30 results on '"Grativol C"'
Search Results
2. Computational identification and analysis of novel sugarcane microRNAs
- Author
-
Thiebaut Flávia, Grativol Clícia, Carnavale-Bottino Mariana, Rojas Cristian, Tanurdzic Milos, Farinelli Laurent, Martienssen Robert A, Hemerly Adriana, and Ferreira Paulo Cavalcanti
- Subjects
Small RNA ,Biotic stress ,Abiotic stress ,Deep sequencing ,Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background MicroRNA-regulation of gene expression plays a key role in the development and response to biotic and abiotic stresses. Deep sequencing analyses accelerate the process of small RNA discovery in many plants and expand our understanding of miRNA-regulated processes. We therefore undertook small RNA sequencing of sugarcane miRNAs in order to understand their complexity and to explore their role in sugarcane biology. Results A bioinformatics search was carried out to discover novel miRNAs that can be regulated in sugarcane plants submitted to drought and salt stresses, and under pathogen infection. By means of the presence of miRNA precursors in the related sorghum genome, we identified 623 candidates of new mature miRNAs in sugarcane. Of these, 44 were classified as high confidence miRNAs. The biological function of the new miRNAs candidates was assessed by analyzing their putative targets. The set of bona fide sugarcane miRNA includes those likely targeting serine/threonine kinases, Myb and zinc finger proteins. Additionally, a MADS-box transcription factor and an RPP2B protein, which act in development and disease resistant processes, could be regulated by cleavage (21-nt-species) and DNA methylation (24-nt-species), respectively. Conclusions A large scale investigation of sRNA in sugarcane using a computational approach has identified a substantial number of new miRNAs and provides detailed genotype-tissue-culture miRNA expression profiles. Comparative analysis between monocots was valuable to clarify aspects about conservation of miRNA and their targets in a plant whose genome has not yet been sequenced. Our findings contribute to knowledge of miRNA roles in regulatory pathways in the complex, polyploidy sugarcane genome.
- Published
- 2012
- Full Text
- View/download PDF
3. DNA methylation impacts soybean early development by modulating hormones and metabolic pathways.
- Author
-
Coelho FS, Miranda SS, Moraes JL, Hemerly AS, Ballesteros HGF, Santa-Catarina C, Dos Santos RC, de Almeida FA, Silveira V, Macedo A, Floh EIS, de Oliveira Alves Sena E, de Oliveira JG, Viccini LF, de Matos EM, and Grativol C
- Subjects
- Gene Expression Regulation, Plant drug effects, Seedlings genetics, Seedlings growth & development, Seedlings metabolism, Plant Roots genetics, Plant Roots metabolism, Plant Roots growth & development, Epigenesis, Genetic, Plant Proteins metabolism, Plant Proteins genetics, DNA Methylation genetics, Glycine max genetics, Glycine max metabolism, Glycine max growth & development, Plant Growth Regulators metabolism, Metabolic Networks and Pathways genetics, Metabolic Networks and Pathways drug effects
- Abstract
Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes., (© 2024 Scandinavian Plant Physiology Society.)
- Published
- 2024
- Full Text
- View/download PDF
4. Flagellin and mannitol modulate callose biosynthesis and deposition in soybean seedlings.
- Author
-
Sangi S, Olimpio GV, Coelho FS, Alexandrino CR, Da Cunha M, and Grativol C
- Subjects
- Seedlings metabolism, Glycine max metabolism, Flagellin genetics, Flagellin metabolism, Phylogeny, Mannitol metabolism, Gene Expression Regulation, Plant, Arabidopsis metabolism
- Abstract
Callose is a polymer deposited on the cell wall and is necessary for plant growth and development. Callose is synthesized by genes from the glucan synthase-like family (GSL) and dynamically responds to various types of stress. Callose can inhibit pathogenic infection, in the case of biotic stresses, and maintain cell turgor and stiffen the plant cell wall in abiotic stresses. Here, we report the identification of 23 GSL genes (GmGSL) in the soybean genome. We performed phylogenetic analyses, gene structure prediction, duplication patterns, and expression profiles on several RNA-Seq libraries. Our analyses show that WGD/Segmental duplication contributed to expanding this gene family in soybean. Next, we analyzed the callose responses in soybean under abiotic and biotic stresses. The data show that callose is induced by both osmotic stress and flagellin 22 (flg22) and is related to the activity of β-1,3-glucanases. By using RT-qPCR, we evaluated the expression of GSL genes during the treatment of soybean roots with mannitol and flg22. The GmGSL23 gene was upregulated in seedlings treated with osmotic stress or flg22, showing the essential role of this gene in the soybean defense response to pathogenic organisms and osmotic stress. Our results provide an important understanding of the role of callose deposition and regulation of GSL genes in response to osmotic stress and flg22 infection in soybean seedlings., (© 2023 Scandinavian Plant Physiology Society.)
- Published
- 2023
- Full Text
- View/download PDF
5. Sugarcane Genotypes with Contrasting Biological Nitrogen Fixation Efficiencies Differentially Modulate Nitrogen Metabolism, Auxin Signaling, and Microorganism Perception Pathways.
