11 results on '"Grajales Dau, A."'
Search Results
2. Purification-based quantum error mitigation of pair-correlated electron simulations
- Author
-
O’Brien, T. E., Anselmetti, G., Gkritsis, F., Elfving, V. E., Polla, S., Huggins, W. J., Oumarou, O., Kechedzhi, K., Abanin, D., Acharya, R., Aleiner, I., Allen, R., Andersen, T. I., Anderson, K., Ansmann, M., Arute, F., Arya, K., Asfaw, A., Atalaya, J., Bardin, J. C., Bengtsson, A., Bortoli, G., Bourassa, A., Bovaird, J., Brill, L., Broughton, M., Buckley, B., Buell, D. A., Burger, T., Burkett, B., Bushnell, N., Campero, J., Chen, Z., Chiaro, B., Chik, D., Cogan, J., Collins, R., Conner, P., Courtney, W., Crook, A. L., Curtin, B., Debroy, D. M., Demura, S., Drozdov, I., Dunsworth, A., Erickson, C., Faoro, L., Farhi, E., Fatemi, R., Ferreira, V. S., Flores Burgos, L., Forati, E., Fowler, A. G., Foxen, B., Giang, W., Gidney, C., Gilboa, D., Giustina, M., Gosula, R., Grajales Dau, A., Gross, J. A., Habegger, S., Hamilton, M. C., Hansen, M., Harrigan, M. P., Harrington, S. D., Heu, P., Hoffmann, M. R., Hong, S., Huang, T., Huff, A., Ioffe, L. B., Isakov, S. V., Iveland, J., Jeffrey, E., Jiang, Z., Jones, C., Juhas, P., Kafri, D., Khattar, T., Khezri, M., Kieferová, M., Kim, S., Klimov, P. V., Klots, A. R., Korotkov, A. N., Kostritsa, F., Kreikebaum, J. M., Landhuis, D., Laptev, P., Lau, K.-M., Laws, L., Lee, J., Lee, K., Lester, B. J., Lill, A. T., Liu, W., Livingston, W. P., Locharla, A., Malone, F. D., Mandrà, S., Martin, O., Martin, S., McClean, J. R., McCourt, T., McEwen, M., Mi, X., Mieszala, A., Miao, K. C., Mohseni, M., Montazeri, S., Morvan, A., Movassagh, R., Mruczkiewicz, W., Naaman, O., Neeley, M., Neill, C., Nersisyan, A., Newman, M., Ng, J. H., Nguyen, A., Nguyen, M., Niu, M. Y., Omonije, S., Opremcak, A., Petukhov, A., Potter, R., Pryadko, L. P., Quintana, C., Rocque, C., Roushan, P., Saei, N., Sank, D., Sankaragomathi, K., Satzinger, K. J., Schurkus, H. F., Schuster, C., Shearn, M. J., Shorter, A., Shutty, N., Shvarts, V., Skruzny, J., Smith, W. C., Somma, R. D., Sterling, G., Strain, D., Szalay, M., Thor, D., Torres, A., Vidal, G., Villalonga, B., Vollgraff Heidweiller, C., White, T., Woo, B. W. K., Xing, C., Yao, Z. J., Yeh, P., Yoo, J., Young, G., Zalcman, A., Zhang, Y., Zhu, N., Zobrist, N., Bacon, D., Boixo, S., Chen, Y., Hilton, J., Kelly, J., Lucero, E., Megrant, A., Neven, H., Smelyanskiy, V., Gogolin, C., Babbush, R., and Rubin, N. C.
- Published
- 2023
- Full Text
- View/download PDF
3. Optimizing quantum gates towards the scale of logical qubits
- Author
-
Paul V. Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa, Sabrina Hong, Andrew Dunsworth, Kevin J. Satzinger, William P. Livingston, Volodymyr Sivak, Murphy Yuezhen Niu, Trond I. Andersen, Yaxing Zhang, Desmond Chik, Zijun Chen, Charles Neill, Catherine Erickson, Alejandro Grajales Dau, Anthony Megrant, Pedram Roushan, Alexander N. Korotkov, Julian Kelly, Vadim Smelyanskiy, Yu Chen, and Hartmut Neven
- Subjects
Science - Abstract
Abstract A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ~3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to a variety of quantum operations, algorithms, and computing architectures.
