1. Characterization of EpCAM in thyroid cancer biology by three-dimensional spheroids in vitro model
- Author
-
Viola Ghiandai, Elisa Stellaria Grassi, Giacomo Gazzano, Laura Fugazzola, and Luca Persani
- Subjects
Thyroid cancer ,Tumor-initiating cells ,EpCAM ,Spheroid cultures ,Regulated intramembrane proteolysis ,Drug resistance ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 ,Cytology ,QH573-671 - Abstract
Abstract Background Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. Methods The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages’ inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. Results Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient’s samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. Conclusions Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.
- Published
- 2024
- Full Text
- View/download PDF