- Author
-
Carvalho TLG, Rosman AC, Grativol C, de M Nogueira E, Baldani JI, and Hemerly AS
- Abstract
Sugarcane is an economically important crop that is used for the production of fuel ethanol. Diazotrophic bacteria have been isolated from sugarcane tissues, without causing visible plant anatomical changes or disease symptoms. These bacteria can be beneficial to the plant by promoting root growth and an increase in plant yield. Different rates of Biological Nitrogen Fixation (BNF) were observed in different genotypes. The aim of this work was to conduct a comprehensive molecular and physiological analysis of two model genotypes for contrasting BNF efficiency in order to unravel plant genes that are differentially regulated during a natural association with diazotrophic bacteria. A next-generation sequencing of RNA samples from the genotypes SP70-1143 (high-BNF) and Chunee (low-BNF) was performed. A differential transcriptome analysis showed that several pathways were differentially regulated among the two BNF-contrasting genotypes, including nitrogen metabolism, hormone regulation and bacteria recognition. Physiological analyses, such as nitrogenase and GS activity quantification, bacterial colonization, auxin response and root architecture evaluation, supported the transcriptome expression analyses. The differences observed between the genotypes may explain, at least in part, the differences in BNF contributions. Some of the identified genes might be involved in key regulatory processes for a beneficial association and could be further used as tools for obtaining more efficient BNF genotypes.
- Published
- 2022
- Full Text
- View/download PDF
6. Methyl-CpG binding proteins (MBD) family evolution and conservation in plants.
- Author
-
Coelho FS, Sangi S, Moraes JL, Santos WDS, Gamosa EA, Fernandes KVS, and Grativol C
- Subjects
- CpG Islands genetics, Cytosine, DNA Methylation, Humans, Phylogeny, Plants genetics, Plants metabolism, DNA-Binding Proteins metabolism, Heterochromatin
- Abstract
DNA methylation is an epigenetic mechanism that acts on cytosine residues. The methyl-CpG-binding domain proteins (MBD) are involved in the recognition of methyl-cytosines by activating a signaling cascade that induces the formation of heterochromatin or euchromatin, thereby regulating gene expression. In this study, we analyzed the evolution and conservation of MBD proteins in plants. First, we performed a genome-wide identification and analysis of the MBD family in common bean and soybean, since they have experienced one and two whole-genome duplication events, respectively. We found one pair of MBD paralogs in soybean (GmMBD2) has subfunctionalized after their recent divergence, which was corroborated with their expression profile. Phylogenetic analysis revealed that classes of MBD proteins clustered with human MBD. Interestingly, the MBD9 may have emerged after the hexaploidization event in eudicots. We found that plants and humans share a great similarity in MBDs' binding affinity in the mCpG context. MBD2 and MBD4 from different plant species have the conserved four amino acid residues -Arg (R), Asp (D), Tyr (Y) and Arg (R)- reported to be responsible for MBD-binding in the mCpG. However, MBD8, MBD9, MBD10, and MBD11 underwent substitutions in these residues, suggesting the non-interaction in the mCpG context, but a heterochromatin association as MBD5 and MBD6 from human. This study represents the first genome-wide analysis of the MBD gene family in eurosids I - soybean and common bean. The data presented here contribute towards understanding the evolution of MBDs proteins in plants and their specific binding affinity on mCpG site., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
7. In silico identification of candidate miRNA-encoded Peptides in four Fabaceae species.
- Author
-
de Araújo PM and Grativol C
- Subjects
- Gene Expression Regulation, Plant, Peptides chemistry, Plants genetics, Fabaceae genetics, MicroRNAs metabolism
- Abstract
MicroRNAs (miRNAs) are one of the main regulators of gene expression. Recent studies have demonstrated that primary transcripts of miRNAs (pri-miRNAs) encode regulatory peptides, called miRNA-encoded peptides (miPEPs), capable of enhancing the expression of their associated miRNAs in plants. In this work, we aimed to computationally identify miPEPs produced by small open reading frames (ORFs) in pri-miRNAs from four species of Fabaceae. Five families of miRNAs were investigated, based on their role in plant-microorganism interaction. We used the miR171 family as a training dataset centered on the information about mtr-miPEP171b and vvi-miPEP171d already described. From the sequences of the pri-miRNAs and the genomic regions where they were located, ORFs encoding putative miPEPs were predicted. The 5'-most ORFs encoding peptides on pri-miRNAs were aligned and the amino acids conservation was observed. In total, 81 sequences of potential miPEPs were identified. We found conserved miPEPs inside pri-miRNAs from soybean and between soybean, common bean, and cowpea. Besides, our results showed few conserved miPEPs among isoforms of the same miRNA and no conservation among different miRNA families, which indicate the possible specificity of miPEPs in relation to their corresponding miRNAs. Our findings contribute to the understanding of miPEPs features in plants and provide the basis for studies aiming the biotechnological use of miPEPs in leguminous species., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
8. Divergence and conservation of defensins and lipid transfer proteins (LTPs) from sugarcane wild species and modern cultivar genomes.
