460 results on '"Grice, J."'
Search Results
2. Scaling slowly rotating asteroids by stellar occultations
- Author
-
Marciniak, A., Ďurech, J., Choukroun, A., Hanuš, J., Ogłoza, W., Szakáts, R., Molnár, L., Pál, A., Monteiro, F., Frappa, E., Beisker, W., Pavlov, H., Moore, J., Adomavičienė, R., Aikawa, R., Andersson, S., Antonini, P., Argentin, Y., Asai, A., Assoignon, P., Barton, J., Baruffetti, P., Bath, K. L., Behrend, R., Benedyktowicz, L., Bernasconi, L., Biguet, G., Billiani, M., Błażewicz, D., Boninsegna, R., Borkowski, M., Bosch, J., Brazill, S., Bronikowska, M., Bruno, A., Bąk, M. Butkiewicz, Caron, J., Casalnuovo, G., Castellani, J. J., Ceravolo, P., Conjat, M., Delincak, P., Delpau, J., Demeautis, C., Demirkol, A., Dróżdż, M., Duffard, R., Durandet, C., Eisfeldt, D., Evangelista, M., Fauvaud, S., Fauvaud, M., Ferrais, M., Filipek, M., Fini, P., Fukui, K., Gährken, B., Geier, S., George, T., Goffin, B., Golonka, J., Goto, T., Grice, J., Guhl, K., Halíř, K., Hanna, W., Harman, M., Hashimoto, A., Hasubick, W., Higgins, D., Higuchi, M., Hirose, T., Hirsch, R., Hofschulz, O., Horaguchi, T., Horbowicz, J., Ida, M., Ignácz, B., Ishida, M., Isobe, K., Jehin, E., Joachimczyk, B., Jones, A., Juan, J., Kamiński, K., Kamińska, M. K., Kankiewicz, P., Kasebe, H., Kattentidt, B., Kim, D. -H., Kim, M. -J., Kitazaki, K., Klotz, A., Komraus, M., Konstanciak, I., Tóth, R. Könyves, Kouno, K., Kowald, E., Krajewski, J., Krannich, G., Kreutzer, A., Kryszczyńska, A., Kubánek, J., Kudak, V., Kugel, F., Kukita, R., Kulczak, P., Lazzaro, D., Licandro, J., Livet, F., Maley, P., Manago, N., Mánek, J., Manna, A., Matsushita, H., Meister, S., Mesquita, W., Messner, S., Michelet, J., Michimani, J., Mieczkowska, I., Morales, N., Motyliński, M., Murawiecka, M., Newman, J., Nikitin, V., Nishimura, M., Oey, J., Oszkiewicz, D., Owada, M., Pakštienė, E., Pawłowski, M., Pereira, W., Perig, V., Perła, J., Pilcher, F., Podlewska-Gaca, E., Polák, J., Polakis, T., Polińska, M., Popowicz, A., Richard, F., Rives, J. J., Rodrigues, T., Rogiński, Ł., Rondón, E., Rottenborn, M., Schäfer, R., Schnabel, C., Schreurs, O., Selva, A., Simon, M., Skiff, B., Skrutskie, M., Skrzypek, J., Sobkowiak, K., Sonbas, E., Sposetti, S., Stuart, P., Szyszka, K., Terakubo, K., Thomas, W., Trela, P., Uchiyama, S., Urbanik, M., Vaudescal, G., Venable, R., Watanabe, Ha., Watanabe, Hi., Winiarski, M., Wróblewski, R., Yamamura, H., Yamashita, M., Yoshihara, H., Zawilski, M., Zelený, P., Żejmo, M., Żukowski, K., and Żywica, S.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
As evidenced by recent survey results, majority of asteroids are slow rotators (P>12 h), but lack spin and shape models due to selection bias. This bias is skewing our overall understanding of the spins, shapes, and sizes of asteroids, as well as of their other properties. Also, diameter determinations for large (>60km) and medium-sized asteroids (between 30 and 60 km) often vary by over 30% for multiple reasons. Our long-term project is focused on a few tens of slow rotators with periods of up to 60 hours. We aim to obtain their full light curves and reconstruct their spins and shapes. We also precisely scale the models, typically with an accuracy of a few percent. We used wide sets of dense light curves for spin and shape reconstructions via light-curve inversion. Precisely scaling them with thermal data was not possible here because of poor infrared data: large bodies are too bright for WISE mission. Therefore, we recently launched a campaign among stellar occultation observers, to scale these models and to verify the shape solutions, often allowing us to break the mirror pole ambiguity. The presented scheme resulted in shape models for 16 slow rotators, most of them for the first time. Fitting them to stellar occultations resolved previous inconsistencies in size determinations. For around half of the targets, this fitting also allowed us to identify a clearly preferred pole solution, thus removing the ambiguity inherent to light-curve inversion. We also address the influence of the uncertainty of the shape models on the derived diameters. Overall, our project has already provided reliable models for around 50 slow rotators. Such well-determined and scaled asteroid shapes will, e.g. constitute a solid basis for density determinations when coupled with mass information. Spin and shape models continue to fill the gaps caused by various biases., Comment: Accepted to Astronomy & Astrophysics. 12 pages + appendices
- Published
- 2023
- Full Text
- View/download PDF
3. Topical Semisolid Drug Product Critical Quality Attributes with Relevance to Cutaneous Bioavailability and Pharmacokinetics: Part I—Bioequivalence of Acyclovir Topical Creams
- Author
-
Mohammed, Y. H., Namjoshi, S. N., Jung, N., Windbergs, M., Benson, H. A. E., Grice, J. E., Raney, S. G., and Roberts, M. S.
- Published
- 2024
- Full Text
- View/download PDF
4. Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model
- Author
-
Marciniak, A., Ďurech, J., Alí-Lagoa, V., Ogłoza, W., Szakáts, R., Müller, T. G., Molnár, L., Pál, A., Monteiro, F., Arcoverde, P., Behrend, R., Benkhaldoun, Z., Bernasconi, L., Bosch, J., Brincat, S., Brunetto, L., Bąk, M. Butkiewicz, Del Freo, F., Duffard, R., Evangelista-Santana, M., Farroni, G., Fauvaud, S., Fauvaud, M., Ferrais, M., Geier, S., Golonka, J., Grice, J., Hirsch, R., Horbowicz, J., Jehin, E., Julien, P., Kalup, Cs., Kamiński, K., Kamińska, M. K., Kankiewicz, P., Kecskeméthy, V., Kim, D. -H., Kim, M. -J., Konstanciak, I., Krajewski, J., Kudak, V., Kulczak, P., Kundera, T., Lazzaro, D., Manzini, F., Medeiros, H., Michimani-Garcia, J., Morales, N., Nadolny, J., Oszkiewicz, D., Pakštienė, E., Pawłowski, M., Perig, V., Pilcher, F., Pinel, P., Podlewska-Gaca, E., Polakis, T., Richard, F., Rodrigues, T., Rondon, E., Roy, R., Sanabria, J. J., Santana-Ros, T., Skiff, B., Skrzypek, J., Sobkowiak, K., Sonbas, E., Stachowski, G., Strajnic, J., Trela, P., Tychoniec, Ł., Urakawa, S., Verebelyi, E., Wagrez, K., Żejmo, M., and Żukowski, K.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Results from the TESS mission showed that previous studies strngly underestimated the number of slow rotators, revealing the importance of studying those asteroids. For most slowly rotating asteroids (P > 12), no spin and shape model is available because of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. We continue our campaign in minimising selection effects among main belt asteroids. Our targets are slow rotators with low light-curve amplitudes. The goal is to provide their scaled spin and shape models together with thermal inertia, albedo, and surface roughness to complete the statistics. Rich multi-apparition datasets of dense light curves are supplemented with data from Kepler and TESS. In addition to data in the visible range, we also use thermal data from infrared space observatories (IRAS, Akari and WISE) in a combined optimisation process using the Convex Inversion Thermophysical Model (CITPM). This novel method has so far been applied to only a few targets, and in this work we further validate the method. We present the models of 16 slow rotators. All provide good fits to both thermal and visible data. The obtained sizes are on average accurate at the 5% precision, with diameters in the range from 25 to 145 km. The rotation periods of our targets range from 11 to 59 hours, and the thermal inertia covers a wide range of values, from 2 to <400 SI units, not showing any correlation with the period. With this work we increase the sample of slow rotators with reliable spin and shape models and known thermal inertia by 40%. The thermal inertia values of our sample do not display a previously suggested increasing trend with rotation period, which might be due to their small skin depth., Comment: Accepted to Astronomy & Astrophysics. 10 pages + appendices
- Published
- 2021
- Full Text
- View/download PDF
5. (216) Kleopatra, a low density critically rotating M-type asteroid
- Author
-
Marchis, F., Jorda, L., Vernazza, P., Brož, M., Hanuš, J., Ferrais, M., Vachier, F., Rambaux, N., Marsset, M., Viikinkoski, M., Jehin, E., Benseguane, S., Podlewska-Gaca, E., Carry, B., Drouard, A., Fauvaud, S., Birlan, M., Berthier, J., Bartczak, P., Dumas, C., Dudzinski, G., Durech, J., Castillo-Rogez, J., Cipriani, F., Colas, F., Fetick, R., Fusco, T., Grice, J., Kryszczynska, A., Lamy, P., Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Santana-Ros, T., Tanga, P., Vigan, A., Witasse, O., and Yang, B.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The recent estimates of the 3D shape of the M/Xe-type triple asteroid system (216) Kleopatra indicated a density of 5 g.cm$^{-3}$. Such a high density implies a high metal content and a low porosity which is not easy to reconcile with its peculiar dumbbell shape. Aims. Given the unprecedented angular resolution of the VLT/SPHERE/ZIMPOL camera, we aim to constrain the mass and the shape of Kleopatra with high accuracy, hence its density. Methods. We combined our new VLT/SPHERE observations of Kleopatra recorded in 2017 and 2018 with archival data, as well as lightcurve, occultation, and delay-Doppler images, to derive its 3D shape model using two different algorithms (ADAM, MPCD). Furthermore, an N-body dynamical model allowed us to retrieve the orbital elements of the two moons as explained in the accompanying paper. Results. The shape of Kleopatra is very close to an equilibrium dumbbell figure with two lobes and a thick neck. Its volume equivalent diameter (118.75$\pm$1.40) km and mass (2.97$\pm$0.32) 10$^{18}$ kg imply a bulk density of (3.38$\pm$0.50) g cm$^{-3}$. Such a low density for a supposedly metal-rich body indicates a substantial porosity within the primary. This porous structure along with its near-equilibrium shape is compatible with a formation scenario including a giant impact followed by reaccumulation. Kleopatra's current rotation period and dumbbell shape imply that it is in a critically rotating state. The low effective gravity along the equator of the body, together with the equatorial orbits of the moons and possibly rubble-pile structure, opens the possibility that the moons formed via mass shedding. Conclusions. Kleopatra is a puzzling multiple system due to the unique characteristics of the primary. It deserves particular attention in the future, with the Extremely Large Telescopes and possibly a dedicated space mission., Comment: Accepted for publication in Astronomy and Astrophysics