- Published
- 2024
- Full Text
- View/download PDF
4. Formation of robust bound states of interacting microwave photons
- Author
-
Morvan, A, Andersen, TI, Mi, X, Neill, C, Petukhov, A, Kechedzhi, K, Abanin, DA, Michailidis, A, Acharya, R, Arute, F, Arya, K, Asfaw, A, Atalaya, J, Bardin, JC, Basso, J, Bengtsson, A, Bortoli, G, Bourassa, A, Bovaird, J, Brill, L, Broughton, M, Buckley, BB, Buell, DA, Burger, T, Burkett, B, Bushnell, N, Chen, Z, Chiaro, B, Collins, R, Conner, P, Courtney, W, Crook, AL, Curtin, B, Debroy, DM, Del Toro Barba, A, Demura, S, Dunsworth, A, Eppens, D, Erickson, C, Faoro, L, Farhi, E, Fatemi, R, Flores Burgos, L, Forati, E, Fowler, AG, Foxen, B, Giang, W, Gidney, C, Gilboa, D, Giustina, M, Grajales Dau, A, Gross, JA, Habegger, S, Hamilton, MC, Harrigan, MP, Harrington, SD, Hoffmann, M, Hong, S, Huang, T, Huff, A, Huggins, WJ, Isakov, SV, Iveland, J, Jeffrey, E, Jiang, Z, Jones, C, Juhas, P, Kafri, D, Khattar, T, Khezri, M, Kieferová, M, Kim, S, Kitaev, AY, Klimov, PV, Klots, AR, Korotkov, AN, Kostritsa, F, Kreikebaum, JM, Landhuis, D, Laptev, P, Lau, K-M, Laws, L, Lee, J, Lee, KW, Lester, BJ, Lill, AT, Liu, W, Locharla, A, Malone, F, Martin, O, McClean, JR, McEwen, M, Meurer Costa, B, Miao, KC, Mohseni, M, Montazeri, S, Mount, E, Mruczkiewicz, W, Naaman, O, and Neeley, M
- Subjects
Quantum Physics ,Physical Sciences ,Photons ,Microwaves ,Electrons ,Fees and Charges ,Reproduction ,General Science & Technology - Abstract
Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2-9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.
- Published
- 2022
5. Purification-based quantum error mitigation of pair-correlated electron simulations
- Author
-
O’Brien, TE, Anselmetti, G, Gkritsis, F, Elfving, VE, Polla, S, Huggins, WJ, Oumarou, O, Kechedzhi, K, Abanin, D, Acharya, R, Aleiner, I, Allen, R, Andersen, TI, Anderson, K, Ansmann, M, Arute, F, Arya, K, Asfaw, A, Atalaya, J, Bardin, JC, Bengtsson, A, Bortoli, G, Bourassa, A, Bovaird, J, Brill, L, Broughton, M, Buckley, B, Buell, DA, Burger, T, Burkett, B, Bushnell, N, Campero, J, Chen, Z, Chiaro, B, Chik, D, Cogan, J, Collins, R, Conner, P, Courtney, W, Crook, AL, Curtin, B, Debroy, DM, Demura, S, Drozdov, I, Dunsworth, A, Erickson, C, Faoro, L, Farhi, E, Fatemi, R, Ferreira, VS, Flores Burgos, L, Forati, E, Fowler, AG, Foxen, B, Giang, W, Gidney, C, Gilboa, D, Giustina, M, Gosula, R, Grajales Dau, A, Gross, JA, Habegger, S, Hamilton, MC, Hansen, M, Harrigan, MP, Harrington, SD, Heu, P, Hoffmann, MR, Hong, S, Huang, T, Huff, A, Ioffe, LB, Isakov, SV, Iveland, J, Jeffrey, E, Jiang, Z, Jones, C, Juhas, P, Kafri, D, Khattar, T, Khezri, M, Kieferová, M, Kim, S, Klimov, PV, Klots, AR, Korotkov, AN, Kostritsa, F, Kreikebaum, JM, Landhuis, D, Laptev, P, Lau, KM, Laws, L, Lee, J, Lee, K, Lester, BJ, Lill, AT, Liu, W, Livingston, WP, Locharla, A, Malone, FD, O’Brien, TE, Anselmetti, G, Gkritsis, F, Elfving, VE, Polla, S, Huggins, WJ, Oumarou, O, Kechedzhi, K, Abanin, D, Acharya, R, Aleiner, I, Allen, R, Andersen, TI, Anderson, K, Ansmann, M, Arute, F, Arya, K, Asfaw, A, Atalaya, J, Bardin, JC, Bengtsson, A, Bortoli, G, Bourassa, A, Bovaird, J, Brill, L, Broughton, M, Buckley, B, Buell, DA, Burger, T, Burkett, B, Bushnell, N, Campero, J, Chen, Z, Chiaro, B, Chik, D, Cogan, J, Collins, R, Conner, P, Courtney, W, Crook, AL, Curtin, B, Debroy, DM, Demura, S, Drozdov, I, Dunsworth, A, Erickson, C, Faoro, L, Farhi, E, Fatemi, R, Ferreira, VS, Flores Burgos, L, Forati, E, Fowler, AG, Foxen, B, Giang, W, Gidney, C, Gilboa, D, Giustina, M, Gosula, R, Grajales Dau, A, Gross, JA, Habegger, S, Hamilton, MC, Hansen, M, Harrigan, MP, Harrington, SD, Heu, P, Hoffmann, MR, Hong, S, Huang, T, Huff, A, Ioffe, LB, Isakov, SV, Iveland, J, Jeffrey, E, Jiang, Z, Jones, C, Juhas, P, Kafri, D, Khattar, T, Khezri, M, Kieferová, M, Kim, S, Klimov, PV, Klots, AR, Korotkov, AN, Kostritsa, F, Kreikebaum, JM, Landhuis, D, Laptev, P, Lau, KM, Laws, L, Lee, J, Lee, K, Lester, BJ, Lill, AT, Liu, W, Livingston, WP, Locharla, A, and Malone, FD
