1. Two distinct logical types of network control in gene expression profiles
- Author
-
Marr, Carsten, Geertz, Marcel, Huett, Marc-Thorsten, and Muskhelishvili, Georgi
- Subjects
Quantitative Biology - Genomics ,Quantitative Biology - Molecular Networks - Abstract
In unicellular organisms such as bacteria the same acquired mutations beneficial in one environment can be restrictive in another. However, evolving Escherichia coli populations demonstrate remarkable flexibility in adaptation. The mechanisms sustaining genetic flexibility remain unclear. In E. coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators - abundant DNA architectural proteins of the bacterial chromoid binding multiple low affinity sites and thus modulating the superhelical density of DNA. The first form of transcriptional regulation is dominantly pairwise and specific, representing digitial control, while the second form is (in strength and distribution) continuous, representing analog control. Here we look at the properties of effective networks derived from significant gene expression changes under variation of the two forms of control and find that upon limitations of one type of control (caused e.g. by mutation of a global DNA architectural factor) the other type can compensate for compromised regulation. Mutations of global regulators significantly enhance the digital control; in the presence of global DNA architectural proteins regulation is mostly of the analog type, coupling spatially neighboring genomic loci; together our data suggest that two logically distinct types of control are balancing each other. By revealing two distinct logical types of control, our approach provides basic insights into both the organizational principles of transcriptional regulation and the mechanisms buffering genetic flexibility. We anticipate that the general concept of distinguishing logical types of control will apply to many complex biological networks., Comment: 19 pages, 6 figures
- Published
- 2007