- Published
- 2021
- Full Text
- View/download PDF
6. An advanced multipole model for (216) Kleopatra triple system
- Author
-
Brož, M., Marchis, F., Jorda, L., Hanuš, J., Vernazza, P., Ferrais, M., Vachier, F., Rambaux, N., Marsset, M., Viikinkoski, M., Jehin, E., Benseguane, S., Podlewska-Gaca, E., Carry, B., Drouard, A., Fauvaud, S., Birlan, M., Berthier, J., Bartczak, P., Dumas, C., Dudziński, G., Ďurech, J., Castillo-Rogez, J., Cipriani, F., Colas, F., Fetick, R., Fusco, T., Grice, J., Kryszczynska, A., Lamy, P., Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Santana-Ros, T., Tanga, P., Vigan, A., Vokrouhlický, D., Witasse, O., and Yang, B.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons, orbiting an extremely irregular body and including their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not constants. Consequently, we use a modified $N$-body integrator, which was significantly extended to include the multipole expansion of the gravitational field up to the order $\ell = 10$. Its convergence was verified against the `brute-force' algorithm. We computed the coefficients $C_{\ell m},S_{\!\ell m}$ for Kleopatra's shape, assuming a~constant bulk density. For solar-system applications, it was also necessary to implement a variable distance and geometry of observations. Our $\chi^2$ metric then accounts for the absolute astrometry, the relative astrometry (2nd moon with respect to 1st), angular velocities, and also silhouettes, constraining the pole orientation. This allowed us to derive the orbital elements of Kleopatra's two moons. Using both archival astrometric data and new VLT/SPHERE observations (ESO LP 199.C-0074), we were able to identify the true periods of the moons, $P_1 = (1.822359\pm0.004156)\,{\rm d}$, $P_2 = (2.745820\pm0.004820)\,{\rm d}$. They orbit very close to the 3:2 mean-motion resonance, but their osculating eccentricities are too small compared to other perturbations (multipole, mutual), so that regular librations of the critical argument are not present. The resulting mass of Kleopatra, $m_1 = (1.49\pm0.16)\cdot10^{-12}\,M_\odot$ or $2.97\cdot10^{18}\,{\rm kg}$, is significantly lower than previously thought. An implication explained in the accompanying paper (Marchis et al.) is that (216) Kleopatra is a critically rotating body., Comment: accepted in A&A
- Published
- 2021
- Full Text
- View/download PDF
7. Evidence for differentiation of the most primitive small bodies
- Author
-
Carry, B., Vernazza, P., Vachier, F., Neveu, M., Hanus, J. Berthier J., Ferrais, M., Jorda, L., Marsset, M., Viikinkoski, M., Bartczak, P., Behrend, R., Benkhaldoun, Z., Birlan, M., Castillo-Rogez, J., Cipriani, F., Colas, F., Drouard, A., Dudzinski, G. P., Desmars, J., Dumas, C., Durech, J., Fetick, R., Fusco, T., Grice, J., Jehin, E., Kaasalainen, M., Kryszczynska, A., Lamy, P., Marchis, F., Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Podlewska-Gaca, E., Rambaux, N., Santana-Ros, T., Storrs, A., Tanga, P., Vigan, A., Warner, B., Wieczorek, M., Witasse, O., and Yang, B.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Dynamical models of Solar System evolution have suggested that P-/D-type volatile-rich asteroids formed in the outer Solar System and may be genetically related to the Jupiter Trojans, the comets and small KBOs. Indeed, their spectral properties resemble that of anhydrous cometary dust. High-angular-resolution images of P-type asteroid (87) Sylvia with VLT/SPHERE were used to reconstruct its 3D shape, and to study the dynamics of its two satellites. We also model Sylvia's thermal evolution. The shape of Sylvia appears flattened and elongated. We derive a volume-equivalent diameter of 271 +/- 5 km, and a low density of 1378 +/- 45 kg.m-3. The two satellites orbit Sylvia on circular, equatorial orbits. The oblateness of Sylvia should imply a detectable nodal precession which contrasts with the fully-Keplerian dynamics of the satellites. This reveals an inhomogeneous internal structure, suggesting that Sylvia is differentiated. Sylvia's low density and differentiated interior can be explained by partial melting and mass redistribution through water percolation. The outer shell would be composed of material similar to interplanetary dust particles (IDPs) and the core similar to aqueously altered IDPs or carbonaceous chondrite meteorites such as the Tagish Lake meteorite. Numerical simulations of the thermal evolution of Sylvia show that for a body of such size, partial melting was unavoidable due to the decay of long-lived radionuclides. In addition, we show that bodies as small as 130-150 km in diameter should have followed a similar thermal evolution, while smaller objects, such as comets and the KBO Arrokoth, must have remained pristine, in agreement with in situ observations of these bodies. NASA Lucy mission target (617) Patroclus (diameter~140 km) may, however, be differentiated., Comment: Accepted for publication in A&A
- Published
- 2021
- Full Text
- View/download PDF
8. Binary asteroid (31) Euphrosyne: Ice-rich and nearly spherical
- Author
-
Yang, B., Hanus, J., Carry, B., Vernazza, P., Broz, M., Vachier, F., Rambaux, N., Marsset, M., Chrenko, O., Sevecek, P., Viikinkoski, M., Jehin, E., Ferrais, M., Gaca, E. Podlewska, Drouard, A., Marchis, F., Birlan, M., Benkhaldoun, Z., Berthier, J., Bartczak, P., Dumas, C., Dudzinski, G., Durech, J., Castillo-Rogez, J., Cipriani, F., Colas, F., Fetick, R., Fusco, T., Grice, J., Jorda, L., Kaasalainen, M., Kryszczynska, A., Lamy, P., Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Santana-Ros, T., Tanga, P., Vigan, A., and Witasse, O.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Asteroid (31) Euphrosyne is one of the biggest objects in the asteroid main belt and the Euphrosyne family occupies a highly inclined region in the outer main belt and contains a remarkably large number of members, which is interpreted as an outcome of a disruptive cratering event. The goals of this adaptive-optics imaging study were threefold: to characterize the shape of Euphrosyne, to constrain its density, and to search for the large craters that may be associated with the family formation event. We obtained disk-resolved images of Euphrosyne using SPHERE/ZIMPOL at ESO's 8.2-m VLT as part of our large program (ID: 199.C-0074, PI: Vernazza). We reconstructed its 3D-shape using the adam shape modeling algorithm based on the SPHERE images and the available lightcurves of this asteroid. We analyzed the dynamics of the satellite with the genoid meta-heuristic algorithm. Finally, we studied the shape of Euphrosyne using hydrostatic equilibrium models. Our SPHERE observations show that Euphrosyne has a nearly spherical shape with the sphericity index of 0.9888 and its surface lacks large impact craters. Euphrosyne's diameter is 268+/-6 km, making it one of the top 10 largest main belt asteroids. We detected a satellite of Euphrosyne -- S/2019 (31) 1-- that is about 4 km across, on an circular orbit. The mass determined from the orbit of the satellite together with the volume computed from the shape model imply a density of 1665+/-242 kg/m^3, suggesting that Euphrosyne probably contain a large fraction of water ice in its interior. We find that the spherical shape of Euphrosyne is a result of the reaccumulation process following the impact, as in the case of (10) Hygiea. However, our shape analysis reveals that, contrary to Hygiea, the axis ratios of Euphrosyne significantly differ from the ones suggested by fluid hydrostatic equilibrium following reaccumulation., Comment: 12 pages, 6 figures, accepted to be published in A&A
- Published
- 2020
- Full Text
- View/download PDF
9. Physical parameters of selected Gaia mass asteroids
- Author
-
Podlewska-Gaca, E., Marciniak, A., Alí-Lagoa, V., Bartczak, P., Müller, T. G., Szakáts, R., Duffard, R., Molnár, L., Pál, A., Butkiewicz-Bąk, M., Dudziński, G., Dziadura, K., Antonini, P., Asenjo, V., Audejean, M., Benkhaldoun, Z., Behrend, R., Bernasconi, L., Bosch, J. M., Chapman, A., Dintinjana, B., Farkas, A., Ferrais, M., Geier, S., Grice, J., Hirsh, R., Jacquinot, H., Jehin, E., Jones, A., Molina, D., Morales, N., Parley, N., Poncy, R., Roy, R., Santana-Ros, T., Seli, B., Sobkowiak, K., Verebélyi, E., and Żukowski, K.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Thanks to the Gaia mission, it will be possible to determine the masses of approximately hundreds of large main belt asteroids with very good precision. We currently have diameter estimates for all of them that can be used to compute their volume and hence their density. However, some of those diameters are still based on simple thermal models, which can occasionally lead to volume uncertainties as high as 20-30%. The aim of this paper is to determine the 3D shape models and compute the volumes for 13 main belt asteroids that were selected from those targets for which Gaia will provide the mass with an accuracy of better than 10%. We used the genetic Shaping Asteroids with Genetic Evolution (SAGE) algorithm to fit disk-integrated, dense photometric lightcurves and obtain detailed asteroid shape models. These models were scaled by fitting them to available stellar occultation and/or thermal infrared observations. We determine the spin and shape models for 13 main belt asteroids using the SAGE algorithm. Occultation fitting enables us to confirm main shape features and the spin state, while thermophysical modeling leads to more precise diameters as well as estimates of thermal inertia values. We calculated the volume of our sample of main-belt asteroids for which the Gaia satellite will provide precise mass determinations. From our volumes, it will then be possible to more accurately compute the bulk density, which is a fundamental physical property needed to understand the formation and evolution processes of small solar system bodies., Comment: Accepted for publication in A&A
