33 results on '"Gulis, V"'
Search Results
2. Effect of Inorganic Nutrients on Relative Contributions of Fungi and Bacteria to Carbon Flow from Submerged Decomposing Leaf Litter
- Author
-
Gulis, V. and Suberkropp, K.
- Published
- 2003
- Full Text
- View/download PDF
3. Fungi
- Author
-
Gulis, V., primary, Kuehn, K.A., additional, and Suberkropp, K., additional
- Published
- 2009
- Full Text
- View/download PDF
4. Global patterns and drivers of ecosystem functioning in rivers and riparian zones
- Author
-
Tiegs, SD, Costello, DM, Isken, MW, Woodward, G, McIntyre, PB, Gessner, MO, Chauvet, E, Griffiths, NA, Flecker, AS, Acuna, V, Albarino, R, Allen, DC, Alonso, C, Andino, P, Arango, C, Aroviita, J, Barbosa, MVM, Barmuta, LA, Baxter, CV, Bell, TDC, Bellinger, B, Boyero, L, Brown, LE, Bruder, A, Bruesewitz, DA, Burdon, FJ, Callisto, M, Canhoto, C, Capps, KA, Castillo, MM, Clapcott, J, Colas, F, Colon-Gaud, C, Cornut, J, Crespo-Perez, V, Cross, WF, Culp, JM, Danger, M, Dangles, O, de Eyto, E, Derry, AM, Diaz Villanueva, V, Douglas, MM, Elosegi, A, Encalada, AC, Entrekin, S, Espinosa, R, Ethaiya, D, Ferreira, V, Ferriol, C, Flanagan, KM, Fleituch, T, Shah, JJF, Frainer, A, Friberg, N, Frost, PC, Garcia, EA, Lago, LG, Garcia Soto, PE, Ghate, S, Giling, DP, Gilmer, A, Goncalves, JF, Gonzales, RK, Graca, MAS, Grace, M, Grossart, H-P, Guerold, F, Gulis, V, Hepp, LU, Higgins, S, Hishi, T, Huddart, J, Hudson, J, Imberger, S, Iniguez-Armijos, C, Iwata, T, Janetski, DJ, Jennings, E, Kirkwood, AE, Koning, AA, Kosten, S, Kuehn, KA, Laudon, H, Leavitt, PR, Lemes da Silva, AL, Leroux, SJ, Leroy, CJ, Lisi, PJ, MacKenzie, R, Marcarelli, AM, Masese, FO, Mckie, BG, Oliveira Medeiros, A, Meissner, K, Milisa, M, Mishra, S, Miyake, Y, Moerke, A, Mombrikotb, S, Mooney, R, Moulton, T, Muotka, T, Negishi, JN, Neres-Lima, V, Nieminen, ML, Nimptsch, J, Ondruch, J, Paavola, R, Pardo, I, Patrick, CJ, Peeters, ETHM, Pozo, J, Pringle, C, Prussian, A, Quenta, E, Quesada, A, Reid, B, Richardson, JS, Rigosi, A, Rincon, J, Risnoveanu, G, Robinson, CT, Rodriguez-Gallego, L, Royer, TV, Rusak, JA, Santamans, AC, Selmeczy, GB, Simiyu, G, Skuja, A, Smykla, J, Sridhar, KR, Sponseller, R, Stoler, A, Swan, CM, Szlag, D, Teixeira-de Mello, F, Tonkin, JD, Uusheimo, S, Veach, AM, Vilbaste, S, Vought, LBM, Wang, C-P, Webster, JR, Wilson, PB, Woelfl, S, Xenopoulos, MA, Yates, AG, Yoshimura, C, Yule, CM, Zhang, YX, Zwart, JA, Tiegs, SD, Costello, DM, Isken, MW, Woodward, G, McIntyre, PB, Gessner, MO, Chauvet, E, Griffiths, NA, Flecker, AS, Acuna, V, Albarino, R, Allen, DC, Alonso, C, Andino, P, Arango, C, Aroviita, J, Barbosa, MVM, Barmuta, LA, Baxter, CV, Bell, TDC, Bellinger, B, Boyero, L, Brown, LE, Bruder, A, Bruesewitz, DA, Burdon, FJ, Callisto, M, Canhoto, C, Capps, KA, Castillo, MM, Clapcott, J, Colas, F, Colon-Gaud, C, Cornut, J, Crespo-Perez, V, Cross, WF, Culp, JM, Danger, M, Dangles, O, de