1. DiffuMask-Editor: A Novel Paradigm of Integration Between the Segmentation Diffusion Model and Image Editing to Improve Segmentation Ability
- Author
-
Gao, Bo, Xing, Fangxu, and Tang, Daniel
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Semantic segmentation models, like mask2former, often demand a substantial amount of manually annotated data, which is time-consuming and inefficient to acquire. Leveraging state-of-the-art text-to-image models like Midjourney and Stable Diffusion has emerged as an effective strategy for automatically generating synthetic data instead of human annotations. However, prior approaches have been constrained to synthesizing single-instance images due to the instability inherent in generating multiple instances with Stable Diffusion. To expand the domains and diversity of synthetic datasets, this paper introduces a novel paradigm named DiffuMask-Editor, which combines the Diffusion Model for Segmentation with Image Editing. By integrating multiple objects into images using Text2Image models, our method facilitates the creation of more realistic datasets that closely resemble open-world settings while simultaneously generating accurate masks. Our approach significantly reduces the laborious effort associated with manual annotation while ensuring precise mask generation. Experimental results demonstrate that synthetic data generated by DiffuMask-Editor enable segmentation methods to achieve superior performance compared to real data. Particularly in zero-shot backgrounds, DiffuMask-Editor achieves new state-of-the-art results on Unseen classes of VOC 2012. The code and models will be publicly available soon., Comment: 13 pages,4 figures
- Published
- 2024