448 results on '"Gehlen M"'
Search Results
2. Pathways to sustaining tuna-dependent Pacific Island economies during climate change
- Author
-
Bell, JD, Senina, I, Adams, T, Aumont, O, Calmettes, B, Clark, S, Dessert, M, Gehlen, M, Gorgues, T, Hampton, J, Hanich, Q, Harden-Davies, H, Hare, SR, Holmes, G, Lehodey, P, Lengaigne, M, Mansfield, W, Menkes, C, Nicol, S, Ota, Y, Pasisi, C, Pilling, G, Reid, C, Ronneberg, E, Gupta, AS, Seto, KL, Smith, N, Taei, S, Tsamenyi, M, and Williams, P
- Abstract
Climate-driven redistribution of tuna threatens to disrupt the economies of Pacific Small Island Developing States (SIDS) and sustainable management of the world’s largest tuna fishery. Here we show that by 2050, under a high greenhouse gas emissions scenario (RCP 8.5), the total biomass of three tuna species in the waters of ten Pacific SIDS could decline by an average of 13% (range = −5% to −20%) due to a greater proportion of fish occurring in the high seas. The potential implications for Pacific Island economies in 2050 include an average decline in purse-seine catch of 20% (range = −10% to −30%), an average annual loss in regional tuna-fishing access fees of US$90 million (range = −US$40 million to –US$140 million) and reductions in government revenue of up to 13% (range = −8% to −17%) for individual Pacific SIDS. Redistribution of tuna under a lower-emissions scenario (RCP 4.5) is projected to reduce the purse-seine catch from the waters of Pacific SIDS by an average of only 3% (range = −12% to +9%), indicating that even greater reductions in greenhouse gas emissions, in line with the Paris Agreement, would provide a pathway to sustainability for tuna-dependent Pacific Island economies. An additional pathway involves Pacific SIDS negotiating within the regional fisheries management organization to maintain the present-day benefits they receive from tuna, regardless of the effects of climate change on the distribution of the fish.
- Published
- 2021
3. An assessment of CO2 storage and sea-air fluxes for the Atlantic Ocean and Mediterranean Sea between 1985 and 2018
- Author
-
Pérez, Fiz F., primary, Perez, Fiz F, additional, Becker, M, additional, Goris, N, additional, Gehlen, M, additional, Lopez-Mozos, M, additional, Tjiputra, J, additional, Olsen, A, additional, Müller, J D, additional, Huertas, I E, additional, Chau, T T T, additional, Cainzos, V, additional, Velo, A, additional, Benard, G, additional, Hauck, J, additional, Gruber, N, additional, and Wanninkhof, Rik, additional
- Published
- 2024
- Full Text
- View/download PDF
4. Manganese in the West Atlantic Ocean in context of the first global ocean circulation model of manganese
- Author
-
van Hulten, M. M. P., Middag, R., Dutay, J. -C., de Baar, H. J. W., Roy-Barman, M., Gehlen, M., Tagliabue, A., and Sterl, A.
- Subjects
Physics - Atmospheric and Oceanic Physics - Abstract
Dissolved manganese (Mn) is a biologically essential element, and its oxidised form is involved in the removal of trace elements from ocean waters. Recently, a large number of highly accurate Mn measurements have been obtained in the Atlantic, Indian and Arctic Oceans as part of the GEOTRACES programme. The goal of this study is to combine these new observations with state-of-the-art modelling to give new insights into the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account, realistically, for the sources, processes and sinks of Mn in the ocean. Whereas oxidation and (photo)reduction, as well as aggregation and settling are parameterised in the model, biological uptake is not yet taken into account by the model. Our model reproduces observations accurately and provides the following insights: - The high surface concentrations of manganese are caused by the combination of photoreduction and sources to the upper ocean. The most important sources are dust, then sediments, and, more locally, rivers. - Results show that surface Mn in the Atlantic Ocean moves downwards into the North Atlantic Deep Water, but because of strong removal rates the Mn does not propagate southwards. - There is a mostly homogeneous background concentration of dissolved Mn of about 0.10 to 0.15 nM throughout most of the deep ocean. The model reproduces this by means of a threshold on manganese oxides of 25 pM, suggesting that a minimal concentration of Mn is needed before aggregation and removal become efficient. - The observed sharp hydrothermal signals are produced by assuming both a high source and a strong removal of Mn near hydrothermal vents., Comment: Model output data are available at https://doi.org/10.1594/PANGAEA.871981 ; for the model code, please see the supplementary material of the Biogeosciences publication
- Published
- 2016
- Full Text
- View/download PDF
5. A Synthesis of Global Coastal Ocean Greenhouse Gas Fluxes
- Author
-
Resplandy, L., Hogikyan, A., Müller, J. D., Najjar, R. G., Bange, Hermann W., Bianchi, D., Weber, T., Cai, W.‐J., Doney, S. C., Fennel, K., Gehlen, M., Hauck, J., Lacroix, F., Landschützer, P., Le Quéré, C., Roobaert, A., Schwinger, J., Berthet, S., Bopp, L., Chau, T. T. T., Dai, M., Gruber, N., Ilyina, T., Kock, Annette, Manizza, M., Lachkar, Z., Laruelle, G. G., Liao, E., Lima, I. D., Nissen, C., Rödenbeck, C., Séférian, R., Toyama, K., Tsujino, H., Regnier, P., Resplandy, L., Hogikyan, A., Müller, J. D., Najjar, R. G., Bange, Hermann W., Bianchi, D., Weber, T., Cai, W.‐J., Doney, S. C., Fennel, K., Gehlen, M., Hauck, J., Lacroix, F., Landschützer, P., Le Quéré, C., Roobaert, A., Schwinger, J., Berthet, S., Bopp, L., Chau, T. T. T., Dai, M., Gruber, N., Ilyina, T., Kock, Annette, Manizza, M., Lachkar, Z., Laruelle, G. G., Liao, E., Lima, I. D., Nissen, C., Rödenbeck, C., Séférian, R., Toyama, K., Tsujino, H., and Regnier, P.