- Published
- 2020
- Full Text
- View/download PDF
10. (704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body
- Author
-
Hanuš, J., Vernazza, P., Viikinkoski, M., Ferrais, M., Rambaux, N., Podlewska-Gaca, E., Drouard, A., Jorda, L., Jehin, E., Carry, B., Marsset, M., Marchis, F., Warner, B., Behrend, R., Asenjo, V., Berger, N., Bronikowska, M., Brothers, T., Charbonnel, S., Colazo, C., Coliac, J-F., Duffard, R., Jones, A., Leroy, A., Marciniak, A., Melia, R., Molina, D., Nadolny, J., Person, M., Pejcha, O., Riemis, H., Shappee, B., Sobkowiak, K., Soldán, F., Suys, D., Szakats, R., Vantomme, J., Birlan, M., Berthier, J., Bartczak, P., Dumas, C., Dudziński, G., Ďurech, J., Castillo-Rogez, J., Cipriani, F., Fetick, R., Fusco, T., Grice, J., Kaasalainen, M., Kryszczynska, A., Lamy, P., Michalowski, T., Michel, P., Santana-Ros, T., Tanga, P., Vachier, F., Vigan, A., Witasse, O., and Yang, B.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
With an estimated diameter in the 320 to 350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with $D$ > 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with $D$ $\lesssim$ 200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller ($D$ $\lesssim$ 200 km) bodies. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling (ADAM) algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state. Interamnia's volume-equivalent diameter of 332 $\pm$ 6 km implies a bulk density of $\rho$=1.98 $\pm$ 0.68 gcm$^{-3}$ , which suggests that Interamnia - like Ceres and Hygiea - contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2 $\sigma$ level. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller ($D$ $\lesssim$ 300km) less massive ($m$ $\lesssim$ 3x10$^{19}$ kg) bodies., Comment: Accepted for publication in Astronomy and Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
11. Thermal properties of slowly rotating asteroids: Results from a targeted survey
- Author
-
Marciniak, A., Alí-Lagoa, V., Müller, T. G., Szakáts, R., Molnár, L., Pál, A., Gaca, E. Podlewska, Parley, N., Antonini, P., Barbotin, E., Behrend, R., Bernasconi, L., Bąk, M. Butkiewicz, Crippa, R., Duffard, R., Ditteon, R., Feuerbach, M., Fauvaud, S., Garlitz, J., Geier, S., Goncalves, R., Grice, J., Grześkowiak, I., Hirsch, R., Horbowicz, J., Kamiński, K., Kamińska, M. K., Kim, D. -H., Kim, M. -J., Konstanciak, I., Kudak, V., Kulczak, P., Maestre, J. L., Manzini, F., Marks, S., Monteiro, F., Ogłoza, W., Oszkiewicz, D., Pilcher, F., Perig, V., Polakis, T., Polińska, M., Roy, R., Sanabria, J. J., Santana-Ros, T., Skiff, B., Skrzypek, J., Sobkowiak, K., Sonbas, E., Thizy, O., Trela, P., Urakawa, S., Żejmo, M., and Żukowski, K.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. Earlier work suggests that slowly rotating asteroids should have higher thermal inertias than faster rotators because the heat wave penetrates deeper into the sub-surface. However, thermal inertias have been determined mainly for fast rotators due to selection effects in the available photometry used to obtain shape models required for thermophysical modelling (TPM). Aims. Our aims are to mitigate these selection effects by producing shape models of slow rotators, to scale them and compute their thermal inertia with TPM, and to verify whether thermal inertia increases with the rotation period. Methods. To decrease the bias against slow rotators, we conducted a photometric observing campaign of main-belt asteroids with periods longer than 12 hours, from multiple stations worldwide, adding in some cases data from WISE and Kepler space telescopes. For spin and shape reconstruction we used the lightcurve inversion method, and to derive thermal inertias we applied a thermophysical model to fit available infrared data from IRAS, AKARI, and WISE. Results. We present new models of 11 slow rotators that provide a good fit to the thermal data. In two cases, the TPM analysis showed a clear preference for one of the two possible mirror solutions. We derived the diameters and albedos of our targets in addition to their thermal inertias, which ranged between 3$^{+33}_{-3}$ and 45$^{+60}_{-30}$ Jm$^{-2}$s$^{-1/2}$K$^{-1}$. Conclusions. Together with our previous work, we have analysed 16 slow rotators from our dense survey with sizes between 30 and 150 km. The current sample thermal inertias vary widely, which does not confirm the earlier suggestion that slower rotators have higher thermal inertias., Comment: Accepted for publication in Astronomy & Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
12. The shape of (7) Iris as evidence of an ancient large impact?
- Author
-
Hanuš, J., Marsset, M., Vernazza, P., Viikinkoski, M., Drouard, A., Brož, M., Carry, B., Fetick, R., Marchis, F., Jorda, L., Fusco, T., Birlan, M., Santana-Ros, T., Podlewska-Gaca, E., Jehin, E., Ferrais, M., Grice, J., Bartczak, P., Berthier, J., Castillo-Rogez, J., Cipriani, F., Colas, F., Dudzinski, G., Dumas, C., Ďurech, J., Kaasalainen, M., Kryszczynska, A., Lamy, P., Coroller, H. Le, Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Tanga, P., Vachier, F., Vigan, A., Witasse, O., and Yang, B.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Asteroid (7) Iris is an ideal target for disk-resolved imaging owing to its brightness (V$\sim$7-8) and large angular size of 0.33 arcsec during its apparitions. Iris is believed to belong to the category of large unfragmented asteroids that avoided internal differentiation, implying that its current shape and topography may record the first few 100 Myr of the solar system's collisional evolution. We recovered information about the shape and surface topography of Iris from disk-resolved VLT/SPHERE/ZIMPOL images acquired in the frame of our ESO large program. We used the All-Data Asteroid Modeling (ADAM) shape reconstruction algorithm to model the 3D shape of Iris, using optical disk-integrated data and disk-resolved images from SPHERE as inputs. We analyzed the SPHERE images to infer the asteroid's global shape and the morphology of its main craters. We present the volume-equivalent diameter D$_{{\rm eq}}$=214$\pm$5 km, and bulk density $\rho$=2.7$\pm$0.3 g cm$^{-3}$ of Iris. Its shape appears to be consistent with that of an oblate spheroid with a large equatorial excavation. We identified eight putative surface features 20--40 km in diameter detected at several epochs, which we interpret as impact craters. Craters on Iris have depth-to-diameter ratios that are similar to those of analogous 10 km craters on Vesta. The bulk density of Iris is consistent with that of its meteoritic analog, namely LL ordinary chondrites. Considering the absence of a collisional family related to Iris and the number of large craters on its surface, we suggest that its equatorial depression may be the remnant of an ancient (at least 3 Gyr) impact. Iris's shape further opens the possibility that large planetesimals formed as almost perfect oblate spheroids. Finally, we attribute the difference in crater morphology between Iris and Vesta to their different surface gravities., Comment: Accepted for publication in Astronomy and Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
13. The homogeneous internal structure of CM-like asteroid (41) Daphne
- Author
-
Carry, B., Vachier, F., Berthier, J., Marsset, M., Vernazza, P., Grice, J., Merline, W. J., Lagadec, E., Fienga, A., Conrad, A., Podlewska-Gaca, E., Santana-Ros, T., Viikinkoski, M., Hanuš, J., Dumas, C., Drummond, J. D., Tamblyn, P. M., Chapman, C. R., Behrend, R., Bernasconi, L., Bartczak, P., Benkhaldoun, Z., Birlan, M., Castillo-Rogez, J., Cipriani, F., Colas, F., Drouard, A., Ďurech, J., Enke, B. L., Fauvaud, S., Ferrais, M., Fetick, R., Fusco, T., Gillon, M., Jehin, E., Jorda, L., Kaasalainen, M., Keppler, M., Kryszczynska, A., Lamy, P., Marchis, F., Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Tanga, P., Vigan, A., Warner, B., Witasse, O., Yang, B., and Zurlo, A.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been predicted to be homogeneous, based on their compositional similarity as inferred from spectroscopy (Vernazza et al., 2016, AJ 152, 154) and numerical modeling of their early thermal evolution (Bland & Travis, 2017, Sci. Adv. 3, e1602514). Aims. Here we aim to test this hypothesis by deriving the density of the CM-like asteroid (41) Daphne from detailed modeling of its shape and the orbit of its small satellite. Methods. We observed Daphne and its satellite within our imaging survey with the Very Large Telescope extreme adaptive-optics SPHERE/ZIMPOL camera (ID 199.C-0074, PI P. Vernazza) and complemented this data set with earlier Keck/NIRC2 and VLT/NACO observations. We analyzed the dynamics of the satellite with our Genoid meta-heuristic algorithm. Combining our high-angular resolution images with optical lightcurves and stellar occultations, we determine the spin period, orientation, and 3-D shape, using our ADAM shape modeling algorithm. Results. The satellite orbits Daphne on an equatorial, quasi-circular, prograde orbit, like the satellites of many other large main-belt asteroids. The shape model of Daphne reveals several large flat areas that could be large impact craters. The mass determined from this orbit combined with the volume computed from the shape model implies a density for Daphne of 1.77+/-0.26 g/cm3 (3 {\sigma}). This density is consistent with a primordial CM-like homogeneous internal structure with some level of macroporosity (~17%). Conclusions. Based on our analysis of the density of Daphne and 75 other Ch/Cgh-type asteroids gathered from the literature, we conclude that the primordial internal structure of the CM parent bodies was homogeneous.