Eyto, E, Derry, AM, Diaz Villanueva, V, Douglas, MM, Elosegi, A, Encalada, AC, Entrekin, S, Espinosa, R, Ethaiya, D, Ferreira, V, Ferriol, C, Flanagan, KM, Fleituch, T, Shah, JJF, Frainer, A, Friberg, N, Frost, PC, Garcia, EA, Lago, LG, Garcia Soto, PE, Ghate, S, Giling, DP, Gilmer, A, Goncalves, JF, Gonzales, RK, Graca, MAS, Grace, M, Grossart, H-P, Guerold, F, Gulis, V, Hepp, LU, Higgins, S, Hishi, T, Huddart, J, Hudson, J, Imberger, S, Iniguez-Armijos, C, Iwata, T, Janetski, DJ, Jennings, E, Kirkwood, AE, Koning, AA, Kosten, S, Kuehn, KA, Laudon, H, Leavitt, PR, Lemes da Silva, AL, Leroux, SJ, Leroy, CJ, Lisi, PJ, MacKenzie, R, Marcarelli, AM, Masese, FO, Mckie, BG, Oliveira Medeiros, A, Meissner, K, Milisa, M, Mishra, S, Miyake, Y, Moerke, A, Mombrikotb, S, Mooney, R, Moulton, T, Muotka, T, Negishi, JN, Neres-Lima, V, Nieminen, ML, Nimptsch, J, Ondruch, J, Paavola, R, Pardo, I, Patrick, CJ, Peeters, ETHM, Pozo, J, Pringle, C, Prussian, A, Quenta, E, Quesada, A, Reid, B, Richardson, JS, Rigosi, A, Rincon, J, Risnoveanu, G, Robinson, CT, Rodriguez-Gallego, L, Royer, TV, Rusak, JA, Santamans, AC, Selmeczy, GB, Simiyu, G, Skuja, A, Smykla, J, Sridhar, KR, Sponseller, R, Stoler, A, Swan, CM, Szlag, D, Teixeira-de Mello, F, Tonkin, JD, Uusheimo, S, Veach, AM, Vilbaste, S, Vought, LBM, Wang, C-P, Webster, JR, Wilson, PB, Woelfl, S, Xenopoulos, MA, Yates, AG, Yoshimura, C, Yule, CM, Zhang, YX, and Zwart, JA
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
5. Global patterns and drivers of ecosystem functioning in rivers and riparian zones
- Author
-
Tiegs, S. D. (Scott D.), Costello, D. M. (David M.), Isken, M. W. (Mark W.), Woodward, G. (Guy), McIntyre, P. B. (Peter B.), Gessner, M. O. (Mark O.), Chauvet, E. (Eric), Griffiths, N. A. (Natalie A.), Flecker, A. S. (Alex S.), Acuna, V. (Vicenc), Albarino, R. (Ricardo), Allen, D. C. (Daniel C.), Alonso, C. (Cecilia), Andino, P. (Patricio), Arango, C. (Clay), Aroviita, J. (Jukka), Barbosa, M. V. (Marcus V. M.), Barmuta, L. A. (Leon A.), Baxter, C. V. (Colden V.), Bell, T. D. (Thomas D. C.), Bellinger, B. (Brent), Boyero, L. (Luz), Brown, L. E. (Lee E.), Bruder, A. (Andreas), Bruesewitz, D. A. (Denise A.), Burdon, F. J. (Francis J.), Callisto, M. (Marcos), Canhoto, C. (Cristina), Capps, K. A. (Krista A.), Castillo, M. M. (Maria M.), Clapcott, J. (Joanne), Colas, F. (Fanny), Colon-Gaud, C. (Checo), Cornut, J. (Julien), Crespo-Perez, V. (Veronica), Cross, W. F. (Wyatt