- Abstract
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations.
- Published
- 2023
6. Quantum information phases in space-time: measurement-induced entanglement and teleportation on a noisy quantum processor
- Author
-
Jesse Hoke, Matteo Ippoliti, Dmitry Abanin, Rajeev Acharya, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Joseph Bardin, Andreas Bengtsson, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob Buckley, David Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Zijun Chen, Ben Chiaro, Desmond Chik, Charina Chou, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander Crook, Ben Curtin, Alejandro Grajales Dau, Dripto Debroy, Alexander Del Toro Barba, Sean Demura, Augustin Di Paolo, Ilya Drozdov, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Lara Faoro, Edward Farhi, Reza Fatemi, Vinicius Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin Fowler, Brooks Foxen, William Giang, Craig Gidney, Dar Gilboa, Marissa Giustina, Raja Gosula, Jonathan Gross, Steve Habegger, Michael Hamilton, Monica Hansen, Matthew Harrigan, Sean Harrington, Paula Heu, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, William Huggins, Sergei Isakov, Justin Iveland, E. Jeffrey, Cody Jones, Pavol Juhas, Dvir Kafri, Kostyantyn Kechedzhi, Tanuj Khattar, Mostafa Khezri, Marika Kieferova, Seon Kim, Alexei Kitaev, Paul Klimov, Andrey Klots, Alexander Korotkov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee, Kenny Lee, Yuri Lensky, Brian Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Fionn Malone, Orion Martin, Jarrod McClean, Matt McEwen, Kevin Miao, Amanda Mieszala, Shirin Montazeri, Alexis Morvan, Ramis Movassagh, Wojciech Mruczkiewicz, Matthew Neeley, Charles Neill, Ani Nersisyan, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Murphy Niu, Thomas O'Brien, Seun Omonije, Alex Opremcak, Andre Petukhov, Rebecca Potter, Leonid Pryadko, Chris Quintana, Charles Rocque, Nicholas Rubin, Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin Satzinger, Henry Schurkus, Christopher Schuster, Michael Shearn, Aaron Shorter, Noah Shutty, Shvarts Vladimir, Jindra Skruzny, W. Smith, Rolando Somma, George Sterling, Doug Strain, Marco Szalay, Alfredo Torres, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Bryan Woo, Cheng Xing, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Hartmut Neven, Dave Bacon, Sergio Boixo, Jeremy Hilton, Erik Lucero, Anthony Megrant, Julian Kelly, Yu Chen, Vadim Smelyanskiy, Xiao Mi, Vedika Khemani, and Pedram Roushan
- Abstract
Measurement has a special role in quantum theory1: by collapsing the wavefunction it can enable phenomena such as teleportation2 and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time3-10 that go beyond established paradigms for characterizing phases, either in or out of equilibrium11-13. On present-day NISQ processors14, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15-17 to avoid mid-circuit measurement and access different manifestations of the underlying phases—from entanglement scaling3,4 to measurement-induced teleportation18—in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
- Published
- 2023
- Full Text
- View/download PDF
7. Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
- Author
-
White, Theodore, primary, Opremcak, Alex, additional, Sterling, George, additional, Korotkov, Alexander, additional, Sank, Daniel, additional, Acharya, Rajeev, additional, Ansmann, Markus, additional, Arute, Frank, additional, Arya, Kunal, additional, Bardin, Joseph C., additional, Bengtsson, Andreas, additional, Bourassa, Alexandre, additional, Bovaird, Jenna, additional, Brill, Leon, additional, Buckley, Bob B., additional, Buell, David A., additional, Burger, Tim, additional, Burkett, Brian, additional, Bushnell, Nicholas, additional, Chen, Zijun, additional, Chiaro, Ben, additional, Cogan, Josh, additional, Collins, Roberto, additional, Crook, Alexander L., additional, Curtin, Ben, additional, Demura, Sean, additional, Dunsworth, Andrew, additional, Erickson, Catherine, additional, Fatemi, Reza, additional, Burgos, Leslie