., Stevenson, M. G., Sueda, K., Sun, P., Togashi, T., Voigt, K., Yabashi, M., and Yabuuchi, T.
- Abstract
We demonstrate a significantly simplified experimental approach for investigating liquid metallic hydrogen, which is crucial to understand the internal structure and evolution of giant planets. Plastic samples were shockcompressed and then probed by short pulses of X-rays generated by free electron lasers. By comparison with ab initio simulations, we provide indirect evidence for the creation of elemental hydrogen in shock-compressed plastics at ∼150GPa and ∼5,000K and thus in a regime where hydrogen is predicted to be metallic. Being the most common form of condensed matter in our solar system, and ostensibly the simplest of all elements, hydrogen is the model case for many theoretical studies and we provide a new possibility to benchmark models for conditions with extreme pressures and temperatures. Moreover, this approach will also allow to probe the chemical behavior of metallic hydrogen in mixture with other elements, which, besides its importance for planetary physics, may open up promising pathways for the synthesis of new materials.
- Published
- 2023
28. Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
- Author
-
Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., and Kraus, D.
- Published
- 2019
- Full Text
- View/download PDF
29. High deuteron and neutron yields from the interaction of a petawatt laser with a cryogenic deuterium jet
- Author
-
Jiao, X., primary, Curry, C. B., additional, Gauthier, M., additional, Chou, H.-G. J., additional, Fiuza, F., additional, Kim, J. B., additional, Phan, D. D., additional, McCary, E., additional, Galtier, E. C., additional, Dyer, G. M., additional, Ofori-Okai, B. K., additional, Labun, L., additional, Labun, O. Z., additional, Schoenwaelder, C., additional, Roycroft, R., additional, Tiwari, G., additional, Glenn, G. D., additional, Treffert, F., additional, Glenzer, S. H., additional, and Hegelich, B. M., additional
- Published
- 2023
- Full Text
- View/download PDF
30. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth
- Author
-
Gorman, M. G., Coleman, A. L., Briggs, R., McWilliams, R. S., McGonegle, D., Bolme, C. A., Gleason, A. E., Galtier, E., Lee, H. J., Granados, E., Śliwa, M., Sanloup, C., Rothman, S., Fratanduono, D. E., Smith, R. F., Collins, G. W., Eggert, J. H., Wark, J. S., and McMahon, M. I.
- Published
- 2018
- Full Text
- View/download PDF
31. Electron-Ion Temperature Relaxation in Warm Dense Hydrogen Observed With Picosecond Resolved X-Ray Scattering
- Author
-
Fletcher, L. B., Vorberger, J., Schumaker, W., Ruyer, C., Goede, S., Galtier, E., Zastrau, U., Alves, E. P., Baalrud, S. D., Baggott, R. A., Barbrel, B., Chen, Z., Döppner, T., Gauthier, M., Granados, E., Kim, J. B., Kraus, D., Lee, H. J., Macdonald, M. J., Mishra, R., Pelka, A., Ravasio, A., Roedel, C., Fry, A. R., Redmer, R., Fiuza, F., Gericke, D. O., and Glenzer, S. H.
- Subjects
warm dense matter ,relaxation ,Materials Science (miscellaneous) ,x-ray scattering ,Biophysics ,General Physics and Astronomy ,hydrogen jet ,Physical and Theoretical Chemistry ,femtosecond ,Mathematical Physics - Abstract
Angularly resolved X-ray scattering measurements from fs-laser heated hydrogen have been used to determine the equilibration of electron and ion temperatures in the warm dense matter regime. The relaxation of rapidly heated cryogenic hydrogen is visualized using 5.5 keV X-ray pulses from the Linac Coherent Light (LCLS) source in a 1 Hz repetition rate pump-probe setting. We demonstrate that the electron-ion energy transfer is faster than quasi-classical Landau-Spitzer models that use ad hoc cutoffs in the Coulomb logarithm.