F.), Culp, J. M. (Joseph M.), Danger, M. (Michael), Dangles, O. (Olivier), de Eyto, E. (Elvira), Derry, A. M. (Alison M.), Diaz Villanueva, V. (Veronica), Douglas, M. M. (Michael M.), Elosegi, A. (Arturo), Encalada, A. C. (Andrea C.), Entrekin, S. (Sally), Espinosa, R. (Rodrigo), Ethaiya, D. (Diana), Ferreira, V. (Veronica), Ferriol, C. (Carmen), Flanagan, K. M. (Kyla M.), Fleituch, T. (Tadeusz), Shah, J. J. (Jennifer J. Follstad), Frainer, A. (Andre), Friberg, N. (Nikolai), Frost, P. C. (Paul C.), Garcia, E. A. (Erica A.), Lago, L. G. (Liliana Garcia), Garcia Soto, P. E. (Pavel Ernesto), Ghate, S. (Sudeep), Giling, D. P. (Darren P.), Gilmer, A. (Alan), Goncalves, J. F. (Jose Francisco, Jr.), Gonzales, R. K. (Rosario Karina), Graca, M. A. (Manuel A. S.), Grace, M. (Mike), Grossart, H.-P. (Hans-Peter), Guerold, F. (Francois), Gulis, V. (Vlad), Hepp, L. U. (Luiz U.), Higgins, S. (Scott), Hishi, T. (Takuo), Huddart, J. (Joseph), Hudson, J. (John), Imberger, S. (Samantha), Iniguez-Armijos, C. (Carlos), Iwata, T. (Tomoya), Janetski, D. J. (David J.), Jennings, E. (Eleanor), Kirkwood, A. E. (Andrea E.), Koning, A. A. (Aaron A.), Kosten, S. (Sarian), Kuehn, K. A. (Kevin A.), Laudon, H. (Hjalmar), Leavitt, P. R. (Peter R.), Lemes da Silva, A. L. (Aurea L.), Leroux, S. J. (Shawn J.), Leroy, C. J. (Carri J.), Lisi, P. J. (Peter J.), MacKenzie, R. (Richard), Marcarelli, A. M. (Amy M.), Masese, F. O. (Frank O.), Mckie, B. G. (Brendan G.), Oliveira Medeiros, A. (Adriana), Meissner, K. (Kristian), Milisa, M. (Marko), Mishra, S. (Shailendra), Miyake, Y. (Yo), Moerke, A. (Ashley), Mombrikotb, S. (Shorok), Mooney, R. (Rob), Moulton, T. (Tim), Muotka, T. (Timo), Negishi, J. N. (Junjiro N.), Neres-Lima, V. (Vinicius), Nieminen, M. L. (Mika L.), Nimptsch, J. (Jorge), Ondruch, J. (Jakub), Paavola, R. (Riku), Pardo, I. (Isabel), Patrick, C. J. (Christopher J.), Peeters, E. T. (Edwin T. H. M.), Pozo, J. (Jesus), Pringle, C. (Catherine), Prussian, A. (Aaron), Quenta, E. (Estefania), Quesada, A. (Antonio), Reid, B. (Brian), Richardson, J. S. (John S.), Rigosi, A. (Anna), Rincon, J. (Jose), Risnoveanu, G. (Geta), Robinson, C. T. (Christopher T.), Rodriguez-Gallego, L. (Lorena), Royer, T. V. (Todd V.), Rusak, J. A. (James A.), Santamans, A. C. (Anna C.), Selmeczy, G. B. (Geza B.), Simiyu, G. (Gelas), Skuja, A. (Agnija), Smykla, J. (Jerzy), Sridhar, K. R. (Kandikere R.), Sponseller, R. (Ryan), Stoler, A. (Aaron), Swan, C. M. (Christopher M.), Szlag, D. (David), Teixeira-de Mello, F. (Franco), Tonkin, J. D. (Jonathan D.), Uusheimo, S. (Sari), Veach, A. M. (Allison M.), Vilbaste, S. (Sirje), Vought, L. B. (Lena B. M.), Wang, C.