- Published
- 2019
- Full Text
- View/download PDF
14. (16) Psyche: A mesosiderite-like asteroid?
- Author
-
Viikinkoski, M., Vernazza, P., Hanus, J., Coroller, H. Le, Tazhenova, K., Carry, B., Marsset, M., Drouard, A., Marchis, F., Fetick, R., Fusco, T., Durech, J., Birlan, M., Berthier, J., Bartczak, P., Dumas, C., Castillo-Rogez, J., Cipriani, F., Colas, F., Ferrais, M., Grice, J., Jehin, E., Jorda, L., Kaasalainen, M., Kryszczynska, A., Lamy, P., Marciniak, A., Michalowski, T., Michel, P., Pajuelo, M., Podlewska-Gaca, E., Santana-Ros, T., Tanga, P., Vachier, F., Vigan, A., Warner, B., Witasse, O., and Yang, B.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche's three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99\,$\pm$\,0.26\,g$\cdot$cm$^{-3}$ for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites ($\sim$7.8\,g$\cdot$cm$^{-3}$), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density $\sim$4.25\,$\cdot$cm$^{-3}$). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460\,$\pm$\,200}\,m at 150\,km from Psyche (0.2\%\,$\times$\,R$_{Hill}$, the Hill radius) and 800\,$\pm$\,200\,m at 2,000\,km (3\%\,$\times$\,$R_{Hill}$). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites., Comment: 16 pages
- Published
- 2018
- Full Text
- View/download PDF
15. Physical, spectral, and dynamical properties of asteroid (107) Camilla and its satellites
- Author
-
Pajuelo, M., Carry, B., Vachier, F., Marsset, M., Berthier, J., Descamps, P., Merline, W. J., Tamblyn, P. M., Grice, J., Conrad, A., Storrs, A., Timerson, B., Dunham, D., Preston, S., Vigan, A., Yang, B., Vernazza, P., Fauvaud, S., Bernasconi, L., Romeuf, D., Behrend, R., Dumas, C., Drummond, J. D., Margot, J. -L., Kervella, P., Marchis, F., and Girard, J. H.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The population of large asteroids is thought to be primordial and they are the most direct witnesses of the early history of our Solar System. Those satellites allow study of the mass, and hence density and internal structure. We study here the properties of the triple asteroid (107) Camilla from lightcurves, stellar occultations, optical spectroscopy, and high-contrast and high-angular-resolution images and spectro-images. Using 80 positions over 15 years, we determine the orbit of its larger satellite to be circular, equatorial, and prograde, with RMS residuals of 7.8 mas. From 11 positions in three epochs only, in 2015 and 2016, we determine a preliminary orbit for the second satellite. We find the orbit to be somewhat eccentric and slightly inclined to the primary's equatorial plane, reminiscent of the inner satellites of other asteroid triple systems. Comparison of the near-infrared spectrum of the larger satellite reveals no significant difference with Camilla. Hence, these properties argue for a formation of the satellites by excavation from impact and re-accumulation of ejecta. We determine the spin and 3-D shape of Camilla. The model fits well each data set. We determine Camilla to be larger than reported from modeling of mid-infrared photometry, with a spherical-volume-equivalent diameter of 254 $\pm$ 36 km (3 $\sigma$ uncertainty), in agreement with recent results from shape modeling (Hanus2017+). Combining the mass of (1.12 $\pm$ 0.01) $\times$ 10$^{19}$ kg determined from the dynamics of the satellites and the volume from the 3-D shape model, we determine a density of 1,280 $\pm$ 130 SI. From this density, and considering Camilla's spectral similarities with (24) Themis and (65) Cybele (for which water ice coating on surface grains was reported), we infer a silicate-to-ice mass ratio of 1-6, with a 10-30% macroporosity., Comment: 40 pages, 16 figures, accepted for publication
- Published
- 2018
- Full Text
- View/download PDF
16. 3D shape of asteroid (6)~Hebe from VLT/SPHERE imaging: Implications for the origin of ordinary H chondrites
- Author
-
Marsset, M., Carry, B., Dumas, C., Hanus, J., Viikinkoski, M., Vernazza, P., Müller, T. G., Delbo, M., Jehin, E., Gillon, M., Grice, J., Yang, B., Fusco, T., Berthier, J., Sonnett, S., Kugel, F., Caron, J., and Behrend, R.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The high-angular-resolution capability of the new-generation ground-based adaptive-optics camera SPHERE at ESO VLT allows us to assess, for the very first time, the cratering record of medium-sized (D~100-200 km) asteroids from the ground, opening the prospect of a new era of investigation of the asteroid belt's collisional history. Aims. We investigate here the collisional history of asteroid (6) Hebe and challenge the idea that Hebe may be the parent body of ordinary H chondrites, the most common type of meteorites found on Earth (~34% of the falls). Methods. We observed Hebe with SPHERE as part of the science verification of the instrument. Combined with earlier adaptive-optics images and optical light curves, we model the spin and three-dimensional (3D) shape of Hebe and check the consistency of the derived model against available stellar occultations and thermal measurements. Results. Our 3D shape model fits the images with sub-pixel residuals and the light curves to 0.02 mag. The rotation period (7.274 47 h), spin (343 deg,+47 deg), and volume-equivalent diameter (193 +/- 6km) are consistent with previous determinations and thermophysical modeling. Hebe's inferred density is 3.48 +/- 0.64 g.cm-3 , in agreement with an intact interior based on its H-chondrite composition. Using the 3D shape model to derive the volume of the largest depression (likely impact crater), it appears that the latter is significantly smaller than the total volume of close-by S-type H-chondrite-like asteroid families. Conclusions. Our results imply that (6) Hebe is not the most likely source of H chondrites. Over the coming years, our team will collect similar high-precision shape measurements with VLT/SPHERE for ~40 asteroids covering the main compositional classes, thus providing an unprecedented dataset to investigate the origin and collisional evolution of the asteroid belt., Comment: 11 pages, 13 figures, accepted for publication in A&A
- Published
- 2017
- Full Text
- View/download PDF
17. Physical, spectral, and dynamical properties of asteroid (107) Camilla and its satellites
- Author
-
Pajuelo, M, Carry, B, Vachier, F, Marsset, M, Berthier, J, Descamps, P, Merline, WJ, Tamblyn, PM, Grice, J, Conrad, A, Storrs, A, Timerson, B, Dunham, D, Preston, S, Vigan, A, Yang, B, Vernazza, P, Fauvaud, S, Bernasconi, L, Romeuf, D, Behrend, R, Dumas, C, Drummond, JD, Margot, J-L, Kervella, P, Marchis, F, and Girard, JH
- Subjects
Space Sciences ,Physical Sciences ,Asteroids ,Composition ,Satellites of asteroids ,Photometry ,Spectroscopy ,astro-ph.EP ,Astronomical and Space Sciences ,Geochemistry ,Geophysics ,Astronomy & Astrophysics ,Astronomical sciences ,Space sciences - Abstract
The population of large asteroids is thought to be primordial and they arethe most direct witnesses of the early history of our Solar System. Thosesatellites allow study of the mass, and hence density and internal structure.We study here the properties of the triple asteroid (107) Camilla fromlightcurves, stellar occultations, optical spectroscopy, and high-contrast andhigh-angular-resolution images and spectro-images. Using 80 positions over 15years, we determine the orbit of its larger satellite to be circular,equatorial, and prograde, with RMS residuals of 7.8 mas. From 11 positions inthree epochs only, in 2015 and 2016, we determine a preliminary orbit for thesecond satellite. We find the orbit to be somewhat eccentric and slightlyinclined to the primary's equatorial plane, reminiscent of the inner satellitesof other asteroid triple systems. Comparison of the near-infrared spectrum ofthe larger satellite reveals no significant difference with Camilla. Hence,these properties argue for a formation of the satellites by excavation fromimpact and re-accumulation of ejecta. We determine the spin and 3-D shape ofCamilla. The model fits well each data set. We determine Camilla to be largerthan reported from modeling of mid-infrared photometry, with aspherical-volume-equivalent diameter of 254 $\pm$ 36 km (3 $\sigma$uncertainty), in agreement with recent results from shape modeling(Hanus2017+). Combining the mass of (1.12 $\pm$ 0.01) $\times$ 10$^{19}$ kgdetermined from the dynamics of the satellites and the volume from the 3-Dshape model, we determine a density of 1,280 $\pm$ 130 SI. From this density,and considering Camilla's spectral similarities with (24) Themis and (65)Cybele (for which water ice coating on surface grains was reported), we infer asilicate-to-ice mass ratio of 1-6, with a 10-30% macroporosity.