- Author
-
de Oliveira Silva L, da Silva Pereira L, Pereira JL, Gomes VM, and Grativol C
- Subjects
- Defensins chemistry, Defensins genetics, Defensins metabolism, Lipids, Phylogeny, Plant Proteins metabolism, Saccharum genetics, Saccharum metabolism
- Abstract
Plant defensins and lipid transfer proteins (LTPs) constitute a large and evolutionarily diverse family of antimicrobial peptides. Defensins and LTPs are two pathogenesis-related proteins (PR proteins) whose characterization may help to uncover aspects about the sugarcane response to pathogens attack. LTPs have also been investigated for their participation in the response to different types of stress. Despite the important roles of defensins and LTPs in biotic and abiotic stresses, scarce knowledge is found about these proteins in sugarcane. By using bioinformatics approaches, we characterized defensins and LTPs in the sugarcane wild species and modern cultivar genomes. The identification of defensins and LTPs showed that all five defensins groups and eight of the nine LTPs have their respective genes loci, although some was only identified in the cultivar genome. Phylogenetic analysis showed that defensins appear to be more conserved among groups of plants than LTPs. Some defensins and LTPs showed opposite expression during pathogenic and benefic bacterial interactions. Interestingly, the expression of defensins and LTPs in shoots and roots was completely different in plants submitted to benefic bacteria or water depletion. Finally, the modeling and comparison of isoforms of LTPs and defensins in wild species and cultivars revealed a high conservation of tertiary structures, with variation of amino acids in different regions of proteins, which could impact their antimicrobial activity. Our data contributed to the characterization of defensins and LTPs in sugarcane and provided new elements for understanding the involvement of these proteins in sugarcane response to different types of stress., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
9. Cell wall formation pathways are differentially regulated in sugarcane contrasting genotypes associated with endophytic diazotrophic bacteria.
- Author
-
Ballesteros HGF, Rosman AC, Carvalho TLG, Grativol C, and Hemerly AS
- Subjects
- Bacteria, Cell Wall metabolism, Genotype, Nitrogen Fixation, Saccharum genetics
- Abstract
Main Conclusion: Differences in cell wall components between two BNF-contrasting sugarcane genotypes might result from genetic variations particular to the genotype and from the efficiency in diazotrophic bacteria association. Sugarcane is a plant of the grass family (Poaceae) that is highly cultivated in Brazil, as an important energy resource. Commercial sugarcane genotypes may be successfully associated with beneficial endophytic nitrogen-fixing bacteria, which can influence several plant metabolic pathways, such as cell division and growth, synthesis of hormones, and defense compounds. In this study, we investigated how diazotrophic bacteria associated with sugarcane plants could be involved in the regulation of cell wall formation pathways. A molecular and structural characterization of the cell wall was compared between two genotypes of sugarcane with contrasting rates of Biological Nitrogen Fixation (BNF): SP70-1143 (high BNF) and Chunee (low BNF). Differentially expressed transcripts were identified in transcriptomes generated from SP70-1143 and Chunee. Expression profiles of cellulose and lignin genes, which were more expressed in SP70-1134, and callose genes, which were more expressed in Chunee, were validated by RT-qPCR and microscopic analysis of cell wall components in tissue sections. A similar expression profile in both BNF-contrasting genotypes was observed in naturally colonized plants and in plants inoculated with G. diazotrophicus. Cell walls of the high BNF genotype have a greater cellulose content, which might contribute to increase biomass. In parallel, callose was concentrated in the vascular tissues of the low BNF genotype and could possibly represent a barrier for an efficient bacterial colonization and dissemination in sugarcane tissues. Our data show a correlation between the gene profiles identified in the BNF-contrasting genotypes and a successful association with endophytic diazotrophic bacteria., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2021
- Full Text
- View/download PDF
10. Insights into the structure and role of seed-borne bacteriome during maize germination.
- Author
-
Figueiredo Dos Santos L, Fernandes Souta J, de Paula Soares C, Oliveira da Rocha L, Luiza Carvalho Santos M, Grativol C, Fernando Wurdig Roesch L, and Lopes Olivares F
- Subjects
- Seedlings, Seeds, Zea mays, Germination, Microbiota
- Abstract
Seed germination events modulate microbial community composition, which ultimately influences seed-to-seedling growth performance. Here, we evaluate the germinated maize (variety SHS 5050) root bacterial community of disinfected seed (DS) and non-disinfected seed (NDS). Using a gnotobiotic system, sodium hypochlorite (1.25%; 30 min)-treated seeds showed a reduction of bacterial population size and an apparent increase of bacterial community diversity associated with a significant selective reduction of Burkholderia-related sequences. The shift in the bacterial community composition in DS negatively affects germination speed, seedling growth and reserve mobilization rates compared with NDS. A synthetic bacterial community (syncom) formed by 12 isolates (9 Burkholderia spp., 2 Bacillus spp., and 1 Staphylococcus sp.) obtained from natural microbiota maize seeds herein was capable of recovering germination and seedling growth when reintroduced in DS. Overall, results showed that changes in bacterial community composition and selective reduction of Burkholderia-related members' dominance interfere with germination events and the initial growth of the maize. By cultivation-dependent and -independent approaches, we deciphered seed-maize microbiome structure, bacterial niches location and bacterial taxa with relevant roles in seedling growth performance. A causal relationship between seed microbial community succession and germination performance opens opportunities in seed technologies to build-up microbial communities to boost plant growth and health., (© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2021
- Full Text
- View/download PDF
11. Altered bacteria community dominance reduces tolerance to resident fungus and seed to seedling growth performance in maize (Zea mays L. var. DKB 177).