-P. (Chiao-Ping), Webster, J. R. (Jackson R.), Wilson, P. B. (Paul B.), Woelfl, S. (Stefan), Xenopoulos, M. A. (Marguerite A.), Yates, A. G. (Adam G.), Yoshimura, C. (Chihiro), Yule, C. M. (Catherine M.), Zhang, Y. X. (Yixin X.), Zwart, J. A. (Jacob A.), Tiegs, S. D. (Scott D.), Costello, D. M. (David M.), Isken, M. W. (Mark W.), Woodward, G. (Guy), McIntyre, P. B. (Peter B.), Gessner, M. O. (Mark O.), Chauvet, E. (Eric), Griffiths, N. A. (Natalie A.), Flecker, A. S. (Alex S.), Acuna, V. (Vicenc), Albarino, R. (Ricardo), Allen, D. C. (Daniel C.), Alonso, C. (Cecilia), Andino, P. (Patricio), Arango, C. (Clay), Aroviita, J. (Jukka), Barbosa, M. V. (Marcus V. M.), Barmuta, L. A. (Leon A.), Baxter, C. V. (Colden V.), Bell, T. D. (Thomas D. C.), Bellinger, B. (Brent), Boyero, L. (Luz), Brown, L. E. (Lee E.), Bruder, A. (Andreas), Bruesewitz, D. A. (Denise A.), Burdon, F. J. (Francis J.), Callisto, M. (Marcos), Canhoto, C. (Cristina), Capps, K. A. (Krista A.), Castillo, M. M. (Maria M.), Clapcott, J. (Joanne), Colas, F. (Fanny), Colon-Gaud, C. (Checo), Cornut, J. (Julien), Crespo-Perez, V. (Veronica), Cross, W. F. (Wyatt F.), Culp, J. M. (Joseph M.), Danger, M. (Michael), Dangles, O. (Olivier), de Eyto, E. (Elvira), Derry, A. M. (Alison M.), Diaz Villanueva, V. (Veronica), Douglas, M. M. (Michael M.), Elosegi, A. (Arturo), Encalada, A. C. (Andrea C.), Entrekin, S. (Sally), Espinosa, R. (Rodrigo), Ethaiya, D. (Diana), Ferreira, V. (Veronica), Ferriol, C. (Carmen), Flanagan, K. M. (Kyla M.), Fleituch, T. (Tadeusz), Shah, J. J. (Jennifer J. Follstad), Frainer, A. (Andre), Friberg, N. (Nikolai), Frost, P. C. (Paul C.), Garcia, E. A. (Erica A.), Lago, L. G. (Liliana Garcia), Garcia Soto, P. E. (Pavel Ernesto), Ghate, S. (Sudeep), Giling, D. P. (Darren P.), Gilmer, A. (Alan), Goncalves, J. F. (Jose Francisco, Jr.), Gonzales, R. K. (Rosario Karina), Graca, M. A. (Manuel A. S.), Grace, M. (Mike), Grossart, H.-P. (Hans-Peter), Guerold, F. (Francois), Gulis, V. (Vlad), Hepp, L. U. (Luiz U.), Higgins, S. (Scott), Hishi, T. (Takuo), Huddart, J. (Joseph), Hudson, J. (John), Imberger, S. (Samantha), Iniguez-Armijos, C. (Carlos), Iwata, T. (Tomoya), Janetski, D. J. (David J.), Jennings, E. (Eleanor), Kirkwood, A. E. (Andrea E.), Koning, A. A. (Aaron A.), Kosten, S. (Sarian), Kuehn, K. A. (Kevin A.), Laudon, H. (Hjalmar), Leavitt, P. R. (Peter R.), Lemes da Silva, A. L. (Aurea L.), Leroux, S. J. (Shawn J.), Leroy, C. J. (Carri J.), Lisi, P. J. (Peter J.), MacKenzie, R. (Richard), Marcarelli, A. M. (Amy M.), Masese, F. O. (Frank O.), Mckie, B. G. (Brendan G.), Oliveira