- Published
- 2022
32. Diamond formation kinetics in shock-compressed C-H-O samples recorded by small-angle X-ray scattering and X-ray diffraction
- Author
-
He, Z., Rödel, M., Lütgert, J., Bergermann, A., Bethkenhagen, M., Chekrygina, D., (0000-0002-5845-000X) Cowan, T., Descamps, A., French, M., Galtier, E., Gleason, A. E., Glenn, G. D., Glenzer, S. H., Inubushi, Y., (0000-0002-6268-2436) Hartley, N., Hernandez, J.-A., Heuser, B., (0000-0001-6748-0422) Humphries, O. S., Kamimura, N., Katagiri, K., Khaghani, D., Ja Lee, H., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., (0000-0002-8641-4794) Ranjan, D., Redmer, R., Schoenwaelder, C., (0000-0001-5489-5952) Schuster, A., Stevenson, M. G., Sueda, K., Togashi, T., Vinci, T., (0000-0001-8090-2626) Voigt, K., (0000-0001-5926-9192) Vorberger, J., Yabashi, M., Yabuuchi, T., Zinta, L. M. V., Ravasio, A., (0000-0002-6350-4180) Kraus, D., He, Z., Rödel, M., Lütgert, J., Bergermann, A., Bethkenhagen, M., Chekrygina, D., (0000-0002-5845-000X) Cowan, T., Descamps, A., French, M., Galtier, E., Gleason, A. E., Glenn, G. D., Glenzer, S. H., Inubushi, Y., (0000-0002-6268-2436) Hartley, N., Hernandez, J.-A., Heuser, B., (0000-0001-6748-0422) Humphries, O. S., Kamimura, N., Katagiri, K., Khaghani, D., Ja Lee, H., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., (0000-0002-8641-4794) Ranjan, D., Redmer, R., Schoenwaelder, C., (0000-0001-5489-5952) Schuster, A., Stevenson, M. G., Sueda, K., Togashi, T., Vinci, T., (0000-0001-8090-2626) Voigt, K., (0000-0001-5926-9192) Vorberger, J., Yabashi, M., Yabuuchi, T., Zinta, L. M. V., Ravasio, A., and (0000-0002-6350-4180) Kraus, D.
- Abstract
Extreme conditions inside ice giants like Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C-H and H2O systems, respectively. Here we investigate a stoichiometric mixture of C and H2O by shock-compressing PET plastics and performing in situ X-ray probing. We observe diamond formation at pressures between 72±7 GPa and 125±13 GPa at temperatures ranging from ~3500 K to ~6000 K. Combining X-ray diffraction and small angle X-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets’ magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock-compression of cheap PET plastics.
- Published
- 2022
33. Data publication: Electron-ion temperature relaxation in warm dense hydrogen observed with picosecond resolved X-ray scattering
- Author
-
Fletcher, L. B., (0000-0001-5926-9192) Vorberger, J., Schumaker, W., Ruyer, C., Goede, S., Galtier, E., Zastrau, U., Alves, E. P., Baalrud, S. D., Baggott, R. A., Barbrel, B., Chen, Z., Döppner, T., Gauthier, M., Granados, E., Kim, J. B., (0000-0002-6350-4180) Kraus, D., Lee, H. J., Macdonald, M. J., Mishra, R., Pelka, A., Ravasio, A., Roedel, C., Fry, A. R., Redmer, R., Fiuza, F., Gericke, D. O., Glenzer, S. H., Fletcher, L. B., (0000-0001-5926-9192) Vorberger, J., Schumaker, W., Ruyer, C., Goede, S., Galtier, E., Zastrau, U., Alves, E. P., Baalrud, S. D., Baggott, R. A., Barbrel, B., Chen, Z., Döppner, T., Gauthier, M., Granados, E., Kim, J. B., (0000-0002-6350-4180) Kraus, D., Lee, H. J., Macdonald, M. J., Mishra, R., Pelka, A., Ravasio, A., Roedel, C., Fry, A. R., Redmer, R., Fiuza, F., Gericke, D. O., and Glenzer, S. H.
- Abstract
DFT-MD and HNC data for cryogenic hydrogen and for two-temperature hydrogen
- Published
- 2022
34. The Matter in Extreme Conditions Upgrade (MEC-U) Project
- Author
-
Dyer, G. M., primary, Galtier, E. C., additional, Curry, C. B., additional, Cunningham, E., additional, Fletcher, L. B., additional, and Fry, A. R., additional
- Published
- 2022
- Full Text
- View/download PDF
35. Femtosecond Visualization of hcp-Iron Strength and Plasticity under Shock Compression
- Author
-
Merkel, S. (Sébastien), Hok, S. (Sovanndara), Bolme, C. (Cynthia), Rittman, D. (Dylan), Ramos, K.J. (Kyle James), Morrow, B. (Benjamin), Lee, H.J. (Hae Ja), Nagler, B. (Bob), Galtier, E. (Eric), Granados, E. (Eduardo), Hashim, A. (Akel), Mao, W.L. (Wendy L), Gleason, A.E. (Arianna E), Université de Lille, CNRS, INRA, ENSCL, Unité Matériaux et Transformations (UMET) - UMR 8207, Stanford EARTH, Los Alamos National Laboratory [LANL], and Stanford Synchrotron Radiation Lightsource [SSRL SLAC]
- Abstract
Iron is a key constituent of planets and an important technological material. Here, we combine in situ ultrafast x-ray diffraction with laser-induced shock compression experiments on Fe up to 187(10) GPa and 4070(285) K at 10^8 s−1 in strain rate to study the plasticity of hexagonal-close-packed (hcp)-Fe under extreme loading states. {10-12} deformation twinning controls the polycrystalline Fe microstructures and occurs within 1 ns, highlighting the fundamental role of twinning in hcp polycrystals deformation at high strain rates. The measured deviatoric stress initially increases to a significant elastic overshoot before the onset of flow, attributed to a slower defect nucleation and mobility. The initial yield strength of materials deformed at high strain rates is thus several times larger than their longer-term flow strength. These observations illustrate how time-resolved ultrafast studies can reveal distinctive plastic behavior in materials under extreme environments. 127;20
- Published
- 2021
36. Aluminium Lyman-beta satellite emission in non-Maxwellian dense laser produced plasmas
- Author
-
Rosmej, F.B., Schott, R., Galtier, E., Angelo, P., Renner, O., Khattak, F.Y., Lisitsa, V.S., and Riley, D.