- Abstract
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is similar to 60% larger in models (-0.72 vs. -0.44 PgC year-1, 1998-2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year-1 in observational product and +0.54 PgCO2-e year-1 in model median) and CH4 (+0.21 PgCO2-e year-1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%-60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate. The coastal ocean regulates greenhouse gases. It acts as a sink of carbon dioxide (CO2) but also releases nitrous oxide (N2O) and methane (CH4) into the atmosphere. This synthesis contributes to the second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2) and provides a comprehensive view of the coastal air-sea fluxes of these three greenhouse gases at the global scale. We use a multi-faceted approach combining gap-f
- Published
- 2024
- Full Text
- View/download PDF
6. A Synthesis of Global Coastal Ocean Greenhouse Gas Fluxes
- Author
-
Resplandy, L., primary, Hogikyan, A., additional, Müller, J. D., additional, Najjar, R. G., additional, Bange, H. W., additional, Bianchi, D., additional, Weber, T., additional, Cai, W.‐J., additional, Doney, S. C., additional, Fennel, K., additional, Gehlen, M., additional, Hauck, J., additional, Lacroix, F., additional, Landschützer, P., additional, Le Quéré, C., additional, Roobaert, A., additional, Schwinger, J., additional, Berthet, S., additional, Bopp, L., additional, Chau, T. T. T., additional, Dai, M., additional, Gruber, N., additional, Ilyina, T., additional, Kock, A., additional, Manizza, M., additional, Lachkar, Z., additional, Laruelle, G. G., additional, Liao, E., additional, Lima, I. D., additional, Nissen, C., additional, Rödenbeck, C., additional, Séférian, R., additional, Toyama, K., additional, Tsujino, H., additional, and Regnier, P., additional
- Published
- 2024
- Full Text
- View/download PDF
7. Rehabilitation seltener Erkrankungen im Erwachsenenalter: Osteogenesis imperfecta
- Author
-
Gehlen, M., Schwarz-Eywill, M., Hinz, C., Pfeifer, M., Siebers-Renelt, U., Ratanski, M., and Maier, A.
- Published
- 2021
- Full Text
- View/download PDF
8. An assessment of CO2 storage and sea-air fluxes for the Atlantic Ocean and Mediterranean Sea between 1985 and 2018
- Author
-
Pérez, Fiz F., primary, Perez, Fiz F, additional, Becker, M, additional, Goris, N, additional, Gehlen, M, additional, Lopez-Mozos, M, additional, Tjiputra, J, additional, Olsen, A, additional, Müller, J D, additional, Huertas, I E, additional, Chau, T T T, additional, Cainzos, V, additional, Velo, A, additional, Benard, G, additional, Hauck, J, additional, Gruber, N, additional, and Wanninkhof, Rik, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Mediterranean Sea between
- Author
-
Pérez, Fiz F., primary, Perez, Fiz F, additional, Becker, M, additional, Goris, N, additional, Gehlen, M, additional, Lopez-Mozos, M, additional, Tjiputra, J, additional, Olsen, A, additional, Müller, J D, additional, Huertas, I E, additional, Chau, T T T, additional, Cainzos, V, additional, Velo, A, additional, Benard, G, additional, Hauck, J, additional, Gruber, N, additional, and Wanninkhof, Rik, additional
- Published
- 2023
- Full Text
- View/download PDF
10. Fußsonographie in der Rheumatologie: Sonographische Diagnostik des Sprunggelenks und des Fußes im rheumatologischen Alltag
- Author
-
Maier, A., Ratanski, M., Renelt, M., Hammer, M., and Gehlen, M.
- Published
- 2020
- Full Text
- View/download PDF
11. An Assessment of CO2 Storage and Sea-Air Fluxes for the Atlantic Ocean and Mediterranean Sea Between 1985 and 2018.
- Author
-
Pérez, Fiz F., Becker, M., Goris, N., Gehlen, M., López-Mozos, M., Tjiputra, J., Olsen, A., Müller, J. D., Huertas, I. E., Chau, T. T. T., Cainzos, V., Velo, A., Benard, G., Hauck, J., Gruber, N., and Wanninkhof, Rik
- Subjects
CARBON cycle ,OCEAN ,PARTIAL pressure ,CARBON dioxide ,OUTGASSING - Abstract
As part of the second phase of the Regional Carbon Cycle Assessment and Processes project (RECCAP2), we present an assessment of the carbon cycle of the Atlantic Ocean, including the Mediterranean Sea, between 1985 and 2018 using global ocean biogeochemical models (GOBMs) and estimates based on surface ocean carbon dioxide (CO
2 ) partial pressure (pCO2 products) and ocean interior dissolved inorganic carbon observations. Estimates of the basin-wide long-term mean net annual CO2 uptake based on GOBMs and pCO2 products are in reasonable agreement (-0.47 ± 0.15 PgC yr-1 and -0.36 ± 0.06 PgC yr-1 , respectively), with the higher uptake in the GOBM-based estimates likely being a consequence of a deficit in the representation of natural outgassing of land derived carbon. In the GOBMs, the CO2 uptake increases with time at rates close to what one would expect from the atmospheric CO2 increase, but pCO2 products estimate a rate twice as fast. The largest disagreement in the CO2 flux between GOBMs and pCO2 products is found north of 50°N, coinciding with the largest disagreement in the seasonal cycle and interannual variability. The mean accumulation rate of anthropogenic CO2 (Cant) over 1994-2007 in the Atlantic Ocean is 0.52 ± 0.11 PgC yr-1 according to the GOBMs, 28% ± 20% lower than that derived from observations. Around 70% of this Cant is taken up from the atmosphere, while the remainder is imported from the Southern Ocean through lateral transport. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
12. Projected 21st century decrease in marine productivity: a multi-model analysis
- Author
-
Steinacher, M., Joos, F., Frolicher, T. L, Bopp, L., Cadule, P., Cocco, V., Doney, S. C, Gehlen, M., Lindsay, K., Moore, J. K, Schneider, B., and Segschneider, J.