Medeiros, A. (Adriana), Meissner, K. (Kristian), Milisa, M. (Marko), Mishra, S. (Shailendra), Miyake, Y. (Yo), Moerke, A. (Ashley), Mombrikotb, S. (Shorok), Mooney, R. (Rob), Moulton, T. (Tim), Muotka, T. (Timo), Negishi, J. N. (Junjiro N.), Neres-Lima, V. (Vinicius), Nieminen, M. L. (Mika L.), Nimptsch, J. (Jorge), Ondruch, J. (Jakub), Paavola, R. (Riku), Pardo, I. (Isabel), Patrick, C. J. (Christopher J.), Peeters, E. T. (Edwin T. H. M.), Pozo, J. (Jesus), Pringle, C. (Catherine), Prussian, A. (Aaron), Quenta, E. (Estefania), Quesada, A. (Antonio), Reid, B. (Brian), Richardson, J. S. (John S.), Rigosi, A. (Anna), Rincon, J. (Jose), Risnoveanu, G. (Geta), Robinson, C. T. (Christopher T.), Rodriguez-Gallego, L. (Lorena), Royer, T. V. (Todd V.), Rusak, J. A. (James A.), Santamans, A. C. (Anna C.), Selmeczy, G. B. (Geza B.), Simiyu, G. (Gelas), Skuja, A. (Agnija), Smykla, J. (Jerzy), Sridhar, K. R. (Kandikere R.), Sponseller, R. (Ryan), Stoler, A. (Aaron), Swan, C. M. (Christopher M.), Szlag, D. (David), Teixeira-de Mello, F. (Franco), Tonkin, J. D. (Jonathan D.), Uusheimo, S. (Sari), Veach, A. M. (Allison M.), Vilbaste, S. (Sirje), Vought, L. B. (Lena B. M.), Wang, C.-P. (Chiao-Ping), Webster, J. R. (Jackson R.), Wilson, P. B. (Paul B.), Woelfl, S. (Stefan), Xenopoulos, M. A. (Marguerite A.), Yates, A. G. (Adam G.), Yoshimura, C. (Chihiro), Yule, C. M. (Catherine M.), Zhang, Y. X. (Yixin X.), and Zwart, J. A. (Jacob A.)
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
6. Chapter Three - Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales: Insights from the European RivFunction Project
- Author
-
Chauvet, E., Ferreira, V., Giller, P.S., McKie, B.G., Tiegs, S.D., Woodward, G., Elosegi, A., Dobson, M., Fleituch, T., Graça, M.A.S., Gulis, V., Hladyz, S., Lacoursière, J.O., Lecerf, A., Pozo, J., Preda, E., Riipinen, M., Rîşnoveanu, G., Vadineanu, A., Vought, L.B.-M., and Gessner, M.O.
- Published
- 2016
- Full Text
- View/download PDF
7. Litter decomposition as an indicator of stream ecosystem functioning at local-to-continental scales : insights from the European RivFunction project
- Author
-
Chauvet, Eric, Ferreira, V., Giller, P. S., McKie, B. G., Tiegs, S. D., Woodward, G., Elosegi, A., Dobson, M., Fleituch, T., Graca, M. A. S., Gulis, V., Hladyz, S., Lacoursière, Jean O., Lecerf, A., Pozo, J., Preda, E., Riipinen, M., Risnoveanu, G., Vadineanu, A., Vought, Lena B. M., Gessner, M. O., Chauvet, Eric, Ferreira, V., Giller, P. S., McKie, B. G., Tiegs, S. D., Woodward, G., Elosegi, A., Dobson, M., Fleituch, T., Graca, M. A. S., Gulis, V., Hladyz, S., Lacoursière, Jean O., Lecerf, A., Pozo, J., Preda, E., Riipinen, M., Risnoveanu, G., Vadineanu, A., Vought, Lena B. M., and Gessner, M. O.