- Published
- 2018
18. The role of vertebrate conserved non-coding elements in hindbrain development and evolution
- Author
-
Grice, J. M.
- Subjects
570 - Abstract
Vertebrate conserved non-coding elements (CNEs) act as cis-regulatory modules of developmental genes. To assess their roles in coordinating gene expression during embryogenesis, CNEs were subjected to motif searches. Using reporter gene assays in zebrafish (Danio rerio) embryos, Pbx-Hox (TGATNNAT) motifs are demonstrated to be poor predictors of hindbrain enhancer activity. Hindbrain enhancer CNEs are distinguished from hindbrain negative CNEs accurately by virtue of co-occurring Pbx-Hox (TGA TDDA TKD) and Meis/Pknox (CTGTCA) motifs. The grammar of these motifs was investigated using a bioinformatic pipeline for the detection of multiple conserved motifs, revealing no patterns in their relative organisation aside from spatial co-occurrence. These motifs were then used to identify additional conserved hindbrain enhancers with high efficacy (89%). Substitutions targeted to either motif abrogate expression by the enhancer or generate ectopic reporter gene expression, suggesting that motif co-occurrence is required for efficient and segment-specific hindbrain activation. Pbx-Hox and Meis/Pknox motifs are enriched in gnathostome CNE sets but are not detected in invertebrate chordate CNEs. Furthermore the presence (or absence) of the hindbrain syntax correlates with the conservation (or lack thereof) of segment-restricted enhancer activity in orthologous CNEs from the sea lamprey. A library of zebrafish hindbrain regulatory elements is made available. The heterogeneity of function and the loose grammar of motifs are consistent with combinatorial factor binding; a model of CNEs as exceptionally well- conserved billboard enhancers is presented (inflexible billboard model). The implications of these data for models of the evolution of the vertebrate hindbrain are discussed. Several components of the hindbrain gene regulatory network are shared- derived characters of gnathostomes, suggesting the establishment and elaboration of the conserved regulatory code controlling hindbrain development on the vertebrate and gnathostome stems, respectively.
- Published
- 2016
19. Scaling slowly rotating asteroids with stellar occultations
- Author
-
Marciniak, A., primary, Ďurech, J., additional, Choukroun, A., additional, Hanuš, J., additional, Ogłoza, W., additional, Szakáts, R., additional, Molnár, L., additional, Pál, A., additional, Monteiro, F., additional, Frappa, E., additional, Beisker, W., additional, Pavlov, H., additional, Moore, J., additional, Adomavičienė, R., additional, Aikawa, R., additional, Andersson, S., additional, Antonini, P., additional, Argentin, Y., additional, Asai, A., additional, Assoignon, P., additional, Barton, J., additional, Baruffetti, P., additional, Bath, K. L., additional, Behrend, R., additional, Benedyktowicz, L., additional, Bernasconi, L., additional, Biguet, G., additional, Billiani, M., additional, Błażewicz, D., additional, Boninsegna, R., additional, Borkowski, M., additional, Bosch, J., additional, Brazill, S., additional, Bronikowska, M., additional, Bruno, A., additional, Butkiewicz-Bąk, M., additional, Caron, J., additional, Casalnuovo, G., additional, Castellani, J. J., additional, Ceravolo, P., additional, Conjat, M., additional, Delincak, P., additional, Delpau, J., additional, Demeautis, C., additional, Demirkol, A., additional, Dróżdż, M., additional, Duffard, R., additional, Durandet, C., additional, Eisfeldt, D., additional, Evangelista, M., additional, Fauvaud, S., additional, Fauvaud, M., additional, Ferrais, M., additional, Filipek, M., additional, Fini, P., additional, Fukui, K., additional, Gährken, B., additional, Geier, S., additional, George, T., additional, Goffin, B., additional, Golonka, J., additional, Goto, T., additional, Grice, J., additional, Guhl, K., additional, Halíř, K., additional, Hanna, W., additional, Harman, M., additional, Hashimoto, A., additional, Hasubick, W., additional, Higgins, D., additional, Higuchi, M., additional, Hirose, T., additional, Hirsch, R., additional, Hofschulz, O., additional, Horaguchi, T., additional, Horbowicz, J., additional, Ida, M., additional, Ignácz, B., additional, Ishida, M., additional, Isobe, K., additional, Jehin, E., additional, Joachimczyk, B., additional, Jones, A., additional, Juan, J., additional, Kamiński, K., additional, Kamińska, M. K., additional, Kankiewicz, P., additional, Kasebe, H., additional, Kattentidt, B., additional, Kim, D.-H., additional, Kim, M.-J., additional, Kitazaki, K., additional, Klotz, A., additional, Komraus, M., additional, Konstanciak, I., additional, Könyves-Tóth, R., additional, Kouno, K., additional, Kowald, E., additional, Krajewski, J., additional, Krannich, G., additional, Kreutzer, A., additional, Kryszczyńska, A., additional, Kubánek, J., additional, Kudak, V., additional, Kugel, F., additional, Kukita, R., additional, Kulczak, P., additional, Lazzaro, D., additional, Licandro, J., additional, Livet, F., additional, Maley, P., additional, Manago, N., additional, Mánek, J., additional, Manna, A., additional, Matsushita, H., additional, Meister, S., additional, Mesquita, W., additional, Messner, S., additional, Michelet, J., additional, Michimani, J., additional, Mieczkowska, I., additional, Morales, N., additional, Motyliński, M., additional, Murawiecka, M., additional, Newman, J., additional, Nikitin, V., additional, Nishimura, M., additional, Oey, J., additional, Oszkiewicz, D., additional, Owada, M., additional, Pakštienė, E., additional, Pawłowski, M., additional, Pereira, W., additional, Perig, V., additional, Perła, J., additional, Pilcher, F., additional, Podlewska-Gaca, E., additional, Polák, J., additional, Polakis, T., additional, Polińska, M., additional, Popowicz, A., additional, Richard, F., additional, Rives, J. J, additional, Rodrigues, T., additional, Rogiński, Ł., additional, Rondón, E., additional, Rottenborn, M., additional, Schäfer, R., additional, Schnabel, C., additional, Schreurs, O., additional, Selva, A., additional, Simon, M., additional, Skiff, B., additional, Skrutskie, M., additional, Skrzypek, J., additional, Sobkowiak, K., additional, Sonbas, E., additional, Sposetti, S., additional, Stuart, P., additional, Szyszka, K., additional, Terakubo, K., additional, Thomas, W., additional, Trela, P., additional, Uchiyama, S., additional, Urbanik, M., additional, Vaudescal, G., additional, Venable, R., additional, Watanabe, Ha., additional, Watanabe, Hi., additional, Winiarski, M., additional, Wróblewski, R., additional, Yamamura, H., additional, Yamashita, M., additional, Yoshihara, H., additional, Zawilski, M., additional, Zelený, P., additional, Żejmo, M., additional, Żukowski, K., additional, and Żywica, S., additional
- Published
- 2023
- Full Text
- View/download PDF
20. Assessment and management of cavus foot deformity
- Author
-
Grice, J., Willmott, H., and Taylor, H.
- Published
- 2016
- Full Text
- View/download PDF
21. Abstract No. 122 Predictive Dosimetry and Outcomes of Hepatocellular Carcinoma Following Liver Resin Microsphere Radioembolization
- Author
-
Doyle, P., primary, Workman, C., additional, Grice, J., additional, Du, L., additional, Borgmann, A., additional, Baker, J., additional, Duncan, D., additional, Taylor, J., additional, and Brown, D., additional
- Published
- 2023
- Full Text
- View/download PDF
22. Abstract No. 261 Assessment of Delivery, Dosimetry and Imaging Response with FLEX versus Day of Calibration Resin 90Y Microspheres for Hepatocellular Carcinoma
- Author
-
Workman, C., primary, Doyle, P., additional, Grice, J., additional, Du, L., additional, Borgmann, A., additional, Baker, J., additional, Duncan, D., additional, Taylor, J., additional, and Brown, D., additional
- Published
- 2023
- Full Text
- View/download PDF
23. Second-order statistics and 'designer' waves for violent free-surface motion around multi-column structures
- Author
-
Grice, J. R., Taylor, P. H., and Taylor, R. Eatock
- Published
- 2015
24. Phase manipulation and the harmonic components of ringing forces on a surface-piercing column
- Author
-
Fitzgerald, C. J., Taylor, P. H., Taylor, R. Eatock, Grice, J., and Zang, J.
- Published
- 2014
25. Is there a compartmental pressure transfer in lower limb fractures?
- Author
-
Sellei R., Weber C., Kobbe P., Dienstknecht T., Grice J., Prescher A., and Pape H.