- Subjects
general-circulation model ,carbon-cycle feedbacks ,oceanic nitrous-oxide ,climate system model ,export production ,ecosystem model ,interannual variability ,biogeochemistry models ,potential impact ,dust deposition - Abstract
Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
- Published
- 2010
13. Boron isotopes in Fiji corals and precise ocean acidification reconstruction
- Author
-
Douville, E., Juillet-Leclerc, A., Cabioch, G., Louvat, P., Gaillardet, J., Gehlen, M., Bopp, L., Paterne, M., Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche pour le Développement (IRD), Institut de Physique du Globe de Paris (IPGP), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
1630 GLOBAL CHANGE / Impacts of global change ,9355 GEOGRAPHIC LOCATION / Pacific Ocean ,4806 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL / Carbon cycling ,[SDU]Sciences of the Universe [physics] ,4916 PALEOCEANOGRAPHY / Corals - Abstract
International audience; Within the framework of EPOCA (European Project on OCean Acidification ) and the French INSU project PHARE, we are adapting the boron isotope technique to ancient corals with the scope to reconstruct “past” ocean pH changes. In this study, we applied the technique to surface seawater pH reconstructions based on tropical 20th century corals from Fiji. Models estimated a pH drop close to 0.07 pH units in the South Western Equatorial Pacific since the onset of the industrial era (Sabine et al., 2004). To reconstruct such a change in pH, the isotopic composition of boron (δ11B) in coral material has to be determined with a precision better than ±0.2‰. This analytical criteria was meet on a Multi-Collector ICPMS Neptune. We selected a Porites coral for the reconstruction of the time dependent evolution of pH. Our results show a progressive decrease of seawater pH between 1900 and 2000 of 0.08 +/- 0.02 pH units. This decrease in pH agrees with projections of surface ocean pH for the Fiji area obtained with the biogeochemical ocean circulation model NEMO-PISCES. Our results further reveal that seawater pH changes in the Fiji area are strongly affected by regional processes such as the South Pacific Convergence Zone (SPCZ) tightly linked the Pacific Decadal Oscillation (PDO). This last observation highlights the potential of the δ11B-pH technique for studying past changes of ocean dynamics. Hönisch, B., Hemming, N. G., Grottoli, A. G., Amat, A., Hanson, G. N. & Bijma, J. (2004). Assessing scleractinian corals as recoders for paleo-pH: Empirical calibration and vital effects. Geochimica et Cosmochimica Acta, 68(18), 3675-3685. Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T. & Rios, A. F. (2004). The Oceanic Sink for Anthropogenic CO2. Science, 305, 367-371.
- Published
- 2023
14. Osteomalazie – Klinik, Diagnostik und Therapie
- Author
-
Tiefenbach, M., Scheel, M., Maier, A., Gehlen, M., Schwarz-Eywill, M., Werner, M., Siebers-Renelt, U., and Hammer, M.
- Published
- 2018
- Full Text
- View/download PDF
15. Climate-driven variability of the Southern Ocean CO 2 sink
- Author
-
Mayot, N., primary, Le Quéré, C., additional, Rödenbeck, C., additional, Bernardello, R., additional, Bopp, L., additional, Djeutchouang, L. M., additional, Gehlen, M., additional, Gregor, L., additional, Gruber, N., additional, Hauck, J., additional, Iida, Y., additional, Ilyina, T., additional, Keeling, R. F., additional, Landschützer, P., additional, Manning, A. C., additional, Patara, L., additional, Resplandy, L., additional, Schwinger, J., additional, Séférian, R., additional, Watson, A. J., additional, Wright, R. M., additional, and Zeng, J., additional
- Published
- 2023
- Full Text
- View/download PDF
16. Climate-driven variability of the Southern Ocean CO2 sink
- Author
-
Mayot, N., Le Quere, C., Roedenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L. M., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R. F., Landschuetzer, P., Manning, A. C., Patara, L., Resplandy, L., Schwinger, J., Seferian, R., Watson, A. J., Wright, R. M., Zeng, J., Mayot, N., Le Quere, C., Roedenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L. M., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R. F., Landschuetzer, P., Manning, A. C., Patara, L., Resplandy, L., Schwinger, J., Seferian, R., Watson, A. J., Wright, R. M., and Zeng, J.