- Abstract
RivFunction is a pan-European initiative that started in 2002 and was aimed at establishing a novel functional-based approach to assessing the ecological status of rivers. Litter decomposition was chosen as the focal process because it plays a central role in stream ecosystems and is easy to study in the field. Impacts of two stressors that occur across the continent, nutrient pollution and modified riparian vegetation, were examined at > 200 paired sites in nine European ecoregions. In response to the former, decomposition was dramatically slowed at both extremes of a 1000-fold nutrient gradient, indicating nutrient limitation in unpolluted sites, highly variable responses across Europe in moderately impacted streams, and inhibition via associated toxic and additional stressors in highly polluted streams. Riparian forest modification by clear cutting or replacement of natural vegetation by plantations (e.g. conifers, eucalyptus) or pasture produced similarly complex responses. Clear effects caused by specific riparian disturbances were observed in regionally focused studies, but general trends across different types of riparian modifications were not apparent, in part possibly because of important indirect effects. Complementary field and laboratory experiments were undertaken to tease apart the mechanistic drivers of the continental scale field bioassays by addressing the influence of litter, fungal and detritivore diversity. These revealed generally weak and context-dependent effects on decomposition, suggesting high levels of redundancy (and hence potential insurance mechanisms that can mitigate a degree of species loss) within the food web. Reduced species richness consistently increased decomposition variability, if not the absolute rate. Further field studies were aimed at identifying important sources of this variability (e.g. litter quality, temporal variability) to help constrain ranges of predicted decomposition rates in different field situations.
- Published
- 2016
- Full Text
- View/download PDF
8. Nitrogen versus phosphorus demand in a detritus-based headwater stream: what drives microbial to ecosystem response?
- Author
-
Rosemond, A.D., primary, Cross, W.F., additional, Greenwood, J.L., additional, Gulis, V., additional, Eggert, S.L., additional, Suberkropp, K., additional, Wallace, J.B., additional, and Dye, S.E., additional
- Published
- 2008
- Full Text
- View/download PDF
9. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment
- Author
-
GULIS, V., primary, FERREIRA, V., additional, and GRACA, M. A. S., additional
- Published
- 2006
- Full Text
- View/download PDF
10. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability
- Author
-
Gulis, V, primary and Suberkropp, K, additional
- Published
- 2003
- Full Text
- View/download PDF
11. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream
- Author
-
Gulis, V., primary and Suberkropp, K., additional
- Published
- 2002
- Full Text
- View/download PDF
12. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream.
- Author
-
Gulis, V. and Suberkropp, K.
- Subjects
- *
RED maple , *RHODODENDRONS - Abstract
SUMMARY 1. Decomposition of red maple (Acer rubrum ) and rhododendron (Rhododendron maximum ) leaves and activity of associated microorganisms were compared in two reaches of a headwater stream in Coweeta Hydrologic Laboratory, NC, U.S.A. The downstream reach was enriched with ammonium, nitrate, and phosphate whereas the upstream reach was not altered. 2. Decomposition rate, microbial respiration, fungal and bacterial biomass, and the sporulation rate of aquatic hyphomycetes associated with decomposing leaf material were significantly higher for both leaf types in the nutrient-enriched reach. Species richness and community structure of aquatic hyphomycetes also exhibited considerable changes with an increase in the number of fungal codominants in the nutrient-enriched reach. 3. Fungal biomass was one to two orders of magnitude greater than bacterial biomass in both reaches. Changes in microbial respiration rate corresponded to those in fungal biomass and sporulation, suggesting a primary role of fungi in leaf decomposition. 4. Nutrient enrichment increased microbial activity, the proportion of leaf carbon channelled through the microbial compartment and the decomposition rate of leaf litter. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
13. Antibiotic effects of some aquatic hyphomycetes
- Author
-
GULIS, V. I. and STEPHANOVICH, A. I.
