1. Predicting effective drug combinations for cancer treatment using a graph-based approach
- Author
-
Qi Wang, Xiya Liu, and Guiying Yan
- Subjects
Drug combination ,Cancer therapy ,Computational method ,Random walk with restart ,Biotechnology ,TP248.13-248.65 ,Biology (General) ,QH301-705.5 - Abstract
Drug combination therapy, involving the use of two or more drugs, has been widely employed to treat complex diseases such as cancer. It enhances therapeutic efficacy, reduces drug resistance, and minimizes side effects. However, traditional methods to identify effective drug combinations are time-consuming, costly, and less efficient than computational methods. Therefore, developing computational approaches to predict drug combinations has become increasingly important.In this paper, we developed the Random Walk with Restart for Drug Combination (RWRDC) model to predict effective drug combinations for cancer therapy. The RWRDC model offers a quantitative mathematical method for predicting the potential effective drug combinations. Cross-validation results indicate that the RWRDC model outperforms other predictive models, particularly in breast, colorectal, and lung cancer predictions across various performance metrics. We have theoretically proven the convergence of its algorithm and provided an explanation for the algorithm's rationality. A targeted case study on breast cancer further highlights the capability of RWRDC to identify effective drug combinations. These findings highlight our model as a novel and effective tool for discovering potential effective drug combinations, offering new possibilities in therapy. Additionally, the graph-based framework of RWRDC holds potential for predicting drug combinations in other complex diseases, expanding its utility in the medical field.
- Published
- 2025
- Full Text
- View/download PDF