- Abstract
The Southern Ocean is a major sink of atmospheric CO2, but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on the nature and magnitude of climate-driven variability of the Southern Ocean CO2 sink from observation-based air-sea O-2 fluxes. On interannual time scales, the variability in the air-sea fluxes of CO2 and O-2 estimated from observations is consistent across the two species and positively correlated with the variability simulated by ocean models. Our analysis suggests that variations in ocean ventilation related to the Southern Annular Mode are responsible for this interannual variability. On decadal time scales, the existence of significant variability in the air-sea CO2 flux estimated from observations also tends to be supported by observation-based estimates of O-2 flux variability. However, the large decadal variability in air-sea CO2 flux is absent from ocean models. Our analysis suggests that issues in representing the balance between the thermal and non-thermal components of the CO2 sink and/or insufficient variability in mode water formation might contribute to the lack of decadal variability in the current generation of ocean models.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
- Published
- 2023
- Full Text
- View/download PDF
17. Schmerzen am Unterschenkel und Fußheberschwäche bei Belastung
- Author
-
Gehlen, M, Schwarz-Eywill, M, Klagge-Riechers, R, Maier, A, Gehlen, M, Schwarz-Eywill, M, Klagge-Riechers, R, and Maier, A
- Published
- 2023
18. Climate-driven variability of the Southern Ocean CO2 sink
- Author
-
Mayot, N, Le Quere, C, Rödenbeck, C, Bernardello, R, Bopp, L, Djeutchouang, LM, Gehlen, M, Gregor, L, Gruber, N, Hauck, J, Iida, Y, Ilyina, T, Keeling, RF, Landschtzer, P, Manning, AC, Patara, L, Resplandy, L, Schwinger, J, Sfrian, R, Watson, AJ, Wright, RM, Zeng, J, Mayot, N, Le Quere, C, Rödenbeck, C, Bernardello, R, Bopp, L, Djeutchouang, LM, Gehlen, M, Gregor, L, Gruber, N, Hauck, J, Iida, Y, Ilyina, T, Keeling, RF, Landschtzer, P, Manning, AC, Patara, L, Resplandy, L, Schwinger, J, Sfrian, R, Watson, AJ, Wright, RM, and Zeng, J
- Abstract
The Southern Ocean is a major sink of atmospheric CO 2, but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on the nature and magnitude of climate-driven variability of the Southern Ocean CO 2 sink from observation-based air-sea O 2 fluxes. On interannual time scales, the variability in the air-sea fluxes of CO 2 and O 2 estimated from observations is consistent across the two species and positively correlated with the variability simulated by ocean models. Our analysis suggests that variations in ocean ventilation related to the Southern Annular Mode are responsible for this interannual variability. On decadal time scales, the existence of significant variability in the air-sea CO 2 flux estimated from observations also tends to be supported by observation-based estimates of O 2 flux variability. However, the large decadal variability in air-sea CO 2 flux is absent from ocean models. Our analysis suggests that issues in representing the balance between the thermal and non-thermal components of the CO 2 sink and/or insufficient variability in mode water formation might contribute to the lack of decadal variability in the current generation of ocean models. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
- Published
- 2023
19. Reviews and syntheses: Abrupt ocean biogeochemical change under human-made climatic forcing – warming, acidification, and deoxygenation
- Author
-
Heinze, C., Blenckner, T., Brown, P., Fröb, F., Morée, A., New, A., Nissen, C., Rynders, S., Seguro, I., Aksenov, Y., Artioli, Y., Bourgeois, T., Burger, F., Buzan, J., Cael, B., Yumruktepe, V., Chierici, M., Danek, C., Dieckmann, U., Fransson, A., Frölicher, T., Galli, G., Gehlen, M., González, A., Gonzalez-Davila, M.., Gruber, N., Gustafsson, Ö., Hauck, J., Heino, M., Henson, S., Hieronymus, J., Huertas, I., Jebri, F., Jeltsch-Thömmes, A., Joos, F., Joshi, J., Kelly, S., Menon, N., Mongwe, P., Oziel, L., Ólafsdottir, S., Palmieri, J., Pérez, F., Ranith, R., Ramanantsoa, J., Roy, T., Rusiecka, D., Santana Casiano, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Seifert, M., Shchiptsova, A., Sinha, B., Somes, C., Steinfeldt, R., Tao, D., Tjiputra, J., Ulfsbo, A., Völker, C., Wakamatsu, T., Ye, Y., Heinze, C., Blenckner, T., Brown, P., Fröb, F., Morée, A., New, A., Nissen, C., Rynders, S., Seguro, I., Aksenov, Y., Artioli, Y., Bourgeois, T., Burger, F., Buzan, J., Cael, B., Yumruktepe, V., Chierici, M., Danek, C., Dieckmann, U., Fransson, A., Frölicher, T., Galli, G., Gehlen, M., González, A., Gonzalez-Davila, M.., Gruber, N., Gustafsson, Ö., Hauck, J., Heino, M., Henson, S., Hieronymus, J., Huertas, I., Jebri, F., Jeltsch-Thömmes, A., Joos, F., Joshi, J., Kelly, S., Menon, N., Mongwe, P., Oziel, L., Ólafsdottir, S., Palmieri, J., Pérez, F., Ranith, R., Ramanantsoa, J., Roy, T., Rusiecka, D., Santana Casiano, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Seifert, M., Shchiptsova, A., Sinha, B., Somes, C., Steinfeldt, R., Tao, D., Tjiputra, J., Ulfsbo, A., Völker, C., Wakamatsu, T., and Ye, Y.
- Abstract
Abrupt changes in ocean biogeochemical variables occur as a result of human-induced climate forcing as well as those which are more gradual and occur over longer timescales. These abrupt changes have not yet been identified and quantified to the same extent as the more gradual ones. We review and synthesise abrupt changes in ocean biogeochemistry under human-induced climatic forcing. We specifically address the ocean carbon and oxygen cycles because the related processes of acidification and deoxygenation provide important ecosystem hazards. Since biogeochemical cycles depend also on the physical environment, we also describe the relevant changes in warming, circulation, and sea ice. We include an overview of the reversibility or irreversibility of abrupt marine biogeochemical changes. Important implications of abrupt biogeochemical changes for ecosystems are also discussed. We conclude that there is evidence for increasing occurrence and extent of abrupt changes in ocean biogeochemistry as a consequence of rising greenhouse gas emissions.
- Published
- 2023
- Full Text
- View/download PDF
20. Ocean modelling protocol from RECCAP2-ocean and figures S1-S6 from Climate-driven variability of the Southern Ocean CO2 sink
- Author
-
Mayot, N., Le Quéré, C., Rödenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L. M., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R. F., Landschützer, P., Manning, A. C., Patara, L., Resplandy, L., Schwinger, J., Séférian, R., Watson, A. J., Wright, R. M., and Zeng, J.