- Abstract
In vitro , antibiotic effects of the culture filtrates of 29 species of aquatic hyphomycetes against Gram-negative and Gram-positive bacteria, yeasts and hyphomycetes were studied. The culture filtrates of 38% of isolates were active in at least one of our tests for biological activity. Fifteen species inhibited growth of bacteria and four demonstrated antifungal activity. Filtrates of 35% of the isolates were antibacterial. About 50% of the isolates, those with the largestin vitro inhibitory activities (Dimorphosphora foliicola ,Flagellospora sp. andMycocentrospora sp.) were obtained from wood. Filtrates ofArticulospora tetracladia were not only active against Gram −ve bacteria, but were also antiviral against bacteriophage T4 and influenza virus.- Published
- 1999
14. Temperature dependence of leaf breakdown in streams differs between organismal groups and leaf species.
- Author
-
Cummins CS, Rosemond AD, Tomczyk NJ, Wenger SJ, Bumpers PM, Gulis V, Helton AM, and Benstead JP
- Subjects
- Animals, Species Specificity, Acer physiology, Invertebrates physiology, Bacteria classification, Plant Leaves physiology, Rivers, Temperature, Rhododendron physiology
- Abstract
Increased temperatures are altering rates of organic matter (OM) breakdown in stream ecosystems with implications for carbon (C) cycling in the face of global change. The metabolic theory of ecology (MTE) provides a framework for predicting temperature effects on OM breakdown, but differences in the temperature dependence of breakdown driven by different organismal groups (i.e., microorganisms vs. invertebrate detritivores) and litter species remain unresolved. Over two years, we conducted 12 60-day leaf litterbag incubations in 20 headwater streams in the southern Appalachian Mountains (USA). We compared temperature dependence (as activation energy, E
a ) between microbial and detritivore-mediated breakdown, and between a highly recalcitrant (Rhododendron maximum) and a relatively labile (Acer rubrum) leaf species. Detritivore-mediated breakdown had a higher Ea than microbial breakdown for both leaf species (Rhododendron: 1.48 > 0.56 eV; Acer: 0.97 > 0.29 eV), and Rhododendron breakdown had a higher Ea than Acer breakdown for both organismal groups. Similarly, the Ea of total (coarse-mesh) Rhododendron breakdown was higher than the Ea of total Acer breakdown (0.89 > 0.52 eV). These effects for total breakdown were large, implying that the number of days to 95% mass loss would decline by 40% for Rhododendron and 26% for Acer between 12°C (our mean temperature value) and 16°C (+4°C, reflecting projected increases in global surface temperature due to climate change). Despite patterns in Ea , overall breakdown rates were higher for microbes than detritivores, and for Acer than Rhododendron over most of our temperature gradient. Additionally, the Ea for a subset of the microbial breakdown data declined from 0.40 to 0.22 eV when fungal biomass was included as a model predictor, highlighting the key role of fungi in determining the temperature dependence of litter breakdown. Our results imply that, as streams warm, routing of leaf litter C to detritivore-mediated fates will increase faster than predicted by previous studies and MTE, especially for labile litter. As temperatures rise, earlier depletion of autumn-shed, labile leaf litter combined with rapid breakdown rates of recalcitrant litter could exacerbate seasonal resource limitation and alter carbon storage and transport dynamics in temperate headwater stream networks., (© 2024 The Author(s). Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.)- Published
- 2024
- Full Text
- View/download PDF
15. Temperature and interspecific interactions drive differences in carbon use efficiencies and biomass stoichiometry among aquatic fungi.