- Author
-
Santos LF, Souta JF, Rocha LO, Soares CP, Santos MLC, Grativol C, Roesch LFW, and Olivares FL
- Subjects
- Bacteria classification, Bacteria genetics, Fungi classification, Fungi genetics, Fungi isolation & purification, Germination, Microbiota, Phylogeny, Plant Roots growth & development, Plant Roots microbiology, Seedlings growth & development, Seedlings microbiology, Seeds growth & development, Zea mays microbiology, Bacteria isolation & purification, Fungi physiology, Seeds microbiology, Zea mays growth & development
- Abstract
Seeds are reservoirs of beneficial and harmful microorganism that modulates plant growth and health. Here, we access seed to seedling bacteriome assembly modified by seed-disinfection and the underlined effect over maize germination performance and root-seedlings microbial colonization. Seed-disinfection was performed with sodium hypochlorite (1.25 %, 30 min), resulting in a reduction of the cultivable-dependent fraction of seed-borne bacteria population, but not significantly detected by real-time PCR, microscopy, and biochemical analysis of the roots on germinated seeds. 16S rRNA sequencing revealed that bacteriome of non-germinated seeds and roots of 5-d germinated seeds exhibited similar diversity and did not differ in the structure concerning seed-disinfection. On the other hand, the relative abundance reduction of the genera f_Enterobacteriaceae_922761 (unassigned genus), Azospirillum, and Acinetobacter in disinfected-seed prior germination seems to display changes in prominence of several new taxa in the roots of germinated seeds. Interestingly, this bacteriome community rebuilt negatively affected the germination speed and growth of maize plantlets. Additionally, bacteriome re-shape increased the maize var. DKB 177 susceptible to the seed-borne plant pathogen Penicillium sp. Such changes in the natural seed-borne composition removed the natural barrier, increasing susceptibility to pathogens, impairing disinfected seeds to germinate, and develop. We conclude that bacteria borne in seeds modulate the relative abundance of taxa colonizing emerged roots, promote germination, seedling growth, and protect the maize against fungal pathogens., (Copyright © 2020 Elsevier GmbH. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
12. Genome-Wide Analysis of the COBRA-Like Gene Family Supports Gene Expansion through Whole-Genome Duplication in Soybean ( Glycine max ).
- Author
-
Sangi S, Araújo PM, Coelho FS, Gazara RK, Almeida-Silva F, Venancio TM, and Grativol C
- Abstract
The COBRA-like ( COBL ) gene family has been associated with the regulation of cell wall expansion and cellulose deposition. COBL mutants result in reduced levels and disorganized deposition of cellulose causing defects in the cell wall and inhibiting plant development. In this study, we report the identification of 24 COBL genes ( GmCOBL ) in the soybean genome. Phylogenetic analysis revealed that the COBL proteins are divided into two groups, which differ by about 170 amino acids in the N-terminal region. The GmCOBL genes were heterogeneously distributed in 14 of the 20 soybean chromosomes. This study showed that segmental duplication has contributed significantly to the expansion of the COBL family in soybean during all Glycine -specific whole-genome duplication events. The expression profile revealed that the expression of the paralogous genes is highly variable between organs and tissues of the plant. Only 20% of the paralogous gene pairs showed similar expression patterns. The high expression levels of some GmCOBLs suggest they are likely essential for regulating cell expansion during the whole soybean life cycle. Our comprehensive overview of the COBL gene family in soybean provides useful information for further understanding the evolution and diversification of COBL genes in soybean.
- Published
- 2021
- Full Text
- View/download PDF
13. Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas.
- Author
-
Machado FB, Moharana KC, Almeida-Silva F, Gazara RK, Pedrosa-Silva F, Coelho FS, Grativol C, and Venancio TM
- Subjects
- Gene Expression Profiling, Gene Library, Genes, Essential genetics, Genes, Plant genetics, Atlases as Topic, RNA, Plant genetics, Glycine max genetics, Transcriptome genetics
- Abstract
Soybean (Glycine max [L.] Merr.) is a major crop in animal feed and human nutrition, mainly for its rich protein and oil contents. The remarkable rise in soybean transcriptome studies over the past 5 years generated an enormous amount of RNA-seq data, encompassing various tissues, developmental conditions and genotypes. In this study, we have collected data from 1298 publicly available soybean transcriptome samples, processed the raw sequencing reads and mapped them to the soybean reference genome in a systematic fashion. We found that 94% of the annotated genes (52 737/56 044) had detectable expression in at least one sample. Unsupervised clustering revealed three major groups, comprising samples from aerial, underground and seed/seed-related parts. We found 452 genes with uniform and constant expression levels, supporting their roles as housekeeping genes. On the other hand, 1349 genes showed heavily biased expression patterns towards particular tissues. A transcript-level analysis revealed that 95% (70 963 of 74 490) of the assembled transcripts have intron chains exactly matching those from known transcripts, whereas 3256 assembled transcripts represent potentially novel splicing isoforms. The dataset compiled here constitute a new resource for the community, which can be downloaded or accessed through a user-friendly web interface at http://venanciogroup.uenf.br/resources/. This comprehensive transcriptome atlas will likely accelerate research on soybean genetics and genomics., (© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