- Subjects
acute compartment syndrome ,pressure measurement ,monitoring ,cadaveric tibia shaft fracture ,Medicine - Published
- 2014
- Full Text
- View/download PDF
26. List of Contributors
- Author
-
Abe, T., primary, Ando, H., additional, Ardigò, M., additional, Berardesca, E., additional, Fukui, H., additional, García-Celma, M.J., additional, Ghofranian, A., additional, Gräbner, D., additional, Grice, J., additional, Harada, F., additional, Haridass, I.N., additional, Hatao, M., additional, Hatta, I., additional, Hayase, M., additional, Herman, S., additional, Himeno, T., additional, Hirao, T., additional, Hoffmann, H., additional, Hosoi, J., additional, Huber, P., additional, Ifuku, O., additional, Inoue, S., additional, Iwata, T., additional, Joseph Lin, T, additional, Kanda, F., additional, Kikuchi, K., additional, Kishimoto, J., additional, Kitano, T., additional, Kojima, H., additional, Konno, Y., additional, Koyama, J., additional, Leite-Silva, V.R., additional, Lindman, B., additional, Lochhead, R.Y., additional, Lopes, P.S., additional, Machado, A.C.H.R., additional, Maibach, H.I., additional, Masaki, H., additional, Masuda, M., additional, Minamino, M., additional, Miyahara, R., additional, Miyake, M., additional, Nafisi, S., additional, Naito, N., additional, Nakama, Y., additional, Nakamura, N., additional, Nakazawa, Y., additional, Nikitakis, J., additional, Nonomura, Y., additional, Nozaki, F., additional, Nylander, T., additional, Oguchi-Fujiwara, N., additional, Oshimura, E., additional, Ozawa, T., additional, Raffier, C.P., additional, Roberts, M., additional, Rocafort, C.M., additional, Sakai, T., additional, Sakamoto, K., additional, Sanzone, J., additional, Solans, C., additional, Suzuki, T., additional, Tagami, H., additional, Takahashi, M., additional, Tsujii, K., additional, Uchida, Y., additional, Watanabe, K., additional, Yamashita, Y., additional, and Yang, J., additional
- Published
- 2017
- Full Text
- View/download PDF
27. Skin Penetration
- Author
-
Machado, A.C.H.R., primary, Lopes, P.S., additional, Raffier, C.P., additional, Haridass, I.N., additional, Roberts, M., additional, Grice, J., additional, and Leite-Silva, V.R., additional
- Published
- 2017
- Full Text
- View/download PDF
28. M-type (22) Kalliope: A tiny Mercury
- Author
-
Ferrais, M., primary, Jorda, L., additional, Vernazza, P., additional, Carry, B., additional, Brož, M., additional, Rambaux, N., additional, Hanuš, J., additional, Dudziński, G., additional, Bartczak, P., additional, Vachier, F., additional, Aristidi, E., additional, Beck, P., additional, Marchis, F., additional, Marsset, M., additional, Viikinkoski, M., additional, Fetick, R., additional, Drouard, A., additional, Fusco, T., additional, Birlan, M., additional, Podlewska-Gaca, E., additional, Burbine, T. H., additional, Dyar, M. D., additional, Bendjoya, P., additional, Benkhaldoun, Z., additional, Berthier, J., additional, Castillo-Rogez, J., additional, Cipriani, F., additional, Colas, F., additional, Dumas, C., additional, Ďurech, J., additional, Fauvaud, S., additional, Grice, J., additional, Jehin, E., additional, Kaasalainen, M., additional, Kryszczynska, A., additional, Lamy, P., additional, Le Coroller, H., additional, Marciniak, A., additional, Michalowski, T., additional, Michel, P., additional, Prieur, J.-L., additional, Reddy, V., additional, Rivet, J.-P., additional, Santana-Ros, T., additional, Scardia, M., additional, Tanga, P., additional, Vigan, A., additional, Witasse, O., additional, and Yang, B., additional
- Published
- 2022
- Full Text
- View/download PDF
29. Topical and cutaneous delivery using nanosystems
- Author
-
Roberts, M S, Mohammed, Y, Pastore, M N, Namjoshi, S, Yousef, S, Alinaghi, A, Haridass, I N, Abd, E, Leite-Silva, V R, Benson, H AE, and Grice, J E
- Published
- 2017
- Full Text
- View/download PDF
30. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment
- Author
-
Leite-Silva, V. R., Sanchez, W. Y., Studier, H., Liu, D. C., Mohammed, Y. H., Holmes, A. M., Ryan, E. M., Haridass, I. N., Chandrasekaran, N. C., Becker, W., Grice, J. E., Benson, H. A.E., and Roberts, M. S.
- Published
- 2016
- Full Text
- View/download PDF
31. VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis
- Author
-
Brož, M., Marchis, F., Jorda, L., Hanuš, J., Vernazza, P., Ferrais, M., Vachier, F., Rambaux, N., Marsset, M., Viikinkoski, M., Jehin, E., Benseguane, S., Podlewska-Gaca, E., Carry, B., Drouard, A., Fauvaud, S., Birlan, M., Berthier, J., Bartczak, P., Dumas, C., Dudziński, G., Ďurech, J., Castillo-Rogez, J., Cipriani, F., Colas, F., Fetick, R., Fusco, T., Grice, J., Kryszczynska, A., Lamy, P., Marciniak, A., Michalowski, T., Michel, Patrick, Pajuelo, M., Santana-Ros, T., Tanga, P., Vigan, A., Vokrouhlický, D., Witasse, O., Yang, B., Neveu, M., Beck, P., Kaasalainen, M., Le Coroller, H., Antonini, P., Audejean, M., Aurard, P., Behrend, R., Benkhaldoun, Z., Bosch, J., Chapman, A., Dalmon, L., Hamanowa, Hiroko, Hamanowa, Hiromi, His, J., Jones, A., Kim, D.-H., Kim, M.-J., Krajewski, J., Labrevoir, O., Leroy, A., Livet, F., Molina, D., Montaigut, R., Oey, J., Payre, N., Reddy, V., Sabin, P., Sanchez, A., Socha, L., and Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
- Subjects
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest ( D ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration. Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D ≥ 100 km and in particular most D ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V. Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems. Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape ( c ∕ a ≤ 0.65). Densities in our sample range from ~1.3 g cm −3 (87 Sylvia) to ~4.3 g cm −3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor ( ρ ≥ 2.7 g cm −3 ) and volatile-rich ( ρ ≤ 2.2 g cm −3 ) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk.
- Published
- 2021
- Full Text
- View/download PDF
32. Properties of slowly rotating asteroids from the Convex Inversion Thermophysical Model
- Author
-
Marciniak, A., primary, Ďurech, J., additional, Alí-Lagoa, V., additional, Ogłoza, W., additional, Szakáts, R., additional, Müller, T. G., additional, Molnár, L., additional, Pál, A., additional, Monteiro, F., additional, Arcoverde, P., additional, Behrend, R., additional, Benkhaldoun, Z., additional, Bernasconi, L., additional, Bosch, J., additional, Brincat, S., additional, Brunetto, L., additional, Butkiewicz - Bąk, M., additional, Del Freo, F., additional, Duffard, R., additional, Evangelista-Santana, M., additional, Farroni, G., additional, Fauvaud, S., additional, Fauvaud, M., additional, Ferrais, M., additional, Geier, S., additional, Golonka, J., additional, Grice, J., additional, Hirsch, R., additional, Horbowicz, J., additional, Jehin, E., additional, Julien, P., additional, Kalup, Cs., additional, Kamiński, K., additional, Kamińska, M. K., additional, Kankiewicz, P., additional, Kecskeméthy, V., additional, Kim, D.-H., additional, Kim, M.-J., additional, Konstanciak, I., additional, Krajewski, J., additional, Kudak, V., additional, Kulczak, P., additional, Kundera, T., additional, Lazzaro, D., additional, Manzini, F., additional, Medeiros, H., additional, Michimani-Garcia, J., additional, Morales, N., additional, Nadolny, J., additional, Oszkiewicz, D., additional, Pakštienė, E., additional, Pawłowski, M., additional, Perig, V., additional, Pilcher, F., additional, Pinel, P., additional, Podlewska-Gaca, E., additional, Polakis, T., additional, Richard, F., additional, Rodrigues, T., additional, Rondón, E., additional, Roy, R., additional, Sanabria, J. J., additional, Santana-Ros, T., additional, Skiff, B., additional, Skrzypek, J., additional, Sobkowiak, K., additional, Sonbas, E., additional, Stachowski, G., additional, Strajnic, J., additional, Trela, P., additional, Tychoniec, Ł., additional, Urakawa, S., additional, Verebelyi, E., additional, Wagrez, K., additional, Żejmo, M., additional, and Żukowski, K., additional
- Published
- 2021
- Full Text
- View/download PDF
33. VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis
- Author
-
Vernazza, P., primary, Ferrais, M., additional, Jorda, L., additional, Hanuš, J., additional, Carry, B., additional, Marsset, M., additional, Brož, M., additional, Fetick, R., additional, Viikinkoski, M., additional, Marchis, F., additional, Vachier, F., additional, Drouard, A., additional, Fusco, T., additional, Birlan, M., additional, Podlewska-Gaca, E., additional, Rambaux, N., additional, Neveu, M., additional, Bartczak, P., additional, Dudziński, G., additional, Jehin, E., additional, Beck, P., additional, Berthier, J., additional, Castillo-Rogez, J., additional, Cipriani, F., additional, Colas, F., additional, Dumas, C., additional, Ďurech, J., additional, Grice, J., additional, Kaasalainen, M., additional, Kryszczynska, A., additional, Lamy, P., additional, Le Coroller, H., additional, Marciniak, A., additional, Michalowski, T., additional, Michel, P., additional, Santana-Ros, T., additional, Tanga, P., additional, Vigan, A., additional, Witasse, O., additional, Yang, B., additional, Antonini, P., additional, Audejean, M., additional, Aurard, P., additional, Behrend, R., additional, Benkhaldoun, Z., additional, Bosch, J. M., additional, Chapman, A., additional, Dalmon, L., additional, Fauvaud, S., additional, Hamanowa, Hiroko, additional, Hamanowa, Hiromi, additional, His, J., additional, Jones, A., additional, Kim, D.-H., additional, Kim, M.-J., additional, Krajewski, J., additional, Labrevoir, O., additional, Leroy, A., additional, Livet, F., additional, Molina, D., additional, Montaigut, R., additional, Oey, J., additional, Payre, N., additional, Reddy, V., additional, Sabin, P., additional, Sanchez, A. G., additional, and Socha, L., additional