- Published
- 2009
- Full Text
- View/download PDF
37. Probing ultrafast laser plasma processes inside solids with resonant small angle X-ray scattering
- Author
-
Gaus, L., Bischoff, L., Bussmann, M., Cunningham, E., Curry, C. B., E, Juncheng, Galtier, E., Gauthier, M., Laso García, A., Garten, M., Glenzer, S., Grenzer, J., Gutt, C., Hartley, N., Huang, L., Hübner, U., Kraus, D., Lee, H. J., McBride, E. E., Metzkes-Ng, J., Nagler, B., Nakatsutsumi, M., Nikl, J., Ota, M., Pelka, A., Prencipe, I., Randolph, L., Rödel, M., Sakawa, Y., Schlenvoigt, H.-P., Smid, M., Treffert, F., Voigt, K., Zeil, K., Cowan, T., Schramm, U., and Kluge, T.
- Abstract
Extreme states of matter exist throughout the universe e.g. inside planetary cores, stars or astrophysical jets. Such conditions can be generated in the laboratory in the interaction of powerful lasers with solids. Yet, the measurement of the subsequent plasma dynamics with regard to density, temperature and ionization is a major experimental challenge. However, ultra-short X-ray pulses provided by X-ray free electron lasers (XFELs) allow for dedicated studies, which are highly relevant to study laboratory astrophysics, laser-fusion research or laser-plasma-based particle acceleration. Here, we report on experiments that employ a novel ultrafast method, which allows to simultaneously access temperature, ionization state and nanometer scale expansion dynamics in high-intensity laser-driven solid-density plasmas with a single X-ray detector. Using this method, we gain access to the expansion dynamics of a buried layer in compound samples, and we measure opacity changes arising from bound-bound resonance transitions in highly ionized copper. The presence of highly ionized copper leads to a temperature estimate of at least 2 million Kelvin already after the first 100 femtoseconds following the high-intensity laser irradiation. More specifically, we make use of asymmetries in small-angle X-ray scattering (SAXS) patterns, which arise from different spatial distributions of absorption and scattering cross sections in nanostructured grating samples when we tune an XFEL to atomic resonant energies of copper. Thereby, changes in asymmetry can be connected with the evolution of the plasma expansion and ionization dynamics. The potential of XFEL-based resonant SAXS to obtain three-dimensional ultrafast, nanoscopic information on density and opacity may offer a unique path for the characterization of dynamic processes in High Energy Density plasmas.
- Published
- 2021
38. Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures
- Author
-
Lütgert, B. J., Vorberger, J., Hartley, N., Voigt, K., Rödel, M., Schuster, A., Brown, S., Cowan, T., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Galtier, E., Glenzer, S. H., Laso García, A., Gericke, D. O., Heimann, P. A., Lee, H. J., Mcbride, E. E., Pelka, A., Prencipe, I., Ravasio, A., Saunders, A. M., Schölmerich, M., SchÖrner, M., Sun, P., and Kraus, D.
- Abstract
We present structure measurements of biaxially orientated polyethylene terephthalate (PET, (C10H8O4)n , also called mylar) shock-compressed to (155+/-20) GPa and (6000+/-1000) K using in situ X-ray diffraction. Comparing to density functional theory molecular dynamics simulations, we find a highly correlated liquid that exhibits a temperature signficantly lower than predicted by some equation-of-state tables, which underlines the influence of complex chemical interactions in this regime. Indeed, at the inferred temperature and pressure, formation of nanodiamonds may be expected as recently observed in polystyrene at similar conditions. While some hints of diamond formation from PET are visible in the diffraction data, the strong liquid correlations prevent a conclusive statement as to whether diamonds are formed inside the sample volume.
