1. A cellular resolution atlas of Broca's area.
- Author
-
Costantini I, Morgan L, Yang J, Balbastre Y, Varadarajan D, Pesce L, Scardigli M, Mazzamuto G, Gavryusev V, Castelli FM, Roffilli M, Silvestri L, Laffey J, Raia S, Varghese M, Wicinski B, Chang S, Chen IA, Wang H, Cordero D, Vera M, Nolan J, Nestor K, Mora J, Iglesias JE, Garcia Pallares E, Evancic K, Augustinack JC, Fogarty M, Dalca AV, Frosch MP, Magnain C, Frost R, van der Kouwe A, Chen SC, Boas DA, Pavone FS, Fischl B, and Hof PR
- Subjects
- Humans, Brain diagnostic imaging, Magnetic Resonance Imaging methods, Brain Mapping, Broca Area, Cerebral Cortex
- Abstract
Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.
- Published
- 2023
- Full Text
- View/download PDF