- Published
- 2021
- Full Text
- View/download PDF
34. Recent Developments in Taxation in England
- Author
-
Grice, J. Watson
- Published
- 1911
35. Variation in treatment of acute childhood wheeze in emergency departments of the United Kingdom and Ireland: an international survey of clinician practice
- Author
-
Lyttle, Mark D, OʼSullivan, Ronan, Doull, Iolo, Hartshorn, Stuart, Morris, Ian, Powell, Colin VE, Barling, J, Bayreuther, J, Bevan, C, Bolger, T, Burke, D, Choudhery, V, Criddle, J, Dalzell, E, Davies, F, Dieppe, C, Grice, J, Hadley, G, Hartshorn, S, Kidd, A, Maconochie, I, McNamara, R, Mitchelson, M, Mullen, N, Mulligan, J, OʼSullivan, R, Parikh, A, Potier, K, Potter, S, Roberts, Z, Robinson, G, Ross, J, Rowland, A, Smith, JE, Wong, S, and Younge, P
- Published
- 2015
- Full Text
- View/download PDF
36. (216) Kleopatra, a low density critically rotating M-type asteroid
- Author
-
Marchis, F., primary, Jorda, L., additional, Vernazza, P., additional, Brož, M., additional, Hanuš, J., additional, Ferrais, M., additional, Vachier, F., additional, Rambaux, N., additional, Marsset, M., additional, Viikinkoski, M., additional, Jehin, E., additional, Benseguane, S., additional, Podlewska-Gaca, E., additional, Carry, B., additional, Drouard, A., additional, Fauvaud, S., additional, Birlan, M., additional, Berthier, J., additional, Bartczak, P., additional, Dumas, C., additional, Dudziński, G., additional, Ďurech, J., additional, Castillo-Rogez, J., additional, Cipriani, F., additional, Colas, F., additional, Fetick, R., additional, Fusco, T., additional, Grice, J., additional, Kryszczynska, A., additional, Lamy, P., additional, Marciniak, A., additional, Michalowski, T., additional, Michel, P., additional, Pajuelo, M., additional, Santana-Ros, T., additional, Tanga, P., additional, Vigan, A., additional, Witasse, O., additional, and Yang, B., additional
- Published
- 2021
- Full Text
- View/download PDF
37. An advanced multipole model for (216) Kleopatra triple system
- Author
-
Brož, M., primary, Marchis, F., additional, Jorda, L., additional, Hanuš, J., additional, Vernazza, P., additional, Ferrais, M., additional, Vachier, F., additional, Rambaux, N., additional, Marsset, M., additional, Viikinkoski, M., additional, Jehin, E., additional, Benseguane, S., additional, Podlewska-Gaca, E., additional, Carry, B., additional, Drouard, A., additional, Fauvaud, S., additional, Birlan, M., additional, Berthier, J., additional, Bartczak, P., additional, Dumas, C., additional, Dudziński, G., additional, Ďurech, J., additional, Castillo-Rogez, J., additional, Cipriani, F., additional, Colas, F., additional, Fetick, R., additional, Fusco, T., additional, Grice, J., additional, Kryszczynska, A., additional, Lamy, P., additional, Marciniak, A., additional, Michalowski, T., additional, Michel, P., additional, Pajuelo, M., additional, Santana-Ros, T., additional, Tanga, P., additional, Vigan, A., additional, Vokrouhlický, D., additional, Witasse, O., additional, and Yang, B., additional
- Published
- 2021
- Full Text
- View/download PDF
38. Evidence for differentiation of the most primitive small bodies
- Author
-
Carry, B., primary, Vernazza, P., additional, Vachier, F., additional, Neveu, M., additional, Berthier, J., additional, Hanuš, J., additional, Ferrais, M., additional, Jorda, L., additional, Marsset, M., additional, Viikinkoski, M., additional, Bartczak, P., additional, Behrend, R., additional, Benkhaldoun, Z., additional, Birlan, M., additional, Castillo-Rogez, J., additional, Cipriani, F., additional, Colas, F., additional, Drouard, A., additional, Dudziński, G. P., additional, Desmars, J., additional, Dumas, C., additional, Ďurech, J., additional, Fetick, R., additional, Fusco, T., additional, Grice, J., additional, Jehin, E., additional, Kaasalainen, M., additional, Kryszczynska, A., additional, Lamy, P., additional, Marchis, F., additional, Marciniak, A., additional, Michalowski, T., additional, Michel, P., additional, Pajuelo, M., additional, Podlewska-Gaca, E., additional, Rambaux, N., additional, Santana-Ros, T., additional, Storrs, A., additional, Tanga, P., additional, Vigan, A., additional, Warner, B., additional, Wieczorek, M., additional, Witasse, O., additional, and Yang, B., additional
- Published
- 2021
- Full Text
- View/download PDF
39. NEW MINERALS APPROVED IN 2002 NOMENCLATURE MODIFICATIONS APPROVED 1998–2002 BY THE COMMISSION ON NEW MINERALS AND MINERAL NAMES INTERNATIONAL MINERALOGICAL ASSOCIATION
- Author
-
Grice, J. D. and Ferraris, G.
- Published
- 2004
- Full Text
- View/download PDF
40. 121 OBSERVATION ORIENTED MODELING: AN IDIOGRAPHIC AND DYNAMIC ANALYSIS OF DAILY INTERACTIVE VOICE RESPONSE DATA
- Author
-
Cohn, A. M., Grice, J., and Hagman, B. T.
- Published
- 2013
41. Audit of unplanned re-attendance to a paediatric emergency department
- Author
-
Simmons, N, Syahanee, R, Marzouk, O, and Grice, J
- Published
- 2012
- Full Text
- View/download PDF
42. Simultaneous imaging of metal nanoparticle penetration and metabolic changes in human skin using fluorescence lifetime imaging: I7
- Author
-
PROW, T. W., LIU, D., FAYE, R., LIN, L. L., GRICE, J. E., SOYER, H. P., and ROBERTS, M. S.
- Published
- 2011
43. G237(P) Growing up is always hard: the interface between paediatric and adult services
- Author
-
Devonport, M, primary and Grice, J, additional
- Published
- 2020
- Full Text
- View/download PDF
44. Binary asteroid (31) Euphrosyne: ice-rich and nearly spherical
- Author
-
Yang, B., primary, Hanuš, J., additional, Carry, B., additional, Vernazza, P., additional, Brož, M., additional, Vachier, F., additional, Rambaux, N., additional, Marsset, M., additional, Chrenko, O., additional, Ševeček, P., additional, Viikinkoski, M., additional, Jehin, E., additional, Ferrais, M., additional, Podlewska-Gaca, E., additional, Drouard, A., additional, Marchis, F., additional, Birlan, M., additional, Benkhaldoun, Z., additional, Berthier, J., additional, Bartczak, P., additional, Dumas, C., additional, Dudziński, G., additional, Ďurech, J., additional, Castillo-Rogez, J., additional, Cipriani, F., additional, Colas, F., additional, Fetick, R., additional, Fusco, T., additional, Grice, J., additional, Jorda, L., additional, Kaasalainen, M., additional, Kryszczynska, A., additional, Lamy, P., additional, Marciniak, A., additional, Michalowski, T., additional, Michel, P., additional, Pajuelo, M., additional, Santana-Ros, T., additional, Tanga, P., additional, Vigan, A., additional, and Witasse, O., additional
- Published
- 2020
- Full Text
- View/download PDF
45. Physical parameters of selected Gaia mass asteroids
- Author
-
Podlewska-Gaca, E., primary, Marciniak, A., additional, Alí-Lagoa, V., additional, Bartczak, P., additional, Müller, T. G., additional, Szakáts, R., additional, Duffard, R., additional, Molnár, L., additional, Pál, A., additional, Butkiewicz-Bąk, M., additional, Dudziński, G., additional, Dziadura, K., additional, Antonini, P., additional, Asenjo, V., additional, Audejean, M., additional, Benkhaldoun, Z., additional, Behrend, R., additional, Bernasconi, L., additional, Bosch, J. M., additional, Chapman, A., additional, Dintinjana, B., additional, Farkas, A., additional, Ferrais, M., additional, Geier, S., additional, Grice, J., additional, Hirsh, R., additional, Jacquinot, H., additional, Jehin, E., additional, Jones, A., additional, Molina, D., additional, Morales, N., additional, Parley, N., additional, Poncy, R., additional, Roy, R., additional, Santana-Ros, T., additional, Seli, B., additional, Sobkowiak, K., additional, Verebélyi, E., additional, and Żukowski, K., additional
- Published
- 2020
- Full Text
- View/download PDF
46. Cardiorespiratory and thermoregulatory response of working in fire-fighter protective closing in a temperature environment
- Author
-
Baker, S, Roby, L, Grice, J, and Matthews, C
- Subjects
Ergonomics -- Research ,Fire extinction -- Equipment and supplies ,Fire fighters -- Clothing ,Architecture and design industries ,Business - Published
- 2000
47. New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Asociation
- Author
-
Mandarino, J. A., Emeritus, and Grice, J. D.