Flores, additional, Forati, Ebrahim, additional, Foxen, Brooks, additional, Giang, William, additional, Giustina, Marissa, additional, Grajales Dau, Alejandro, additional, Hamilton, Michael C., additional, Harrington, Sean D., additional, Hilton, Jeremy, additional, Hoffmann, Markus, additional, Hong, Sabrina, additional, Huang, Trent, additional, Huff, Ashley, additional, Iveland, Justin, additional, Jeffrey, Evan, additional, Kieferová, Mária, additional, Kim, Seon, additional, Klimov, Paul V., additional, Kostritsa, Fedor, additional, Kreikebaum, John Mark, additional, Landhuis, David, additional, Laptev, Pavel, additional, Laws, Lily, additional, Lee, Kenny, additional, Lester, Brian J., additional, Lill, Alexander, additional, Liu, Wayne, additional, Locharla, Aditya, additional, Lucero, Erik, additional, McCourt, Trevor, additional, McEwen, Matt, additional, Mi, Xiao, additional, Miao, Kevin C., additional, Montazeri, Shirin, additional, Morvan, Alexis, additional, Neeley, Matthew, additional, Neill, Charles, additional, Nersisyan, Ani, additional, Ng, Jiun How, additional, Nguyen, Anthony, additional, Nguyen, Murray, additional, Potter, Rebecca, additional, Quintana, Chris, additional, Roushan, Pedram, additional, Sankaragomathi, Kannan, additional, Satzinger, Kevin J., additional, Schuster, Christopher, additional, Shearn, Michael J., additional, Shorter, Aaron, additional, Shvarts, Vladimir, additional, Skruzny, Jindra, additional, Smith, W. Clarke, additional, Szalay, Marco, additional, Torres, Alfredo, additional, Woo, Bryan W. K., additional, Yao, Z. Jamie, additional, Yeh, Ping, additional, Yoo, Juhwan, additional, Young, Grayson, additional, Zhu, Ningfeng, additional, Zobrist, Nicholas, additional, Chen, Yu, additional, Megrant, Anthony, additional, Kelly, Julian, additional, and Naaman, Ofer, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Formation of robust bound states of interacting microwave photons
- Author
-
A. Morvan, T. I. Andersen, X. Mi, C. Neill, A. Petukhov, K. Kechedzhi, D. A. Abanin, A. Michailidis, R. Acharya, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, J. Basso, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, Z. Chen, B. Chiaro, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, A. Del Toro Barba, S. Demura, A. Dunsworth, D. Eppens, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. P. Harrigan, S. D. Harrington, M. Hoffmann, S. Hong, T. Huang, A. Huff, W. J. Huggins, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri, M. Kieferová, S. Kim, A. Y. Kitaev, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K.-M. Lau, L. Laws, J. Lee, K. W. Lee, B. J. Lester, A. T. Lill, W. Liu, A. Locharla, F. Malone, O. Martin, J. R. McClean, M. McEwen, B. Meurer Costa, K. C. Miao, M. Mohseni, S. Montazeri, E. Mount, W. Mruczkiewicz, O. Naaman, M. Neeley, A. Nersisyan, M. Newman, A. Nguyen, M. Nguyen, M. Y. Niu, T. E. O’Brien, R. Olenewa, A. Opremcak, R. Potter, C. Quintana, N. C. Rubin, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, V. Shvarts, J. Skruzny, W. C. Smith, D. Strain, G. Sterling, Y. Su, M. Szalay, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff-Heidweiller, T. White, C. Xing, Z. Yao, P. Yeh, J. Yoo, A. Zalcman, Y. Zhang, N. Zhu, H. Neven, D. Bacon, J. Hilton, E. Lucero, R. Babbush, S. Boixo, A. Megrant, J. Kelly, Y. Chen, V. Smelyanskiy, I. Aleiner, L. B. Ioffe, and P. Roushan
- Subjects
Photons ,Quantum Physics ,Multidisciplinary ,Condensed Matter - Mesoscale and Nanoscale Physics ,General Science & Technology ,Reproduction ,FOS: Physical sciences ,Electrons ,Condensed Matter - Other Condensed Matter ,Fees and Charges ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Microwaves ,Quantum Physics (quant-ph) ,Other Condensed Matter (cond-mat.other) - Abstract
Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit., 7 pages + 15 pages supplements
- Published
- 2022
9. Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