14. Programmed cell death in soybean seed coats.
- Author
-
Lemos Rocha G, Pireda S, da Silva Araújo J, Amâncio Oliveira AE, Lima Tavares Machado O, da Cunha M, Grativol C, and Valevski Sales Fernandes K
- Subjects
- Plant Proteins metabolism, Seeds physiology, Glycine max enzymology, Apoptosis, Glycine max physiology
- Abstract
Seed coat is the tissue which establishes an interface between the seed inner tissues and external environment. Our group has shown that cowpea seed coat undergoes coordinated events of programmed cell death (PCD) during development. In relation to germinating seed coats, little is known on PCD events. The goal here was to investigate the biochemical aspects of germinating soybean seed coat, focusing on proteolytic activities related to PCD. In gel and in solution activity profiles of quiescent and germinating seed coat extracts revealed a complex pattern of caspase- and metacaspase-like cysteine protease activities. Trypsin inhibitor and reserve proteins were revealed as potential substrates for these proteases. A pancaspase inhibitor (z-VAD-CHO) affected the radicle length of seeds germinated under its presence. Ultrastructural analysis showed the absence of cell organelles in all seed coat layers after imbibition, while oligonucleosome fragments peaked at 72 h after imbibition (HAI). Altogether, the data suggest the presence of biochemical PCD hallmarks in germinating soybean seed coat and point to the involvement of the detected protease activities in processes such as reserve protein mobilization and weakening of seed coat., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
15. Cell wall dynamics and gene expression on soybean embryonic axes during germination.
- Author
-
Sangi S, Santos MLC, Alexandrino CR, Da Cunha M, Coelho FS, Ribeiro GP, Lenz D, Ballesteros H, Hemerly AS, Venâncio TM, Oliveira AEA, and Grativol C
- Subjects
- Cell Wall metabolism, Germination, Seedlings genetics, Seedlings growth & development, Seeds genetics, Seeds growth & development, Glycine max growth & development, Gene Expression Regulation, Plant, Genome, Plant genetics, Glycine max genetics
- Abstract
Main Conclusion: Identification of the structural changes and cell wall-related genes likely involved in cell wall extension, cellular water balance and cell wall biosynthesis on embryonic axes during germination of soybean seeds. Cell wall is a highly organized and dynamic structure that provides mechanical support for the cell. During seed germination, the cell wall is critical for cell growth and seedling establishment. Although seed germination has been widely studied in several species, key aspects regarding the regulation of cell wall dynamics in germinating embryonic axes remain obscure. Here, we characterize the gene expression patterns of cell wall pathways and investigate their impact on the cell wall dynamics of embryonic axes of germinating soybean seeds. We found 2143 genes involved in cell wall biosynthesis and assembly in the soybean genome. Key cell wall genes were highly expressed at specific germination stages, such as expansins, UDP-Glc epimerases, GT family, cellulose synthases, peroxidases, arabinogalactans, and xyloglucans-related genes. Further, we found that embryonic axes grow through modulation of these specific cell wall genes with no increment in biomass. Cell wall structural analysis revealed a defined pattern of cell expansion and an increase in cellulose content during germination. In addition, we found a clear correlation between these structural changes and expression patterns of cell wall genes during germination. Taken together, our results provide a better understanding of the complex transcriptional regulation of cell wall genes that drive embryonic axes growth and expansion during soybean germination.
- Published
- 2019
- Full Text
- View/download PDF
16. A miniature inverted-repeat transposable element, AddIn-MITE, located inside a WD40 gene is conserved in Andropogoneae grasses.
- Author
-
Grativol C, Thiebaut F, Sangi S, Montessoro P, Santos WDS, Hemerly AS, and Ferreira PCG
- Abstract
Miniature inverted-repeat transposable elements (MITEs) have been associated with genic regions in plant genomes and may play important roles in the regulation of nearby genes via recruitment of small RNAs (sRNA) to the MITEs loci. We identified eight families of MITEs in the sugarcane genome assembly with MITE-Hunter pipeline. These sequences were found to be upstream, downstream or inserted into 67 genic regions in the genome. The position of the most abundant MITE (Stowaway-like) in genic regions, which we call AddIn-MITE, was confirmed in a WD40 gene. The analysis of four monocot species showed conservation of the AddIn-MITE sequence, with a large number of copies in their genomes. We also investigated the conservation of the AddIn-MITE' position in the WD40 genes from sorghum, maize and, in sugarcane cultivars and wild Saccharum species. In all analyzed plants, AddIn-MITE has located in WD40 intronic region. Furthermore, the role of AddIn-MITE-related sRNA in WD40 genic region was investigated. We found sRNAs preferentially mapped to the AddIn-MITE than to other regions in the WD40 gene in sugarcane. In addition, the analysis of the small RNA distribution patterns in the WD40 gene and the structure of AddIn-MITE, suggests that the MITE region is a proto-miRNA locus in sugarcane. Together, these data provide insights into the AddIn-MITE role in Andropogoneae grasses., Competing Interests: The authors declare there are no competing interests.
- Published
- 2019
- Full Text
- View/download PDF
17. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.
- Author
-
Thiebaut F, Rojas CA, Grativol C, Calixto EPDR, Motta MR, Ballesteros HGF, Peixoto B, de Lima BNS, Vieira LM, Walter ME, de Armas EM, Entenza JOP, Lifschitz S, Farinelli L, Hemerly AS, and Ferreira PCG
- Abstract
Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.
- Published
- 2017
- Full Text
- View/download PDF
18. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots.
- Author
-
Passamani LZ, Barbosa RR, Reis RS, Heringer AS, Rangel PL, Santa-Catarina C, Grativol C, Veiga CFM, Souza-Filho GA, and Silveira V
- Subjects
- Plant Proteins analysis, Plant Shoots growth & development, Proteome analysis, Proteome metabolism, Proteomics, Saccharum growth & development, Plant Proteins metabolism, Plant Shoots physiology, Saccharum physiology, Salt Tolerance, Stress, Physiological
- Abstract
Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress.