- Published
- 2021
39. Dataset: Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures
- Author
-
Lütgert, B. J., Vorberger, J., Hartley, N., Voigt, K., Rödel, M., Schuster, A., Benuzzi-Mounaix, A., Brown, S., Cowan, T., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Galtier, E., Glenzer, S. H., Laso García, A., Gericke, D. O., Heimann, P. A., Lee, H. J., McBride, E. E., Pelka, A., Prencipe, I., Saunders, A. M., Schölmerich, M., Schörner, M., Sun, P., Vinci, T., Ravasio, A., and Kraus, D.
- Abstract
This repository contains raw-data related to our publication "Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures". The XRD data in the "LCLS" folder is accompanied with a "calibration.poni" file that provides information about the experiment's geometry and can be used in pyFAI (GitHub page) or Dioptas (GitHub page) to integrate the two-dimensional data azimuthally. Integrated XRD data after background-subtraction and filter-corrections is presented in Fig. 2 and 3 of the manuscript while 2D data of run 215 is used in Fig. 1. The "shotlist.csv" file contains information about the relative X-ray to drive-laser timing, shot-type and X-ray energy for the individual events. VISAR, SOP and reflectivity measurements can be found in the "LULI" directory. 2ω-VISAR and SOP datasets of shot 08 are displayed as inserts in Fig. 5 (the first after performing a ghost-fringe subtraction). "shotlist.csv" provides additional parameters. The DFTMD folder contains the results of our density functional theory molecular dynamics simulation. In the "XRD" subdirectory, "wrofk_mylar_chomd*.dat" files can be found in which the quantities to calculate the lineouts in Fig. 3 and 4 are saved for given temperatures, pressures and densities. The header of those files is given in "header.txt" and additional information about the conditions and settings for individual calculations can be obtained from "param_mylar_md.txt". The dataset for the Hugoniot curve from our DFT-MD equation-of-state (which is plotted in Fig. 5) is provided in the "Hugoniot" sub-folder.
- Published
- 2021
40. Resonant SAXS data used in publication: 'Probing ultrafast laser plasma processes inside solids with resonant small angle X-ray scattering'
- Author
-
Gaus, L., Bischoff, L., Bussmann, M., Cunningham, E., Curry, C. B., E, Juncheng, Galtier, E., Gauthier, M., Laso García, A., Garten, M., Glenzer, S., Grenzer, J., Gutt, C., Hartley, N., Huang, L., Hübner, U., Kraus, D., Lee, H. J., McBride, E. E., Metzkes-Ng, J., Nagler, B., Nakatsutsumi, M., Nikl, J., Ota, M., Pelka, A., Prencipe, I., Randolph, L., Rödel, M., Sakawa, Y., Schlenvoigt, H.-P., Smid, M., Treffert, F., Voigt, K., Zeil, K., Cowan, T., Schramm, U., and Kluge, T.
- Abstract
Resonant Small-angle x-ray scattering raw data obtained in measurements at MEC at LCLS and evalutation of the asymmetry in the scattering patterns. The data set is structured in case 1/Si-Cu-compound targets and case 2/Cu-only-targets as presented in the publication for on- and off-resonant XFEL probe energies.
