1. Low light intensities increase avoidance behaviour of diurnal fish species: implications for use of road culverts by fish.
- Author
-
Keep JK, Watson JR, Cramp RL, Jones MJ, Gordos MA, Ward PJ, and Franklin CE
- Subjects
- Animals, Australia, Choice Behavior radiation effects, Avoidance Learning radiation effects, Ecosystem, Fishes physiology, Light
- Abstract
Inadequately designed culverts can be physical barriers to fish passage if they increase the velocity of water flow in the environment, alter natural turbulence patterns or fail to provide adequate water depth. They may also act as behavioural barriers to fish passage if they affect the willingness of fish species to enter or pass through the structure due to altered ambient light conditions. To understand how reduced light intensity might affect fish behaviour in culverts, the authors performed a behavioural choice experiment quantifying the amount of time individual fish spent in dark and illuminated areas of a controlled experimental channel. They found that behavioural responses were largely reflective of the species' diel activity patterns; the diurnal species Craterocephalus stercusmuscarum and Retropinna semoni preferred illuminated regions, whereas the nocturnal/crepuscular Macquaria novemaculeata preferred the darkened region of the channel. Bidyanus bidyanus were strongly rheotactic, and their behaviour was influenced more by water flow direction than ambient light level. The authors then determined that a threshold light intensity of only c. 100-200 lx (cf. midday sunlight c. 100,000 lx) was required to overcome the behavioural barrier in c. 70% of the diurnally active C. stercusmuscarum and R. semoni tested. When these values were placed into an environmental context, 15 road-crossing (3.4-7.0 m long) box (c. 1 m × 1 m, height × width) and pipe (c. 1 m diameter) culverts sampled in Brisbane, Australia, recorded light intensities in the centre of the structure that were below the threshold for C. stercusmuscarum and R. semoni movement and could potentially be a barrier to their passage through the structure. Attention is required to better understand the impacts of low light intensity in culverts on fish passage and to prioritize restoration., (© 2020 Fisheries Society of the British Isles.)
- Published
- 2021
- Full Text
- View/download PDF