- Published
- 2017
- Full Text
- View/download PDF
19. PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants.
- Author
-
Vieira LM, Grativol C, Thiebaut F, Carvalho TG, Hardoim PR, Hemerly A, Lifschitz S, Ferreira PCG, and Walter MEMT
- Abstract
Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane ( Saccharum spp.) and in maize ( Zea mays ). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.
- Published
- 2017
- Full Text
- View/download PDF
20. Analysis of Three Sugarcane Homo/Homeologous Regions Suggests Independent Polyploidization Events of Saccharum officinarum and Saccharum spontaneum.
- Author
-
Vilela MM, Del Bem LE, Van Sluys MA, de Setta N, Kitajima JP, Cruz GM, Sforça DA, de Souza AP, Ferreira PC, Grativol C, Cardoso-Silva CB, Vicentini R, and Vincentz M
- Subjects
- DNA Transposable Elements, Genes, Plant, Haplotypes, Plant Proteins genetics, Polymorphism, Genetic, Saccharum classification, Selection, Genetic, Synteny, Polyploidy, Saccharum genetics
- Abstract
Whole genome duplication has played an important role in plant evolution and diversification. Sugarcane is an important crop with a complex hybrid polyploid genome, for which the process of adaptation to polyploidy is still poorly understood. In order to improve our knowledge about sugarcane genome evolution and the homo/homeologous gene expression balance, we sequenced and analyzed 27 BACs (Bacterial Artificial Chromosome) of sugarcane R570 cultivar, containing the putative single-copy genes LFY (seven haplotypes), PHYC (four haplotypes), and TOR (seven haplotypes). Comparative genomic approaches showed that these sugarcane loci presented a high degree of conservation of gene content and collinearity (synteny) with sorghum and rice orthologous regions, but were invaded by transposable elements (TE). All the homo/homeologous haplotypes of LFY, PHYC, and TOR are likely to be functional, because they are all under purifying selection (dN/dS ≪ 1). However, they were found to participate in a nonequivalently manner to the overall expression of the corresponding gene. SNPs, indels, and amino acid substitutions allowed inferring the S. officinarum or S. spontaneum origin of the TOR haplotypes, which further led to the estimation that these two sugarcane ancestral species diverged between 2.5 and 3.5 Ma. In addition, analysis of shared TE insertions in TOR haplotypes suggested that two autopolyploidization may have occurred in the lineage that gave rise to S. officinarum, after its divergence from S. spontaneum., (© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2017
- Full Text
- View/download PDF
21. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae.
- Author
-
Santa Brigida AB, Rojas CA, Grativol C, de Armas EM, Entenza JO, Thiebaut F, Lima MF, Farrinelli L, Hemerly AS, Lifschitz S, and Ferreira PC
- Subjects
- Comamonadaceae physiology, Gene Ontology, Host-Pathogen Interactions, Molecular Sequence Annotation, Plant Diseases genetics, Plant Diseases microbiology, Reverse Transcriptase Polymerase Chain Reaction, Saccharum microbiology, Sequence Analysis, RNA methods, Comamonadaceae growth & development, Gene Expression Profiling methods, Gene Expression Regulation, Plant, Saccharum genetics, Transcriptome genetics
- Abstract
Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs., Competing Interests: FASTERIS SA provided support in the form of salaries for authors [L.F.], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The contribution of L.F. (from FASTERIS SA) does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Published
- 2016
- Full Text
- View/download PDF
22. Computational identification and comparative analysis of miRNA precursors in three palm species.
- Author
-
da Silva AC, Grativol C, Thiebaut F, Hemerly AS, and Ferreira PC
- Subjects
- Base Sequence, Computational Biology methods, Conserved Sequence genetics, Gene Expression Regulation, Plant, Musa genetics, Phoeniceae genetics, Arecaceae genetics, MicroRNAs, RNA Precursors, RNA, Plant
- Abstract
Main Conclusion: In the present study, miRNA precursors in the genomes of three palm species were identified. Analyzes of sequence conservation and biological function of their putative targets contribute to understand the roles of miRNA in palm biology. MicroRNAs are small RNAs of 20-25 nucleotides in length, with important functions in the regulation of gene expression. Recent genome sequencing of the palm species Elaeis guineensis, Elaeis oleifera and Phoenix dactylifera have enabled the discovery of miRNA genes, which can be used as biotechnological tools in palm trees breeding. The goal of this study is the identification of miRNA precursors in the genomes of these species and their possible biological roles suggested by the mature miRNA-based regulation of target genes. Mature miRNA sequences from Arabidopsis thaliana, Oryza sativa, and Zea mays available at the miRBase were used to predict microRNA precursors in the palm genomes. Three hundred and thirty-eight precursors, ranging from 76 to 220 nucleotide (nt) in size and distributed in 33 families were identified. Moreover, we also identified 266 miRNA precursors of Musa acuminata, which are phylogenetically close to palms species. To understand the biological function of palm miRNAs, 374 putative miRNA targets were identified. An enrichment analysis of target-gene function was carried out using the agriGO tool. The results showed that the targets are involved in plant developmental processes, mainly regulating root development. Our findings contribute to increase the knowledge on microRNA roles in palm biology and could help breeding programs of palm trees.
