1. Quantifying Asymmetric Gait Pattern Changes Using a Hidden Markov Model Similarity Measure (HMM-SM) on Inertial Sensor Signals.
- Author
-
Ng, Gabriel, Gouda, Aliaa, and Andrysek, Jan
- Subjects
- *
HIDDEN Markov models , *THIGH , *WEARABLE technology , *MACHINE learning , *DECISION making - Abstract
Wearable gait analysis systems using inertial sensors offer the potential for easy-to-use gait assessment in lab and free-living environments. This can enable objective long-term monitoring and decision making for individuals with gait disabilities. This study explores a novel approach that applies a hidden Markov model-based similarity measure (HMM-SM) to assess changes in gait patterns based on the gyroscope and accelerometer signals from just one or two inertial sensors. Eleven able-bodied individuals were equipped with a system which perturbed gait patterns by manipulating stance-time symmetry. Inertial sensor data were collected from various locations on the lower body to train hidden Markov models. The HMM-SM was evaluated to determine whether it corresponded to changes in gait as individuals deviated from their baseline, and whether it could provide a reliable measure of gait similarity. The HMM-SM showed consistent changes in accordance with stance-time symmetry in the following sensor configurations: pelvis, combined upper leg signals, and combined lower leg signals. Additionally, the HMM-SM demonstrated good reliability for the combined upper leg signals (ICC = 0.803) and lower leg signals (ICC = 0.795). These findings provide preliminary evidence that the HMM-SM could be useful in assessing changes in overall gait patterns. This could enable the development of compact, wearable systems for unsupervised gait assessment, without the requirement to pre-identify and measure a set of gait parameters. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF