In this paper, we are interested in the properties of solution of the nonlocal equation $$\begin{cases}u_t+(-\Delta)^su=f(u),\quad t>0, \ x\in\mathbb{R}\\ u(0,x)=u_0(x),\quad x\in\mathbb{R}\end{cases}$$ where $0\le u_0<1$ is a Heaviside type function, $\Delta^s$ stands for the fractional Laplacian with $s\in (0,1)$, and $f\in C([0,1],\mathbb{R}^+)$ is a non negative nonlinearity such that $f(0)=f(1)=0$ and $f'(1)<0$. In this context, it is known that the solution $u(t,s)$ converges locally uniformly to 1 and our aim here is to understand how fast this invasion process occur. When $f$ is a Fisher-KPP type nonlinearity and $s \in (0,1)$, it is known that the level set of the solution $u(t,x)$ moves at an exponential speed whereas when $f$ is of ignition type and $s\in \left(\frac{1}{2},1\right)$ then the level set of the solution moves at a constant speed. In this article, for general monostable nonlinearities $f$ and any $s\in (0,1)$ we derive generic estimates on the position of the level sets of the solution $u(t,x)$ which then enable us to describe more precisely the behaviour of this invasion process. In particular, we obtain a algebraic generic upper bound on the "speed" of level set highlighting the delicate interplay of $s$ and $f$ in the existence of an exponential acceleration process. When $s\in\left (0,\frac{1}{2}\right]$ and $f$ is of ignition type, we also complete the known description of the behaviour of $u$ and give a precise asymptotic of the speed of the level set in this context. Notably, we prove that the level sets accelerate when $s\in\left(0,\frac{1}{2}\right)$ and that in the critical case $s=\frac{1}{2}$ although no travelling front can exist, the level sets still move asymptotically at a constant speed. These new results are in sharp contrast with the bistable situation where no such acceleration may occur, highlighting therefore the qualitative difference between the two type of nonlinearities.