- Published
- 2021
41. Probing ultrafast laser plasma processes inside solids with resonant small angle X-ray scattering
- Author
-
(0000-0002-6914-4083) Gaus, L., (0000-0003-3968-7498) Bischoff, L., (0000-0002-8258-3881) Bussmann, M., (0000-0002-0976-4416) Cunningham, E., (0000-0001-8756-181X) Curry, C. B., E, Juncheng, Galtier, E., (0000-0001-6608-9325) Gauthier, M., (0000-0002-7671-0901) Laso García, A., (0000-0001-6994-2475) Garten, M., (0000-0001-9112-0558) Glenzer, S., Grenzer, J., Gutt, C., Hartley, N., (0000-0003-1184-2097) Huang, L., Hübner, U., (0000-0002-6350-4180) Kraus, D., Lee, H. J., McBride, E. E., (0000-0002-9556-0662) Metzkes-Ng, J., Nagler, B., (0000-0003-0868-4745) Nakatsutsumi, M., (0000-0003-0131-0628) Nikl, J., Ota, M., Pelka, A., (0000-0003-0931-1350) Prencipe, I., Randolph, L., Rödel, M., Sakawa, Y., (0000-0003-4400-1315) Schlenvoigt, H.-P., (0000-0002-7162-7500) Smid, M., (0000-0003-1277-4241) Treffert, F., (0000-0001-8090-2626) Voigt, K., (0000-0003-3926-409X) Zeil, K., (0000-0002-5845-000X) Cowan, T., (0000-0003-0390-7671) Schramm, U., (0000-0003-4861-5584) Kluge, T., (0000-0002-6914-4083) Gaus, L., (0000-0003-3968-7498) Bischoff, L., (0000-0002-8258-3881) Bussmann, M., (0000-0002-0976-4416) Cunningham, E., (0000-0001-8756-181X) Curry, C. B., E, Juncheng, Galtier, E., (0000-0001-6608-9325) Gauthier, M., (0000-0002-7671-0901) Laso García, A., (0000-0001-6994-2475) Garten, M., (0000-0001-9112-0558) Glenzer, S., Grenzer, J., Gutt, C., Hartley, N., (0000-0003-1184-2097) Huang, L., Hübner, U., (0000-0002-6350-4180) Kraus, D., Lee, H. J., McBride, E. E., (0000-0002-9556-0662) Metzkes-Ng, J., Nagler, B., (0000-0003-0868-4745) Nakatsutsumi, M., (0000-0003-0131-0628) Nikl, J., Ota, M., Pelka, A., (0000-0003-0931-1350) Prencipe, I., Randolph, L., Rödel, M., Sakawa, Y., (0000-0003-4400-1315) Schlenvoigt, H.-P., (0000-0002-7162-7500) Smid, M., (0000-0003-1277-4241) Treffert, F., (0000-0001-8090-2626) Voigt, K., (0000-0003-3926-409X) Zeil, K., (0000-0002-5845-000X) Cowan, T., (0000-0003-0390-7671) Schramm, U., and (0000-0003-4861-5584) Kluge, T.
- Abstract
Extreme states of matter exist throughout the universe e.g. inside planetary cores, stars or astrophysical jets. Such conditions can be generated in the laboratory in the interaction of powerful lasers with solids. Yet, the measurement of the subsequent plasma dynamics with regard to density, temperature and ionization is a major experimental challenge. However, ultra-short X-ray pulses provided by X-ray free electron lasers (XFELs) allow for dedicated studies, which are highly relevant to study laboratory astrophysics, laser-fusion research or laser-plasma-based particle acceleration. Here, we report on experiments that employ a novel ultrafast method, which allows to simultaneously access temperature, ionization state and nanometer scale expansion dynamics in high-intensity laser-driven solid-density plasmas with a single X-ray detector. Using this method, we gain access to the expansion dynamics of a buried layer in compound samples, and we measure opacity changes arising from bound-bound resonance transitions in highly ionized copper. The presence of highly ionized copper leads to a temperature estimate of at least 2 million Kelvin already after the first 100 femtoseconds following the high-intensity laser irradiation. More specifically, we make use of asymmetries in small-angle X-ray scattering (SAXS) patterns, which arise from different spatial distributions of absorption and scattering cross sections in nanostructured grating samples when we tune an XFEL to atomic resonant energies of copper. Thereby, changes in asymmetry can be connected with the evolution of the plasma expansion and ionization dynamics. The potential of XFEL-based resonant SAXS to obtain three-dimensional ultrafast, nanoscopic information on density and opacity may offer a unique path for the characterization of dynamic processes in High Energy Density plasmas.