- Published
- 1998
- Full Text
- View/download PDF
48. The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998
- Author
-
Nickel, E. H. and Grice, J. D.
- Published
- 1998
- Full Text
- View/download PDF
49. (704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body
- Author
-
Dudziński, G., Podlewska-Gaca, E., Bartczak, P., Benseguane, S, Ferrais, M., Jorda, L., Hanuš, J., Vernazza, P., Rambaux, N., Carry, B., Marchis, F., Marsset, M., Viikinkoski, M., Brož, M., Fetick, R., Drouard, A., Fusco, T., Birlan, M., Jehin, E., Berthier, J., Castillo-Rogez, J., Cipriani, F., Colas, F., Dumas, C., Kryszczynska, A., Lamy, P., Le Coroller, H, Marciniak, A., Michalowski, T., Michel, P., Santana-Ros, T., Tanga, P., Vachier, F., Vigan, A., Witasse, O., Yang, Bin, Ďurech, J., Kaasalainen, M., Le Coroller, H., Ševeček, P., Dudzinski, G., DeMeo, F., Durech, J., Grice, J., Gillon, M., Benkhaldoun, Z., Szakats, R., Hirsch, R., Duffard, R., Chapman, A., Maestre, J., Carbognani, Albino, Barghini, D., Gardiol, D., Martino, M. Di, Valsecchi, G., Trivero, P., Buzzoni, A., Rasetti, S., Selvestrel, D., Knapic, C., Londero, E., Zorba, S., Volpicelli, C., Carlo, M. Di, Vaubaillon, J., Marmo, C., Valeri, D., Zanotti, F., Morini, M., Demaria, P., Zanda, B., Bouley, S., Rault, J., Maquet, L., Warner, B., Behrend, R., Asenjo, V., Berger, N., Bronikowska, M., Brothers, T., Charbonnel, S., Colazo, C., Coliac, J.-F., Jones, A., Leroy, A., Melia, R., Molina, D., Nadolny, J., Person, M., Pejcha, O., Riemis, H., Shappee, B., Sobkowiak, K., Soldán, F., Suys, D., Vantomme, J., Ministry of Education, Youth and Sports (Czech Republic), European Commission, National Aeronautics and Space Administration (US), National Centre for Research and Development (Poland), National Research, Development and Innovation Office (Hungary), Hungarian Academy of Sciences, Université de Liège, Centre National de la Recherche Scientifique (France), Gordon and Betty Moore Foundation, National Science Foundation (US), The Ohio State University, Chinese Academy of Sciences, Villum Fonden, Astronomical Institute of Charles University, Charles University [Prague], Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Tampere University of Technology [Tampere] (TUT), Space Sciences, Technologies and Astrophysics Research Institute (STAR), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Adam Mickiewicz University in Poznań (UAM), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Southern Observatory (ESO), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Geneva Observatory, University of Geneva [Switzerland], Asociación Astronómica Astro Henares, Centro de Recursos Asociativos El Cerro, Institute of Geology [Poznan], Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Association T60, Observatoire Midi-Pyrénées, Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Observatorio Astronómico de Córdoba (OAC), Universidad Nacional de Córdoba [Argentina], Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Departamento de Astrofísica [La laguna], Universidad de La Laguna [Tenerife - SP] (ULL), Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Astronomical Observatory [Poznan], Observatorio Amanecer de Arrakis, Konkoly Observatory, Research Centre for Astronomy and Earth Sciences [Budapest], Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA), Laboratoire associé de Reconnaissance cellulaire et amélioration des plantes, Institut National de la Recherche Agronomique (INRA), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, European Space Research and Technology Centre (ESTEC), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Department of Mathematics [Tampere], Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Northeastern University [Shenyang], Charles University [Prague] (CU), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), SETI Institute, Center for Solar System Studies (CS3), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Observatoire de Durtal, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), L'Uranoscope de l'Ile de France, Observatoire de Gretz-Armainvilliers, Anunaki Observatory, Thirty Meter Telescope Observatory, NASA-California Institute of Technology (CALTECH), Agence Spatiale Européenne = European Space Agency (ESA), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Señal [Alicante] (DFESTS), Universidad de Alicante, Institut de Ciencies del Cosmos (ICCUB), Universitat de Barcelona (UB), European Southern Observatory [Santiago] (ESO), Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Genève (UNIGE), and Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
asteroids ,010504 meteorology & atmospheric sciences ,Dwarf planet ,Irregular shape ,Minor (linear algebra) ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,7. Clean energy ,law.invention ,Techniques: high angular resolution ,photometric ,Impact crater ,Methods: observational ,law ,Física Aplicada ,0103 physical sciences ,high angular resolutiontechniques ,observational [Methods] ,individual ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,(704) Interamnia -methods ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Interamnia ,photometric [Techniques] ,observational -techniques ,Minor planets ,Astronomy and Astrophysics ,individual: (704) [Asteroids] ,Ellipsoid ,high angular resolution [Techniques] ,Space and Planetary Science ,Asteroid ,[SDU]Sciences of the Universe [physics] ,individual: (704) Interamnia [Minor planets, asteroids] ,Stellar occultation ,Asteroids: individual: (704) ,Hydrostatic equilibrium ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Techniques: photometric ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Full list of authors: Hanuš, J.; Vernazza, P.; Viikinkoski, M.; Ferrais, M.; Rambaux, N.; Podlewska-Gaca, E.; Drouard, A.; Jorda, L.; Jehin, E.; Carry, B.; Marsset, M.; Marchis, F.; Warner, B.; Behrend, R.; Asenjo, V.; Berger, N.; Bronikowska, M.; Brothers, T.; Charbonnel, S.; Colazo, C. Coliac, J. -F.; Duffard, R.; Jones, A.; Leroy, A.; Marciniak, A.; Melia, R.; Molina, D.; Nadolny, J.; Person, M.; Pejcha, O.; Riemis, H.; Shappee, B.; Sobkowiak, K.; Soldán, F.; Suys, D.; Szakats, R.; Vantomme, J.; Birlan, M.; Berthier, J.; Bartczak, P.; Dumas, C.; Dudziński, G.; Ďurech, J.; Castillo-Rogez, J.; Cipriani, F.; Fetick, R.; Fusco, T.; Grice, J.; Kaasalainen, M.; Kryszczynska, A.; Lamy, P.; Michalowski, T.; Michel, P.; Santana-Ros, T.; Tanga, P.; Vachier, F.; Vigan, A.; Witasse, O.; Yang, B., With an estimated diameter in the 320 350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D >400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter 200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution. Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller (D 200 km) bodies. Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state. Results. Interamnia s volume-equivalent diameter of 332 6 km implies a bulk density of = 1.98 0.68 g cm3, which suggests that Interamnia like Ceres and Hygiea contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2 level. Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller (D 300 km) less massive (m 3 1019 kg) bodies. © 2020 EDP Sciences. All rights reserved., This work has been supported by the Czech Science Foundation through grant 18-09470S (J.H., J.D.) and by the Charles University Research program No. UNCE/SCI/023. This research was supported by INTER-EXCELLENCE grant LTAUSA18093 from the Czech Ministry of Education, Youth, and Sports (J.H. and O.P.). The research of O.P. is additionally supported by Horizon 2020 ERC Starting Grant "Cat-In-hAT" (grant agreement #803158) and award PRIMUS/SCI/17 from Charles University. P.V., A.D., and B.C. were supported by CNRS/INSU/PNP. M.M. was supported by the National Aeronautics and Space Administration under Grant No. 80NSSC18K0849 issued through the Planetary Astronomy Program. This work was supported by the National Science Centre, Poland, through grant no. 2014/13/D/ST9/01818 (A.M.). The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378 (SBNAF). This project has been supported by the GINOP-2.3.2-15-2016-00003 and NKFIH K125015 grants of the Hungarian National Research, Development and Innovation Office (NKFIH) and by the Lendulet grant LP2012-31 of the Hungarian Academy of Sciences. TRAPPIST-North is a project funded by the University of Liege, in collaboration with Cadi Ayyad University of Marrakech (Morocco). TRAPPIST-South is a project funded by the Belgian FNRS under grant FRFC 2.5.594.09. F.E.J. is a FNRS Senior Research Associate. ASAS-SN thanks the Las Cumbres Observatory and its staff for its continuing support of the ASAS-SN project. ASAS-SN is supported by the Gordon and Betty Moore Foundation through grant GBMF5490 to the Ohio State University and NSF grant AST-1515927. Development of ASAS-SN has been supported by NSF grant AST-0908816, the Mt. Cuba Astronomical Foundation, the Center for Cosmology and AstroParticle Physics at the Ohio State University, the Chinese Academy of Sciences South America Center for Astronomy (CASSACA), the Villum Foundation, and George Skestos.
- Published
- 2020
- Full Text
- View/download PDF
50. New minerals recently approved by the Commission on New Minerals and Mineral Names International Mineralogical Association
- Author
-
Mandarino, J. A. and Grice, J. D.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.