- Author
-
Theodore White, Alex Opremcak, George Sterling, Alexander Korotkov, Daniel Sank, Rajeev Acharya, Markus Ansmann, Frank Arute, Kunal Arya, Joseph C. Bardin, Andreas Bengtsson, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Zijun Chen, Ben Chiaro, Josh Cogan, Roberto Collins, Alexander L. Crook, Ben Curtin, Sean Demura, Andrew Dunsworth, Catherine Erickson, Reza Fatemi, Leslie Flores Burgos, Ebrahim Forati, Brooks Foxen, William Giang, Marissa Giustina, Alejandro Grajales Dau, Michael C. Hamilton, Sean D. Harrington, Jeremy Hilton, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, Justin Iveland, Evan Jeffrey, Mária Kieferová, Seon Kim, Paul V. Klimov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Lily Laws, Kenny Lee, Brian J. Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Erik Lucero, Trevor McCourt, Matt McEwen, Xiao Mi, Kevin C. Miao, Shirin Montazeri, Alexis Morvan, Matthew Neeley, Charles Neill, Ani Nersisyan, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Rebecca Potter, Chris Quintana, Pedram Roushan, Kannan Sankaragomathi, Kevin J. Satzinger, Christopher Schuster, Michael J. Shearn, Aaron Shorter, Vladimir Shvarts, Jindra Skruzny, W. Clarke Smith, Marco Szalay, Alfredo Torres, Bryan W. K. Woo, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Ningfeng Zhu, Nicholas Zobrist, Yu Chen, Anthony Megrant, Julian Kelly, and Ofer Naaman
- Subjects
Superconductivity (cond-mat.supr-con) ,Quantum Physics ,Physics and Astronomy (miscellaneous) ,Condensed Matter - Superconductivity ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,Physics - Applied Physics ,Quantum Physics (quant-ph) - Abstract
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $\Omega$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs., Comment: 10 pages, 10 figures
- Published
- 2022
10. Purification-based quantum error mitigation of pair-correlated electron simulations
- Author
-
Thomas O'Brien, Gian-Luca Anselmetti, Fotios Gkritsis, Vincent Elfving, Stefano Polla, William Huggins, Oumarou Oumarou, Kostyantyn Kechedzhi, Dmitry Abanin, Rajeev Acharya, Igor Aleiner, Richard Allen, Trond Andersen, Kyle Anderson, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Dave Bacon, Joseph Bardin, Andreas Bengtsson, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob Buckley, David Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Juan Campero, Yu Chen, Zijun Chen, Ben Chiaro, Desmond Chik, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander Crook, Ben Curtin, Dripto Debroy, Alexander Del Toro Barba, Sean Demura, Ilya Drozdov, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Lara Faoro, Edward Farhi, Reza Fatemi, Vinicius Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin Fowler, Brooks Foxen, William Giang, Craig Gidney, Dar Gilboa, Marissa Giustina, Raja Gosula, Alejandro Grajales Dau, Jonathan Gross, Steve Habegger, Michael Hamilton, Monica Hansen, Matthew Harrigan, Sean Harrington, Paula Heu, Jeremy Hilton, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, L. B. Ioffe, Sergei Isakov, Justin Iveland, E. Jeffrey, Zhang Jiang, Cody Jones, Pavol Juhas, Dvir Kafri, Julian Kelly, Tanuj Khattar, Mostafa Khezri, Marika Kieferova, Seon Kim, Paul Klimov, Andrey Klots, Alexander Korotkov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee, Kenny Lee, Brian Lester, Alexander Lill, Wayne Liu, William Livingston, Aditya Locharla, Erik Lucero, Fionn Malone, Salvatore Mandra, Orion Martin, Steven Martin, Jarrod McClean, Trevor McCourt, Matthew McEwen, Anthony Megrant, Xiao Mi, Kevin Miao, Amanda Mieszala, Masoud Mohseni, Shirin Montazeri, Alexis Morvan, Ramis Movassagh, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Murphy Niu, Seun Omonije, Alex Opremcak, Andre Petukhov, Rebecca Potter, Leonid Pryadko, Chris Quintana, Charles Rocque, Pedram Roushan, Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin Satzinger, Henry Schurkus, Michael Shearn, Aaron Shorter, Noah Shutty, Shvarts Vladimir, Jindra Skruzny, Vadim Smelyanskiy, W. Clarke Smith, Rolando Somma, George Sterling, Doug Strain, Marco Szalay, Douglas Thor, Alfredo Torres, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Bryan Woo, Cheng Xing, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Christian Gogolin, Ryan Babbush, and Nicholas Rubin