- Published
- 2016
- Full Text
- View/download PDF
23. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.
- Author
-
Thiebaut F, Rojas CA, Grativol C, Motta MR, Vieira T, Regulski M, Martienssen RA, Farinelli L, Hemerly AS, and Ferreira PC
- Subjects
- Chromosome Mapping, Computational Biology, DNA Transposable Elements, Databases, Nucleic Acid, Gene Expression Regulation, Plant, Gene Library, Genome-Wide Association Study, Methylation, Nitrogen Fixation, Phenotype, RNA Splicing, Symbiosis, Zea mays growth & development, Bacteria metabolism, Endophytes metabolism, MicroRNAs genetics, RNA, Plant genetics, RNA, Small Interfering genetics, Zea mays genetics, Zea mays microbiology
- Abstract
Background: Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense., Results: Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription., Conclusion: Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.
- Published
- 2014
- Full Text
- View/download PDF
24. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum.
- Author
-
Grativol C, Regulski M, Bertalan M, McCombie WR, da Silva FR, Zerlotini Neto A, Vicentini R, Farinelli L, Hemerly AS, Martienssen RA, and Ferreira PC
- Subjects
- Chromosomes, Artificial, Bacterial, Crops, Agricultural, DNA Methylation, DNA, Plant genetics, Expressed Sequence Tags, Gene Library, MicroRNAs genetics, Plant Leaves genetics, Plant Proteins genetics, Polymorphism, Single Nucleotide genetics, RNA, Plant genetics, Repetitive Sequences, Nucleic Acid genetics, Sequence Analysis, Sorghum genetics, Chromosomes, Plant genetics, Genome, Plant genetics, Genomics methods, High-Throughput Nucleotide Sequencing methods, Saccharum genetics
- Abstract
Many economically important crops have large and complex genomes that hamper their sequencing by standard methods such as whole genome shotgun (WGS). Large tracts of methylated repeats occur in plant genomes that are interspersed by hypomethylated gene-rich regions. Gene-enrichment strategies based on methylation profiles offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration with McrBC endonuclease digestion to enrich for euchromatic regions in the sugarcane genome. To verify the efficiency of methylation filtration and the assembly quality of sequences submitted to gene-enrichment strategy, we have compared assemblies using methyl-filtered (MF) and unfiltered (UF) libraries. The use of methy filtration allowed a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5× more scaffolds and 1.7× more assembled Mb in length compared with unfiltered dataset. The coverage of sorghum coding sequences (CDS) by MF scaffolds was at least 36% higher than by the use of UF scaffolds. Using MF technology, we increased by 134× the coverage of gene regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds that covered all genes of the sugarcane bacterial artificial chromosomes (BACs), 97.2% of sugarcane expressed sequence tags (ESTs), 92.7% of sugarcane RNA-seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds from encoded enzymes of the sucrose/starch pathway discovered 291 single-nucleotide polymorphisms (SNPs) in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes was also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and for improvement of sugarcane as a biofuel crop., (© 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
25. Differential sRNA regulation in leaves and roots of sugarcane under water depletion.
- Author
-
Thiebaut F, Grativol C, Tanurdzic M, Carnavale-Bottino M, Vieira T, Motta MR, Rojas C, Vincentini R, Chabregas SM, Hemerly AS, Martienssen RA, and Ferreira PC
- Subjects
- RNA, Plant genetics, Saccharum metabolism, Droughts, Gene Expression Regulation, Plant physiology, Plant Leaves metabolism, Plant Roots metabolism, RNA, Plant metabolism, Saccharum genetics, Stress, Physiological physiology
- Abstract
Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638--sensitive cultivar--and SP83-2847 and SP83-5073--tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion.
- Published
- 2014
- Full Text
- View/download PDF
26. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane.
- Author
-
Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, and Ferreira PC
- Subjects
- Base Pairing genetics, Base Sequence, Computational Biology, Conserved Sequence genetics, Gene Expression Regulation, Plant drug effects, Genes, Plant genetics, Germination drug effects, Germination genetics, Hydroponics, MicroRNAs metabolism, Plant Leaves drug effects, Plant Leaves genetics, Plant Roots drug effects, Plant Roots genetics, Plant Shoots drug effects, Plant Shoots genetics, RNA, Plant metabolism, Reproducibility of Results, Saccharum drug effects, Saccharum growth & development, Salinity, Stress, Physiological drug effects, Transcriptome drug effects, High-Throughput Nucleotide Sequencing methods, MicroRNAs genetics, RNA, Plant genetics, Saccharum genetics, Sodium Chloride pharmacology, Stress, Physiological genetics, Transcriptome genetics
- Abstract
Salt stress is a primary cause of crop losses worldwide, and it has been the subject of intense investigation to unravel the complex mechanisms responsible for salinity tolerance. MicroRNA is implicated in many developmental processes and in responses to various abiotic stresses, playing pivotal roles in plant adaptation. Deep sequencing technology was chosen to determine the small RNA transcriptome of Saccharum sp cultivars grown on saline conditions. We constructed four small RNAs libraries prepared from plants grown on hydroponic culture submitted to 170 mM NaCl and harvested after 1 h, 6 hs and 24 hs. Each library was sequenced individually and together generated more than 50 million short reads. Ninety-eight conserved miRNAs and 33 miRNAs* were identified by bioinformatics. Several of the microRNA showed considerable differences of expression in the four libraries. To confirm the results of the bioinformatics-based analysis, we studied the expression of the 10 most abundant miRNAs and 1 miRNA* in plants treated with 170 mM NaCl and in plants with a severe treatment of 340 mM NaCl. The results showed that 11 selected miRNAs had higher expression in samples treated with severe salt treatment compared to the mild one. We also investigated the regulation of the same miRNAs in shoots of four cultivars grown on soil treated with 170 mM NaCl. Cultivars could be grouped according to miRNAs expression in response to salt stress. Furthermore, the majority of the predicted target genes had an inverse regulation with their correspondent microRNAs. The targets encode a wide range of proteins, including transcription factors, metabolic enzymes and genes involved in hormone signaling, probably assisting the plants to develop tolerance to salinity. Our work provides insights into the regulatory functions of miRNAs, thereby expanding our knowledge on potential salt-stressed regulated genes.