- Published
- 2021
42. Resonant SAXS data used in publication: 'Probing ultrafast laser plasma processes inside solids with resonant small angle X-ray scattering'
- Author
-
(0000-0002-6914-4083) Gaus, L., (0000-0003-3968-7498) Bischoff, L., (0000-0002-8258-3881) Bussmann, M., (0000-0002-0976-4416) Cunningham, E., (0000-0001-8756-181X) Curry, C. B., E, Juncheng, Galtier, E., (0000-0001-6608-9325) Gauthier, M., (0000-0002-7671-0901) Laso García, A., (0000-0001-6994-2475) Garten, M., (0000-0001-9112-0558) Glenzer, S., Grenzer, J., Gutt, C., (0000-0002-6268-2436) Hartley, N., (0000-0003-1184-2097) Huang, L., Hübner, U., (0000-0002-6350-4180) Kraus, D., Lee, H. J., McBride, E. E., (0000-0002-9556-0662) Metzkes-Ng, J., Nagler, B., (0000-0003-0868-4745) Nakatsutsumi, M., (0000-0003-0131-0628) Nikl, J., Ota, M., Pelka, A., (0000-0003-0931-1350) Prencipe, I., Randolph, L., Rödel, M., Sakawa, Y., (0000-0003-4400-1315) Schlenvoigt, H.-P., (0000-0002-7162-7500) Smid, M., (0000-0003-1277-4241) Treffert, F., (0000-0001-8090-2626) Voigt, K., (0000-0003-3926-409X) Zeil, K., (0000-0002-5845-000X) Cowan, T., (0000-0003-0390-7671) Schramm, U., (0000-0003-4861-5584) Kluge, T., (0000-0002-6914-4083) Gaus, L., (0000-0003-3968-7498) Bischoff, L., (0000-0002-8258-3881) Bussmann, M., (0000-0002-0976-4416) Cunningham, E., (0000-0001-8756-181X) Curry, C. B., E, Juncheng, Galtier, E., (0000-0001-6608-9325) Gauthier, M., (0000-0002-7671-0901) Laso García, A., (0000-0001-6994-2475) Garten, M., (0000-0001-9112-0558) Glenzer, S., Grenzer, J., Gutt, C., (0000-0002-6268-2436) Hartley, N., (0000-0003-1184-2097) Huang, L., Hübner, U., (0000-0002-6350-4180) Kraus, D., Lee, H. J., McBride, E. E., (0000-0002-9556-0662) Metzkes-Ng, J., Nagler, B., (0000-0003-0868-4745) Nakatsutsumi, M., (0000-0003-0131-0628) Nikl, J., Ota, M., Pelka, A., (0000-0003-0931-1350) Prencipe, I., Randolph, L., Rödel, M., Sakawa, Y., (0000-0003-4400-1315) Schlenvoigt, H.-P., (0000-0002-7162-7500) Smid, M., (0000-0003-1277-4241) Treffert, F., (0000-0001-8090-2626) Voigt, K., (0000-0003-3926-409X) Zeil, K., (0000-0002-5845-000X) Cowan, T., (0000-0003-0390-7671) Schramm, U., and (0000-0003-4861-5584) Kluge, T.
- Abstract
Resonant Small-angle x-ray scattering raw data obtained in measurements at MEC at LCLS and evalutation of the asymmetry in the scattering patterns. The data set is structured in case 1/Si-Cu-compound targets and case 2/Cu-only-targets as presented in the publication for on- and off-resonant XFEL probe energies.
- Published
- 2021
43. Dataset: Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures
- Author
-
(0000-0002-2593-573X) Lütgert, B. J., (0000-0001-5926-9192) Vorberger, J., (0000-0002-6268-2436) Hartley, N., (0000-0001-8090-2626) Voigt, K., Rödel, M., (0000-0001-5489-5952) Schuster, A., Benuzzi-Mounaix, A., Brown, S., (0000-0002-5845-000X) Cowan, T., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Galtier, E., Glenzer, S. H., (0000-0002-7671-0901) Laso García, A., Gericke, D. O., Heimann, P. A., Lee, H. J., McBride, E. E., Pelka, A., (0000-0003-0931-1350) Prencipe, I., Saunders, A. M., Schölmerich, M., Schörner, M., Sun, P., Vinci, T., Ravasio, A., (0000-0002-6350-4180) Kraus, D., (0000-0002-2593-573X) Lütgert, B. J., (0000-0001-5926-9192) Vorberger, J., (0000-0002-6268-2436) Hartley, N., (0000-0001-8090-2626) Voigt, K., Rödel, M., (0000-0001-5489-5952) Schuster, A., Benuzzi-Mounaix, A., Brown, S., (0000-0002-5845-000X) Cowan, T., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Galtier, E., Glenzer, S. H., (0000-0002-7671-0901) Laso García, A., Gericke, D. O., Heimann, P. A., Lee, H. J., McBride, E. E., Pelka, A., (0000-0003-0931-1350) Prencipe, I., Saunders, A. M., Schölmerich, M., Schörner, M., Sun, P., Vinci, T., Ravasio, A., and (0000-0002-6350-4180) Kraus, D.
- Abstract
This repository contains raw-data related to our publication "Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures". The XRD data in the "LCLS" folder is accompanied with a "calibration.poni" file that provides information about the experiment's geometry and can be used in GitHub page) to integrate the two-dimensional data azimuthally. Integrated XRD data after background-subtraction and filter-corrections is presented in Fig. 2 and 3 of the manuscript while 2D data of run 215 is used in Fig. 1. The "shotlist.csv" file contains information about the relative X-ray to drive-laser timing, shot-type and X-ray energy for the individual events. VISAR, SOP and reflectivity measurements can be found in the "LULI" directory. 2ω-VISAR and SOP datasets of shot 08 are displayed as inserts in Fig. 5 (the first after performing a ghost-fringe subtraction). "shotlist.csv" provides additional parameters. The DFTMD folder contains the results of our density functional theory molecular dynamics simulation. In the "XRD" subdirectory, "wrofk_mylar_chomd*.dat" files can be found in which the quantities to calculate the lineouts in Fig. 3 and 4 are saved for given temperatures, pressures and densities. The header of those files is given in "header.txt" and additional information about the conditions and settings for individual calculations can be obtained from "param_mylar_md.txt". The dataset for the Hugoniot curve from our DFT-MD equation-of-state (which is plotted in Fig. 5) is provided in the "Hugoniot" sub-folder.
- Published
- 2021
44. Erratum: Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
- Author
-
Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R. G., Eggert, J. H., Fratanduono, D. E., Collins, G. W., Sandberg, R., Yang, W., and Mao, W. L.
- Published
- 2015
- Full Text
- View/download PDF
45. Using simultaneous x-ray diffraction and velocity interferometry to determine material strength in shock-compressed diamond
- Author
-
Macdonald, M. J., Mcbride, E. E., Galtier, E., Gauthier, M., Granados, E., Kraus, D., Krygier, A., Levitan, A. L., Mackinnon, A. J., Nam, I., Schumaker, W., Sun, P., Driel, T. B., Vorberger, J., Zhou, X., Drake, R. P., Glenzer, S. H., and Fletcher, L. B.
- Subjects
Condensed Matter::Materials Science ,high pressure ,diamond ,diffraction ,shock ,strength ,Hugoniot - Abstract
We determine the strength of laser shock-compressed polycrystalline diamond at stresses above the Hugoniot elastic limit using a novel technique combining x-ray diffraction from the Linac Coherent Light Source with velocity interferometry. X-ray diffraction is used to measure lattice strains and velocity interferometry is used to infer shock and particle velocities. These measurements, combined with density-dependent elastic constants calculated using density functional theory, enable determination of material strength above the Hugoniot elastic limit. Our results indicate that diamond retains approximately 20 GPa of strength at longitudinal stresses of 150–300 GPa under shock compression.
- Published
- 2020
46. Direct observation of shock‐induced disordering of enstatite below the melting temperature
- Author
-
(0000-0002-1860-0982) Hernandez, J.-A., Morard, G., (0000-0002-2660-7543) Guarguaglini, M., Alonso-Mori, R., Benuzzi-Mounaix, A., (0000-0003-0881-5733) Bolis, R., Fiquet, G., Galtier, E., Gleason, A. E., Glenzer, S., Guyot, F., (0000-0002-3541-2254) Ko, B., Lee, H. J., Mao, W. L., Nagler, B., (0000-0002-7320-9871) Ozaki, N., (0000-0001-5489-5952) Schuster, A., (0000-0001-5203-6038) Shim, S. H., (0000-0002-1595-1752) Vinci, T., Ravasio, A., (0000-0002-1860-0982) Hernandez, J.-A., Morard, G., (0000-0002-2660-7543) Guarguaglini, M., Alonso-Mori, R., Benuzzi-Mounaix, A., (0000-0003-0881-5733) Bolis, R., Fiquet, G., Galtier, E., Gleason, A. E., Glenzer, S., Guyot, F., (0000-0002-3541-2254) Ko, B., Lee, H. J., Mao, W. L., Nagler, B., (0000-0002-7320-9871) Ozaki, N., (0000-0001-5489-5952) Schuster, A., (0000-0001-5203-6038) Shim, S. H., (0000-0002-1595-1752) Vinci, T., and Ravasio, A.
- Abstract
We report in situ structural measurements of shock‐compressed single crystal orthoenstatite up to 337 ± 55 GPa on the Hugoniot, obtained by coupling ultrafast X‐ray diffraction to laser‐driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X‐ray diffraction signal at nanosecond timescales at 80 ± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post‐perovskite have been indirectly reported in microsecond‐scale plate‐impact experiments. Therefore, we interpret the high‐pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post‐perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO₃ on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments.
