1. Temporal changes in the physical and mechanical properties of beetle elytra during maturation.
- Author
-
Scalet JM, Sprouse PA, Schroeder JD, Dittmer N, Kramer KJ, Kanost MR, and Gehrke SH
- Subjects
- Animals, Chitin, Dehydration, Water, Coleoptera, Tribolium genetics, Tribolium metabolism
- Abstract
Changes in physical properties of Tenebrio molitor and Tribolium castaneum elytra (hardened forewings) were studied to understand how the development of microstructure and chemical interactions determine cuticle mechanical properties. Analysis of these properties supports a model in which cuticular material is continuously secreted from epidermal cells to produce an extracellular matrix so that the outermost layers mature first. It is hypothesized that enzymatic crosslinking and pigmentation reactions along with dehydration help to stabilize the protein-chitin network within the initial layers of cuticle shortly after eclosion. Mature layers are proposed to bear most of the mechanical loads. The frequency dependence of the storage modulus and the tan δ values decreased during the beginning of maturation, reaching constant values after 48 h post-eclosion. A decrease of tan δ indicates an increase in crosslinking of the material. The water content declined from 75% to 31%, with a significant portion lost from within the open spaces between the dorsal and ventral cuticular layers. Dehydration had a less significant influence than protein crosslinking on the mechanical properties of the elytron during maturation. When Tribolium cuticular protein TcCP30 expression was decreased by RNAi, the tan δ and frequency dependence of E' of the elytron did not change during maturation. This indicates that TcCP30 plays a role in the crosslinking process of the beetle's exoskeleton. This study was inspired by previous work on biomimetic multicomponent materials and helps inform future work on creating robust lightweight materials derived from natural sources. STATEMENT OF SIGNIFICANCE: Examination of changes in the physical properties of the elytra (hardened forewings) of two beetle species advanced understanding of how the molecular interactions influence the mechanical properties of the elytra. Physical characterization, including dynamic mechanical analysis, determined that the outer portion of the elytra matured first, while epidermal cells continued to secrete reactive components until the entire structure reached maturation. RNA interference was used to identify the role of a key protein in the elytra. Suppression of its expression reduced the formation of crosslinked polymeric components in the elytra. Identifying the molecular interactions in the matrix of proteins and polysaccharides in the elytra together with their hierarchical architecture provides important design concepts in the development of biomimetic materials., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier Ltd.)
- Published
- 2022
- Full Text
- View/download PDF