1. Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling.
- Author
-
Calvo-Imirizaldu M, Solis-Barquero SM, Aramendía-Vidaurreta V, García de Eulate R, Domínguez P, Vidorreta M, Echeveste JI, Argueta A, Cacho-Asenjo E, Martinez-Simon A, Bejarano B, and Fernández-Seara MA
- Subjects
- Humans, Male, Female, Middle Aged, Adult, Aged, Glioma diagnostic imaging, Glioma physiopathology, Glioma pathology, Magnetic Resonance Imaging, Brain Mapping, Spin Labels, Brain Neoplasms diagnostic imaging, Brain Neoplasms pathology, Brain Neoplasms physiopathology, Breath Holding, Cerebrovascular Circulation
- Abstract
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types. To that end, 27 patients with brain tumor were studied. Baseline CBF and CVR were measured in tumor, edema, and gray matter (GM) volumes-of-interest (VOIs). Peritumoral ipsilateral ring-shaped VOIs were also generated and mirrored to the contralateral hemisphere. Differences in baseline CBF and CVR were evaluated between contralateral and ipsilateral GM, contralateral and ipsilateral peritumoral rings, and among VOIs and tumor types. CBF in the tumor was higher in grade 4 gliomas than metastases. In grade 4 gliomas, edema had lower CBF than the tumor and contralateral GM. CVR values were different between grade 3 and grade 4 gliomas, and between grade 4 and metastases. CVR values in the tumor were lower compared to the contralateral GM. Differences in CVR between contralateral and ipsilateral-ring VOIs were also found in grade 4 gliomas, presumably suggesting tumor infiltration within the peritumoral tissue. A cut-off value for CVR of 27.9%-signal-change is suggested to differentiate between grade 3 and grade 4 gliomas (specificity = 83.3%, sensitivity = 70.6%). In conclusion, CBF and CVR mapping with ASL offered insights into the perilesional environment that could help to detect infiltrative disease, particularly in grade 4 gliomas. CVR emerged as a potential biomarker to differentiate between grade 3 and grade 4 gliomas., (© 2025 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.)
- Published
- 2025
- Full Text
- View/download PDF