- Abstract
We are summarizing the ocean modelling protocol provided by RECCAP2, and supplementary figures associated with figure 3.
- Published
- 2023
- Full Text
- View/download PDF
21. Rückenorthesen in der Behandlung von Wirbelkörperfrakturen bei Osteoporose: Eine systematische Übersichtsarbeit
- Author
-
Pfeifer, M., Gehlen, M., and Hinz, C.
- Published
- 2017
- Full Text
- View/download PDF
22. Schwangerschaftsassoziierte Osteoporose
- Author
-
Gehlen, M., Lazarescu, A. D., Hinz, C., Boncu, B., Schmidt, N., Pfeifer, M., Schwarz-Eywill, M., Pollähne, W., and Minne, H. W.
- Published
- 2017
- Full Text
- View/download PDF
23. Global Carbon Budget 2022
- Author
-
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, College of Life and Environmental Sciences [Exeter], University of Exeter, Rice University [Houston], Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Institute of Biogeochemistry and Pollutant Dynamics [ETH Zürich] (IBP), Department of Environmental Systems Science [ETH Zürich] (D-USYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Meteorology and Air Quality Group, Wageningen University and Research [Wageningen] (WUR), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Meteorology and Air Quality Department [Wageningen] (MAQ), Ludwig-Maximilians-Universität München (LMU), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Stanford Woods Institute for the Environment, Stanford University, European Commission - Joint Research Centre [Ispra] (JRC), Karlsruhe Institute of Technology (KIT), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Earth Sciences, Amsterdam Sustainability Institute, and Isotope Research
- Subjects
WIMEK ,[SDE.MCG]Environmental Sciences/Global Changes ,SDG 13 - Climate Action ,Life Science ,General Earth and Planetary Sciences ,Luchtkwaliteit ,Air Quality - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).
- Published
- 2022
24. Climate-driven variability of the Southern Ocean CO2 sink.
- Author
-
Mayot, N., Le Quéré, C., Rödenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L. M., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R. F., Landschützer, P., Manning, A. C., Patara, L., Resplandy, L., Schwinger, J., Séférian, R., and Watson, A. J.
- Subjects
ANTARCTIC oscillation ,OCEAN ,ATMOSPHERIC carbon dioxide ,MINE ventilation - Abstract
The Southern Ocean is a major sink of atmospheric CO
2 , but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on the nature and magnitude of climate-driven variability of the Southern Ocean CO2 sink from observation-based air–sea O2 fluxes. On interannual time scales, the variability in the air–sea fluxes of CO2 and O2 estimated from observations is consistent across the two species and positively correlated with the variability simulated by ocean models. Our analysis suggests that variations in ocean ventilation related to the Southern Annular Mode are responsible for this interannual variability. On decadal time scales, the existence of significant variability in the air–sea CO2 flux estimated from observations also tends to be supported by observation-based estimates of O2 flux variability. However, the large decadal variability in air–sea CO2 flux is absent from ocean models. Our analysis suggests that issues in representing the balance between the thermal and non-thermal components of the CO2 sink and/or insufficient variability in mode water formation might contribute to the lack of decadal variability in the current generation of ocean models. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
25. Schwere therapierefraktäre Osteoporose: Eine seltene Differenzialdiagnose
- Author
-
Gehlen, M., Lazarescu, A. D., Hinz, C., Schmidt, N., Pfeifer, M., Werner, M., Weidemann, H. F., Schwarz-Eywill, M., and Maier, A.
- Published
- 2016
- Full Text
- View/download PDF
26. Hirnstamminfarkt, temporaler Kopfschmerz und erhöhte Entzündungsparameter bei einem 74-jährigen Patienten
- Author
-
Gehlen, M., Schwarz-Eywill, M., Schäfer, N., Pfeiffer, A., Bösenberg, H., Maier, A., and Hinz, C.
- Published
- 2016
- Full Text
- View/download PDF
27. Global Carbon Budget 2022
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.
- Published
- 2022
28. Standing and Transient Eddies in the Response of the Southern Ocean Meridional Overturning to the Southern Annular Mode
- Author
-
Dufour, C. O., Le Sommer, J., Zika, J. D., Gehlen, M., Orr, J. C., Mathiot, P., and Barnier, B.
- Published
- 2012
29. Ein 58-jähriger Patient mit temporalen Kopfschmerzen, Kauclaudicatio und B-Symptomatik
- Author
-
Gehlen, M., Schwarz-Eywill, M., Schäfer, N., Pfeiffer, A., Woenkhaus, J., and Bräsen, J.H.
- Published
- 2015
- Full Text
- View/download PDF
30. New possibilities for the rapid customizing of mold surface structures – Lasered paint in the mold
- Author
-
Gehlen, M., primary
- Published
- 2016
- Full Text
- View/download PDF
31. Neue Möglichkeiten zur schnellen und individuellen Strukturierung von Werkzeugoberflächen – Laserlack im Werkzeug
- Author
-
Gehlen, M., primary
- Published
- 2016
- Full Text
- View/download PDF
32. O AMOR X O ÓDIO: A ATUALIDADE DO PENSAMENTO DE PAULO FREIRE E O DESASSOSSEGO DOS NEOFASCISTAS NO BRASIL
- Author
-
Maria Eloá Gehlen M. E. Gehlen
- Published
- 2020
33. The Emergence of Extended Field Technology in the Air Force
- Author
-
Braun, T. J., Keppler, E. E., Price, L. S., Nuxoll, G., Gehlen, M., Lyders, D., Henderson, J., Stone, R., Arispe, B., Thompson, Donald O., editor, and Chimenti, Dale E., editor
- Published
- 1996
- Full Text
- View/download PDF
34. SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach
- Author
-
Fay, A., Gregor, L., Landschützer, P., McKinley, G., Gruber, N., Gehlen, M., Iida, Y., Laruelle, G., Rödenbeck, C., and Zeng, J.