- Published
- 2013
- Full Text
- View/download PDF
27. Regulation of miR319 during cold stress in sugarcane.
- Author
-
Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CR, Engler Jde A, Hemerly AS, and Ferreira PC
- Subjects
- Abscisic Acid pharmacology, Gene Expression Regulation, Plant, Saccharum physiology, Stress, Physiological, Transcriptome, Cold Temperature, MicroRNAs genetics, RNA, Plant genetics, Saccharum genetics
- Abstract
MicroRNAs (miRNAs) are part of a novel mechanism of gene regulation that is active in plants under abiotic stress conditions. In the present study, 12 miRNAs were analysed to identify miRNAs differentially expressed in sugarcane subjected to cold stress (4 °C). The expression of miRNAs assayed by stem-loop RT-PCR showed that miR319 is up-regulated in sugarcane plantlets exposed to 4 °C for 24 h. The induction of miR319 expression during cold stress was observed in both roots and shoots. Sugarcane miR319 was also regulated by treatment with abscisic acid. Putative targets of this miRNA were identified and their expression levels were decreased in sugarcane plantlets exposed to cold. The cleavage sites of two targets were mapped using a 5' RACE PCR assay confirming the regulation of these genes by miR319. When sugarcane cultivars contrasting in cold tolerance were subjected to 4 °C, we observed up-regulation of miR319 and down-regulation of the targets in both varieties; however, the changes in expression were delayed in the cold-tolerant cultivar. These results suggest that differences in timing and levels of the expression of miR319 and its targets could be tested as markers for selection of cold-tolerant sugarcane cultivars., (© 2011 Blackwell Publishing Ltd.)
- Published
- 2012
- Full Text
- View/download PDF
28. Genetic and epigenetic regulation of stress responses in natural plant populations.
- Author
-
Grativol C, Hemerly AS, and Ferreira PC
- Subjects
- Plant Physiological Phenomena, Stress, Physiological, Epigenesis, Genetic, Gene Expression Regulation, Plant, Plants genetics
- Abstract
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress., (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
29. High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions.
- Author
-
Grativol C, da Fonseca Lira-Medeiros C, Hemerly AS, and Ferreira PC
- Subjects
- Brazil, Cluster Analysis, DNA, Plant genetics, Electrophoresis, Agar Gel, Genetic Loci genetics, Genetic Markers, Geography, Phylogeny, Polymorphism, Genetic, Reproducibility of Results, Sample Size, Agriculture, Genetic Variation genetics, Jatropha genetics, Microsatellite Repeats genetics
- Abstract
Jatropha curcas L. is found in all tropical regions and has garnered lot of attention for its potential as a source of biodiesel. As J. curcas is a plant that is still in the process of being domesticated, interest in improving its agronomic traits has increased in an attempt to select more productive varieties, aiming at sustainable utilization of this plant for biodiesel production. Therefore, the study of genetic diversity in different accessions of J. curcas in Brazil constitutes a necessary first step in genetic programs designed to improve this species. In this study we have used ISSR markers to assess the genetic variability of 332 accessions from eight states in Brazil that produce J. curcas seeds for commercialization. Seven ISSR primers amplified a total of 21,253 bands, of which 19,472 bands (91%) showed polymorphism. Among the polymorphic bands 275 rare bands were identified (present in fewer than 15% of the accessions). Polymorphic information content (PIC), marker index (MI) and resolving power (RP) averaged 0.26, 17.86 and 19.87 per primer, respectively, showing the high efficiency and reliability of the markers used. ISSR markers analyses as number of polymorphic loci, genetic diversity and accession relationships through UPGMA-phenogram and MDS showed that Brazilian accessions are closely related but have a higher level of genetic diversity than accessions from other countries, and the accessions from Natal (RN) are the most diverse, having high value as a source of genetic diversity for breeding programs of J. curcas in the world.
- Published
- 2011
- Full Text
- View/download PDF
30. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.
- Author
-
Aquino RS, Grativol C, and Mourão PA
- Subjects
- Adaptation, Physiological drug effects, Carboxylic Acids metabolism, Cell Wall drug effects, Cell Wall metabolism, Galactans metabolism, Plant Cells, Plants drug effects, Salt-Tolerant Plants cytology, Salt-Tolerant Plants drug effects, Salt-Tolerant Plants metabolism, Salt-Tolerant Plants physiology, Salts pharmacology, Species Specificity, Plants metabolism, Polysaccharides metabolism, Salinity, Seawater chemistry, Sulfates metabolism
- Abstract
High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.