1. Translational Biomarkers and Ex Vivo Models of Joint Tissues as a Tool for Drug Development in Rheumatoid Arthritis
- Author
-
Morten A. Karsdal, Christian S. Thudium, Thorbjørn Gantzel, Martin Braddock, A.-C. Bay-Jensen, Emma L Graham, Cecilie Freja Kjelgaard-Petersen, K. Musa, Michael E. Weinblatt, Gillian Slynn, Martin Jenkins, and Adam Platt
- Subjects
0301 basic medicine ,Pyridines ,Morpholines ,Immunology ,Syk ,Arthritis ,Aminopyridines ,Cartilage metabolism ,Pharmacology ,Fostamatinib ,Arthritis, Rheumatoid ,Translational Research, Biomedical ,03 medical and health sciences ,0302 clinical medicine ,Rheumatology ,Interstitial matrix ,Drug Development ,Drug Discovery ,Oxazines ,medicine ,Immunology and Allergy ,Humans ,030203 arthritis & rheumatology ,business.industry ,Synovial Membrane ,medicine.disease ,030104 developmental biology ,medicine.anatomical_structure ,Cartilage ,Pyrimidines ,Drug development ,Rheumatoid arthritis ,Antirheumatic Agents ,Collagen ,Synovial membrane ,business ,Biomarkers ,medicine.drug - Abstract
Objective Rheumatoid arthritis (RA) is a chronic and degenerative autoimmune joint disease that leads to disability, reduced quality of life, and increased mortality. Although several synthetic and biologic disease-modifying antirheumatic drugs are available, there is still a medical need for novel drugs that control disease progression. As only 10% of experimental drug candidates for treatment of RA that enter phase I trials are eventually registered by the Food and Drug Administration, there is an immediate need for translational tools to facilitate early decision-making in drug development. In this study, we aimed to determine if the inability of fostamatinib (a small molecule inhibitor of Syk) to demonstrate sufficient efficacy in phase III of a previous clinical study could have been predicted earlier in the development process. Methods Biomarkers of bone, cartilage, and interstitial matrix turnover (C-telopeptide of type I collagen [CTX-I], matrix metalloproteinase-derived types I, II, and III collagen neoepitopes [C1M, C2M, and C3M]) were measured in 450 serum samples from the Oral Syk Inhibition in Rheumatoid Arthritis 1 study (OSKIRA-1, a phase III clinical study of the efficacy of fostamatinib in RA) at baseline and follow-up. Additionally, the same biomarkers were subsequently measured in conditioned media from osteoclast, cartilage, and synovial membrane cultured with the active metabolite of fostamatinib, R406, to assess the level of suppression induced by the drug. Results In OSKIRA-1 serum samples and osteoclast and cartilage cultures, fostamatinib suppressed the levels of CTX-I and C2M. In OSKIRA-1 serum samples and synovial membrane cultures, fostamatinib did not mediate any clinical or preclinical effect on either C1M or C3M, which have previously been associated with disease response and efficacy. Conclusion These data demonstrate that translational biomarkers are a potential tool for early assessment and decision-making in drug development for RA treatment.
- Published
- 2017
- Full Text
- View/download PDF