- Published
- 2021
35. 48-jähriger Patient mit Schmerzen und Schwellungen beider Kniegelenke bei Ausschluss einer Spondyloarthritis und einer rheumatoiden Arthritis
- Author
-
Gehlen, M., Janik, S., Dudko, P., and Schwarz-Eywill, M.
- Published
- 2014
- Full Text
- View/download PDF
36. Global Carbon Budget 2020
- Author
-
Friedlingstein, P, O'Sullivan, M, Jones, MW, Andrew, RM, Hauck, J, Olsen, A, Peters, GP, Peters, W, Pongratz, J, Sitch, S, Le Quéré, C, Canadell, JG, Ciais, P, Jackson, RB, Alin, S, Aragão, LEOC, Arneth, A, Arora, V, Bates, NR, Becker, M, Benoit-Cattin, A, Bittig, HC, Bopp, L, Bultan, S, Chandra, N, Chevallier, F, Chini, LP, Evans, W, Florentie, L, Forster, PM, Gasser, T, Gehlen, M, Gilfillan, D, Gkritzalis, T, Gregor, L, Gruber, N, Harris, I, Hartung, K, Haverd, V, Houghton, RA, Ilyina, T, Jain, AK, Joetzjer, E, Kadono, K, Kato, E, Kitidis, V, Korsbakken, JI, Landschützer, P, Lefèvre, N, Lenton, A, Lienert, S, Liu, Z, Lombardozzi, D, Marland, G, Metzl, N, Munro, DR, Nabel, JEMS, Nakaoka, S-I, Niwa, Y, O'Brien, K, Ono, T, Palmer, PI, Pierrot, D, Poulter, B, Resplandy, L, Robertson, E, Rödenbeck, C, Schwinger, J, Séférian, R, Skjelvan, I, Smith, AJP, Sutton, AJ, Tanhua, T, Tans, PP, Tian, H, Tilbrook, B, van der Werf, G, Vuichard, N, Walker, AP, Wanninkhof, R, Watson, AJ, Willis, D, Wiltshire, AJ, Yuan, W, Yue, X, and Zaehle, S
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
- Published
- 2020
37. Global carbon budget 2019
- Author
-
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevalier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, Patrick C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., ven der Werf, G. R., Wiltshire, A. J., and Zaehle, S.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).
- Published
- 2019
38. Rapid post-mortem incorporation of aluminum in diatom frustules: Evidence from chemical and structural analyses
- Author
-
Koning, E., Gehlen, M., Flank, A.-M., Calas, G., and Epping, E.
- Published
- 2007
- Full Text
- View/download PDF
39. Begutachtung von Patienten mit Osteoporose
- Author
-
Gehlen, M, additional, Pfeifer, M, additional, Schwarz-Eywill, M, additional, Lazarescu, AD, additional, Hinz, C, additional, Mahn, K, additional, and Maier, A, additional
- Published
- 2021
- Full Text
- View/download PDF
40. Reassessing the dissolution of marine carbonates: I. Solubility
- Author
-
Gehlen, M., Bassinot, F.C., Chou, L., and McCorkle, D.
- Subjects
Rocks, Sedimentary ,Geology ,Marine sediments ,Aragonite ,Calcite crystals ,Sea-water ,Carbonates ,Earth sciences - Abstract
To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.dsr.2005.03.010 Byline: M. Gehlen (a), F.C. Bassinot (b), L. Chou (c), D. McCorkle (d) Keywords: Marine sediments; Biogenic carbonate; Solubility Abstract: We studied the solubility of the [63-150[mu]m] and the greater than 150[mu]m size fractions of sediments from two bathymetric transects in the eastern tropical Atlantic (Sierra Leone rise and Cape Verde Plateau). Both fractions are made mainly of foraminiferal shells and fragments. We determined the calcite crystallinity (full width at half maximum of XRD (104) calcite peak) of the >150[mu]m size fraction. Equilibration experiments were carried out in artificial seawater (20[degrees]C, pCO.sub.2=3100ppm) for up to 57 days starting from undersaturation with respect to calcite and supersaturation with respect to aragonite. Experiments starting from supersaturation yielded concentration products close to aragonite solubility for sediments from the shallowest stations, suggesting the presence of trace levels of aragonite in these samples. Concentration products computed for the deeper stations were intermediate between aragonite and calcite solubility. Our results indicate the formation of a high-Mg coating. The equilibration period was too short to allow the complete recrystallization of these Mg-rich overgrowths. Experiments initiated from undersaturation yield concentration products that are between 4% and 24% higher than the reported stoichiometric concentration product of synthetic calcite. These differences between estimates of calcite stoichiometric solubility products are explained in terms of variations in experimental conditions (artificial versus natural seawater) and related choices of carbonic acid dissociation constants. They do not reflect a true difference in solubility between biogenic and synthetic calcite. The thinning of the foraminiferal calcite (104) XRD peak from 0.168[degrees](2I[cedilla]) to 0.148[degrees](2I[cedilla]) along the depth transects is interpreted as reflecting an improvement in calcite crystallinity. This and the change in specific surface area are consistent with the progressive change of the carbonate assemblage. The evolution of the bulk composition of the carbonate fraction is not paralleled by a significant change in its stoichiometric concentration product. It reflects ongoing differential dissolution due to kinetic effects. Author Affiliation: (a) Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR CEA-CNRS, BAcentst.701, Orme des Merisiers, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France (b) Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR CEA-CNRS, BAcentst. 12, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France (c) Laboratoire d'Oceanographie Chimique et Geochimie des Eaux, Universite Libre de Bruxelles, Campus de la Plaine, CP 208, 2 Boulevard du Triomphe, 1050 Brussels, Belgium (d) Department of Geology and Geophysics, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA Article History: Received 26 July 2004; Revised 7 January 2005; Accepted 9 March 2005
- Published
- 2005
41. Reassessing the dissolution of marine carbonates: II. Reaction kinetics
- Author
-
Gehlen, M., Bassinot, F.C., Chou, L., and McCorkle, D.