- Published
- 2020
47. Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter
- Author
-
Frydrych, S., (0000-0001-5926-9192) Vorberger, J., (0000-0002-6268-2436) Hartley, N., (0000-0001-5489-5952) Schuster, A., (0000-0003-4211-2484) Ramakrishna, K., Saunders, A. M., Driel, T., Falcone, R. W., Fletcher, L. B., Galtier, E., Gamboa, E. J., Glenzer, S. H., Granados, E., Macdonald, M. J., Mackinnon, A. J., Mcbride, E. E., Nam, I., Neumayer, P., Pak, A., (0000-0001-8090-2626) Voigt, K., Roth, M., Sun, P., Gericke, D. O., Döppner, T., (0000-0002-6350-4180) Kraus, D., Frydrych, S., (0000-0001-5926-9192) Vorberger, J., (0000-0002-6268-2436) Hartley, N., (0000-0001-5489-5952) Schuster, A., (0000-0003-4211-2484) Ramakrishna, K., Saunders, A. M., Driel, T., Falcone, R. W., Fletcher, L. B., Galtier, E., Gamboa, E. J., Glenzer, S. H., Granados, E., Macdonald, M. J., Mackinnon, A. J., Mcbride, E. E., Nam, I., Neumayer, P., Pak, A., (0000-0001-8090-2626) Voigt, K., Roth, M., Sun, P., Gericke, D. O., Döppner, T., and (0000-0002-6350-4180) Kraus, D.
- Abstract
The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures of a few thousand kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon-hydrogen mixture at a pressure of ~150GPa and a temperature of ~5,000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of 24+6-7 % of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.
- Published
- 2020
48. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures
- Author
-
Morard, G., Hernandez, J.-A., Guarguaglini, M., Bolis, R., Benuzzi-Mounaix, A., Vinci, T., Fiquet, G., Baron, M. A., Heon Shim, S., Ko, B., Gleason, A. E., Mao, W. L., Alonso-Mori, R., Ja Lee, H., Nagler, B., Galtier, E., Sokaras, D., Glenzer, S. H., Andrault, D., Garbarino, G., Mezouar, M., (0000-0001-5489-5952) Schuster, A., Ravasio, A., Morard, G., Hernandez, J.-A., Guarguaglini, M., Bolis, R., Benuzzi-Mounaix, A., Vinci, T., Fiquet, G., Baron, M. A., Heon Shim, S., Ko, B., Gleason, A. E., Mao, W. L., Alonso-Mori, R., Ja Lee, H., Nagler, B., Galtier, E., Sokaras, D., Glenzer, S. H., Andrault, D., Garbarino, G., Mezouar, M., (0000-0001-5489-5952) Schuster, A., and Ravasio, A.
- Abstract
Properties of liquid silicates under high-pressure and high- temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core–mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock com- pression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugo- niot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth’s core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
- Published
- 2020
49. Measurement of Diamond Nucleation Rates from Hydrocarbons at Conditions Comparable to the Interiors of Icy Giant Planets
- Author
-
Schuster, A. K., Hartley, N. J., Vorberger, J., Döppner, T., Driel, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., Macdonald, M. J., Mackinnon, A. J., Mcbride, E. E., Nam, I., Neumayer, P., Pak, A., Prencipe, I., Rohatsch, K., Saunders, A. M., Sun, P., Kraus, D., Schuster, A. K., Hartley, N. J., Vorberger, J., Döppner, T., Driel, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., Macdonald, M. J., Mackinnon, A. J., Mcbride, E. E., Nam, I., Neumayer, P., Pak, A., Prencipe, I., Rohatsch, K., Saunders, A. M., Sun, P., and Kraus, D.
- Abstract
We present measurements of the nucleation rate into a diamond lattice in dynamically compressed polystyrene obtained in a pump-probe experiment using a high energy laser system and in situ femtosecond X-ray diffraction. Different temperature-pressure conditions that occur in planetary interiors were probed. For a single shock reaching 70GPa and 3000K no diamond formation was observed while with a double shock driving polystyrene to pressures around 150GPa and temperatures around 5000K nucleation rates between 1029 m-3s-1 and 1034 m-3s-1 were recorded. These nucleation rates do not a agree with predictions of recent theoretical models for carbon-hydrogen mixtures by many orders of magnitude. Our data suggests that there is indeed significant diamond formation to be expected inside icy giant planets like Neptune and Uranus.
- Published
- 2020
50. 2D monochromatic x-ray imaging for beam monitoring of an x-ray free electron laser and a high-power femtosecond laser
- Author
-
Sawada, H., primary, Trzaska, J., additional, Curry, C. B., additional, Gauthier, M., additional, Fletcher, L. B., additional, Jiang, S., additional, Lee, H. J., additional, Galtier, E. C., additional, Cunningham, E., additional, Dyer, G., additional, Daykin, T. S., additional, Chen, L., additional, Salinas, C., additional, Glenn, G. D., additional, Frost, M., additional, Glenzer, S. H., additional, Ping, Y., additional, Kemp, A. J., additional, and Sentoku, Y., additional
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.