- Subjects
Quantum Physics ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to $20$ qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations., Comment: 10 pages, 13 page supplementary material, 12 figures. Experimental data available at https://doi.org/10.5281/zenodo.7225821
- Published
- 2022
- Full Text
- View/download PDF
11. Does the role of Chief Information Officer & Chief Digital Officer will remain in the future within the digital transformation of organizations? A literature review
- Author
-
Cano M., Jeimy J., Grajales Dau, Michelle, Cano M., Jeimy J., and Grajales Dau, Michelle
- Abstract
La aparición del Chief Digital Officer (CDO) en la estructura organizacional ha provocado ciertas discusiones en la literatura y en la práctica sobre las implicaciones que este escenario tiene para el Chief Information Officer (CIO) donde se evidencia la falta de claridad con respecto a la dinámica de ambos roles y su futuro dentro de las organizaciones. Este artículo busca comprender el panorama en el que se ubican ambos roles, mostrando sus características y la percepción de ambos miembros de la organización sobre los roles, considerando el contexto de la transformación digital y la evolución de las interacciones entre las partes interesadas, como parte del surgimiento de las nuevas tecnologías y el cambio cultural hacia la digitalización. En este sentido, se establece cómo el CIO debe enfocarse en mantener una gestión de TI óptima, brindando una visión más estratégica del área, mientras que el CDO debe liderar las iniciativas digitales, comprender el journey de los consumidores y buscar nuevas oportunidades para cambiar la forma de hacer negocios. A partir de esto, se establece que aunque ambos roles serán necesarios en un futuro próximo, el CDO se mantendrá hasta que la empresa esté completamente digitalizada, donde se podría evidenciar una evolución del rol hacia la búsqueda de innovación. Finalmente, fue evidente cómo, al considerar las diferencias entre cada organización, los líderes empresariales deben ser claros en su propio contexto y sus objetivos digitales, para que tengan un plan de acción apropiado para esta evolución., The appearance of the Chief Digital Officer (CDO) in the organizational structure has caused certain discussions in the literature and in practice towards the implications that this scenario has for the Chief Information Officer (CIO), where there is evidence of a lack of clarity regarding the dynamics of both roles and their future within the organizations. This article seeks to understand the panorama in which both roles are located, showing their characteristics and the perception about both roles by other members of the organization, considering the context of the digital transformation and the evolution in the interactions among stakeholders, as part of the emergence of new technologies and the cultural shift towards digitalization. In this sense, it is established how the CIO should focus on maintaining an optimal IT management, giving a more strategic vision to the area, while the CDO should lead the digital initiatives, understanding the journey of the consumers and looking for new opportunities to change the way of doing business. From this, it is established that although both roles will be necessary in the near future, the CDO will remain until the company is completely digitized, where an evolution of the role towards the search for innovation could be evidenced. Finally, it was evident how considering the differences between each organization, business leaders must be clear on their own context and their digital objectives, for them to have an appropriate action plan towards this evolution.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.