- Subjects
Water quality ,Aragonite ,Sediments (Geology) ,Calcite crystals ,Single-lens reflex cameras ,Automated teller machines ,Carbonates ,Earth sciences - Abstract
To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.dsr.2005.03.011 Byline: M. Gehlen (a), F.C. Bassinot (b), L. Chou (c), D. McCorkle (d) Abstract: We studied dissolution kinetics of the carbonate fraction >150[mu]m of sediments sampled along two bathymetric transects in the eastern tropical Atlantic: the Sierra Leone Rise (SLR) and the Cape Verde Plateau (CVP). The reaction was followed by monitoring solution pH during freedrift experiments lasting between 46 and 50h (20[degrees]C, pCO.sub.2[approximately equal to]3100ppm and 1atm pressure). The alkalinity reached at the end of the dissolution experiments ranged between 2.444 and 2.798meq/kg.sub.sw. The dissolution time series was extrapolated to equilibrium by fitting an empirical relation to the data. The estimated asymptotic concentration products ([Ca.sup.2+].sub.[infinity]x[CO.sub.3.sup.2-].sub.[infinity], for t[right arrow][infinity] and dA.sub.c/dt=0) range from 4.27x10.sup.-7 to 6.77x10.sup.-7 mol.sup.2/kg.sub.sw.sup.2. These asymptotic concentration products are comparable with the stoichiometric concentration product of aragonite (6.56x10.sup.-7 mol.sup.2/kg.sub.sw.sup.2) and calcite (4.37 ([+ or -]0.22)x10.sup.-7 mol.sup.2/kg.sub.sw.sup.2) derived for the same sediment material during long-term equilibration experiments. They are indicative of the presence of trace amounts of a higher solubility carbonate phase in sediments of the shallow stations (SLR station A, 2637m; CVP station M, 3104m). While it is likely that this phase is aragonite, the presence of authigenic carbonate precipitated in contact with supersaturated bottom waters cannot be excluded. Calcite is the main dissolving carbonate mineral in sediments from deeper stations. The order of reaction is always greater than unity. It varies between 1.4 (SLR station C) and 2.8 (CVP station M2), with an average n=2.3[+ or -]0.4. The higher order reaction is explained in terms of a multiphase system. Specific rate constants range from 0.09 to 0.53meq/m.sup.2/d. Author Affiliation: (a) Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR CEA-CNRS, BAcentst.701, Orme des Merisiers, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France (b) Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR CEA-CNRS, BAcentst. 12, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France (c) Laboratoire d'Oceanographie Chimique et Geochimie des Eaux, Campus de la Plaine, CP 208, 2 Boulevard du Triomphe, Universite Libre de Bruxelles, 1050 Brussels, Belgium (d) Woods Hole Oceanographic Institution (WHOI), Department of Geology & Geophysics, 100 C McLean Lab, Woods Hole, MA 02543, USA
- Published
- 2005
42. Rehabilitation seltener Erkrankungen im Erwachsenenalter: Osteogenesis imperfecta
- Author
-
Gehlen, M., primary, Schwarz-Eywill, M., additional, Hinz, C., additional, Pfeifer, M., additional, Siebers-Renelt, U., additional, Ratanski, M., additional, and Maier, A., additional
- Published
- 2020
- Full Text
- View/download PDF
43. Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
- Author
-
Gehlen, M., primary, Berthet, S., additional, Séférian, R., additional, Ethé, Ch., additional, and Penduff, T., additional
- Published
- 2020
- Full Text
- View/download PDF
44. Prävalenz der systemischen Mastozytose in einem Patientenkollektiv von 8392 Patienten mit Osteoporose
- Author
-
Gehlen, M, additional, Schmidt, N, additional, Pfeifer, M, additional, Hinz, C, additional, Lazarescu, AD, additional, Minne, H, additional, Maier, A, additional, and Siggelkow, H, additional
- Published
- 2020
- Full Text
- View/download PDF
45. Osteoporose bei systemischer Mastozytose: Ergebnisse von 1.374 Beckenkammbiopsien
- Author
-
Gehlen, M, Schmidt, N, Hinz, C, Pfeifer, M, Lazarescu, AD, Schwarz-Eywill, M, and Siggelkow, H
- Subjects
ddc: 610 ,610 Medical sciences ,Medicine - Abstract
Einleitung: Unter einer Mastozytose versteht man eine Gruppe seltener Erkrankungen mit einer klonalen Vermehrung von Mastzellen in einem oder mehreren Organen. Die systemische Mastozytose kann Ursache einer sekundären Osteoporose sein. Im Rahmen dieser Studie sollten die Zahlen zur Diagnose in [zum vollständigen Text gelangen Sie über die oben angegebene URL], 47. Kongress der Deutschen Gesellschaft für Rheumatologie (DGRh), 33. Jahrestagung der Deutschen Gesellschaft für Orthopädische Rheumatologie (DGORh), 29. Jahrestagung der Gesellschaft für Kinder- und Jugendrheumatologie (GKJR)
- Published
- 2019
- Full Text
- View/download PDF
46. Schwangerschaftsassoziierte Osteoporose: Langzeit-Outcome einer sehr seltenen Erkrankung unter besonderer Berücksichtigung der Psyche
- Author
-
Gehlen, M, Lazarescu, AD, Hinz, C, Schwarz-Eywill, M, Pfeifer, M, Dräger, B, Maier, A, Tiefenbach, M, and Minne, H
- Subjects
ddc: 610 ,610 Medical sciences ,Medicine - Abstract
Einleitung: Eine schwangerschaftsassoziierte Osteoporose ist eine sehr seltene Erkrankung (4-6 Erkrankungen pro 1 Million Schwangerschaften, ca. 200 publizierte Fälle). Fragestellung: • Was ist die Ursache für die starken psychischen Probleme und wie können diese beeinflusst[zum vollständigen Text gelangen Sie über die oben angegebene URL], 46. Kongress der Deutschen Gesellschaft für Rheumatologie (DGRh), 32. Jahrestagung der Deutschen Gesellschaft für Orthopädische Rheumatologie (DGORh), Wissenschaftliche Herbsttagung der Gesellschaft für Kinder- und Jugendrheumatologie (GKJR)
- Published
- 2019
- Full Text
- View/download PDF
47. Global carbon budget 2019 [Data paper]
- Author
-
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quere, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschutzer, P., Lauvset, S. K., Lefèvre, Nathalie, Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, Jems, Nakaoka, S. I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Seferian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use change (E-LUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2009-2018), E-FF was 9.5 +/- 0.5 GtC yr 1, E-LUC 1.5 +/- 0.7 GtC yr 1, G(ATM) 4.9 +/- 0.02 GtC yr(-1) (2.3 +/- 0.01 ppm yr(-1)), S-OCEAN 2.5 +/- 0.6 GtC yr(-1), and S-LAND 3.2 +/- 0.6 GtC yr(-1), with a budget imbalance B-IM of 0.4 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in E-FF was about 2.1% and fossil emissions increased to 10.0 +/- 0.5 GtC yr 1, reaching 10 GtC yr(-1) for the first time in history, E-LUC was 1.5 +/- 0.7 GtC yr(-1), for total anthropogenic CO2 emissions of 11.5 +/- 0.9 GtC yr(-1) (42.5 +/- 3.3 GtCO(2)). Also for 2018, G(ATM) was 5.1 +/- 0.2 GtC yr(-1) (2.4 +/- 0.1 ppm yr(-1)), S-OCEAN was 2.6 +/- 0.6 GtC yr(-1), and S-LAND was 3.5 +/- 0.7 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38 +/- 0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6-10 months indicate a reduced growth in E-FF of +0.6% (range of -0.2% to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959-2018, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018a, b, 2016, 2015a, b, 2014, 2013).
- Published
- 2019
48. SCOR WG149 Handbook to support the SCOR Best Practice Guide for Multiple Drivers Marine Research
- Author
-
Boyd, P.W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J-P., Havenhand, J., Hutchins, D.A., McGraw, C.M., Riebesell, U., Vichi, M., Biswas, H., Ciotti, A., Dillingham, P., Gao, K., Gehlen, M., Hurd, C.L., Kurihawa, H., Navarro, J., Nilsson, G.E., Passow, U., Portner, H-O., National Institute of Water and Atmospheric Research [Wellington] (NIWA), Végétaux marins et biomolécules, Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-GOEMAR-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), College of Marine Studies (CMS), University of Delaware [Newark], Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Council for Scientific and Industrial Research [Pretoria] (CSIR), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Faculty of Engineering, Chiba University, Biogeoscience (AWI), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), University of Tasmania, on behalf of Scientific Committee on Oceanic Research (SCOR), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Meddle ,Parameter Discipline::Chemical oceanography::Nutrients ,pH ,[SDE.MCG]Environmental Sciences/Global Changes ,Ocean acidification ,Chemical oceanography::Carbonate system [Parameter Discipline] ,Physical oceanography::Water column temperature and salinity [Parameter Discipline] ,15. Life on land ,Parameter Discipline::Chemical oceanography::Carbon, nitrogen and phosphorus ,[SDE.ES]Environmental Sciences/Environmental and Society ,Parameter Discipline::Physical oceanography::Water column temperature and salinity ,Carbon dioxide ,13. Climate action ,SCOR WG149 ,Chemical oceanography::Carbon, nitrogen and phosphorus [Parameter Discipline] ,Parameter Discipline::Chemical oceanography::Carbonate system ,Chemical oceanography::Nutrients [Parameter Discipline] ,sense organs ,14. Life underwater ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Hypoxia ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography - Abstract
Marine species and ecosystems are exposed to a wide range of environmental change – both detrimental (threats) and beneficial – due to human activities. Some of the changes are global, whereas others are regional or local. It is important to distinguish the scale of each threat as the solutions will differ. For example, the mitigation of a global problem requires a global response, which is more difficult to achieve than addressing a local problem with a local response. These wide-ranging changes are often referred to drivers or stressors. The term multiple drivers refers to the concurrent alteration of multiple environmental properties, that are each biologically-influential, by anthropogenic pressures including climate change. These multiple environmental properties are commonly referred to as drivers or stressors, and include temperature, carbon dioxide, pH, oxygen, salinity, density, irradiance and nutrients, eutrophication, UV exposure, and point source pollutants (Figure 1). The multiple drivers framework represents a complex matrix of changing ocean properties, that will vary from locale to locale, and may also alter with season. Published Refereed Current 14.1.1 Nutrients Best Practice
- Published
- 2019
- Full Text
- View/download PDF
49. Impact of risk communication in management of sick building syndrome - experiences with a newly built school building: 5.6-27
- Author
-
Heuser, G, Hoff-Gehlen, M, and Wiesmüller, G A
- Published
- 2005
50. Single Nucleotide Polymorphism in the Gene Encoding Macrophage Migration Inhibitory Factor (MIF) and Its Association with Active Pulmonary Tuberculosis
- Author
-
Rossato Silva, D., primary, Gehlen, M., additional, Bernardi, R.M., additional, Anton, C., additional, Machado, F.D., additional, Costa, E.R.D., additional, and Rossetti, M.L.R., additional
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.