- Author
-
Tomczyk NJ, Rosemond AD, Whiteis AM, Benstead JP, and Gulis V
- Subjects
- Biomass, Temperature, Nitrogen, Fungi genetics, Plant Leaves microbiology, Ecosystem, Carbon
- Abstract
Saprotrophic fungi play important roles in transformations of carbon (C), nitrogen (N), and phosphorus (P) in aquatic environments. However, it is unclear how warming will alter fungal cycling of C, N, and P. We conducted an experiment with four aquatic hyphomycetes (Articulospora tetracladia, Hydrocina chaetocladia, Flagellospora sp., and Aquanectria penicillioides), and an assemblage of the same taxa, to test how temperature alters C and nutrient use. Specifically, we evaluated biomass accrual, C:N, C:P, δ13C, and C use efficiency (CUE) over a 35-d experiment with temperatures ranging from 4ºC to 20ºC. Changes in biomass accrual and CUE were predominantly quadratic with peaks between 7ºC and 15ºC. The C:P of H. chaetocladia biomass increased 9× over the temperature gradient, though the C:P of other taxa was unaffected by temperature. Changes in C:N were relatively small across temperatures. Biomass δ13C of some taxa changed across temperatures, indicating differences in C isotope fractionation. Additionally, the 4-species assemblage differed from null expectations based on the monocultures in terms of biomass accrual, C:P, δ13C, and CUE, suggesting that interactions among taxa altered C and nutrient use. These results highlight that temperature and interspecific interactions among fungi can alter traits affecting C and nutrient cycling., (© The Author(s) 2023. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2023
- Full Text
- View/download PDF
16. ITS rDNA Barcodes Clarify Molecular Diversity of Aquatic Hyphomycetes.
- Author
-
Franco-Duarte R, Fernandes I, Gulis V, Cássio F, and Pascoal C
- Abstract
Aquatic hyphomycetes are key microbial decomposers of allochthonous organic matter in freshwater ecosystems. Although their importance in carbon flow and food webs in streams is widely recognized, there are still gaps in our understanding of their molecular diversity and distribution patterns. Our study utilized the growing database of ITS rDNA barcodes of aquatic hyphomycetes (1252 sequences) and aimed to (i) produce new barcodes for some lesser-known taxa; (ii) clarify the taxonomic placement of some taxa at the class or order level, based on molecular data; and (iii) provide insights into the biogeographical origins of some taxa. This study increased the number of aquatic hyphomycete species with available ITS barcodes from 119 (out of ~300 species described) to 136. Phylogenetically, the 136 species were distributed between 2 phyla, 6 classes, and 10 orders of fungi. Future studies should strive to increase the database of ITS sequences, especially focusing on species with unclear phylogenetic relationships ( incertae sedis ) and with few sequences available. The geographical distribution of species with available ITS sequences included 50 countries from five continents, but 6 countries had more than 20 species associated, showing a bias toward the northern hemisphere, likely due to sampling bias.
- Published
- 2022
- Full Text
- View/download PDF
17. Combined carbon flows through detritus, microbes, and animals in reference and experimentally enriched stream ecosystems.
- Author
-
Benstead JP, Cross WF, Gulis V, and Rosemond AD
- Subjects
- Animals, Food Chain, Nitrogen, Phosphorus, Carbon, Ecosystem
- Abstract
Tracking carbon (C) flow through ecosystems requires quantification of myriad biophysical processes, including C routing through microbial and metazoan food webs. Yet detailed organic matter budgets are rarely combined with simultaneous measurement of C flows supporting microbial and animal production. Here, we synthesize concurrent data sets on organic matter, microbes, and macroinvertebrates from two detritus-based stream ecosystems, one of which was subject to experimental nitrogen (N) and phosphorus (P) enrichment. Our synthesis provides new insights into C flow through forest stream ecosystems. Over 3 yr, the reference stream showed a striking balance of inputs and outputs, with a mean surplus of only 7 g C·m
-2 ·yr-1 (~1% of annual inputs), presumably stored in sediments as fine particulate organic matter (FPOM). In contrast, N and P enrichment over 2 yr resulted in severe deficits of C (-576 g C·m-2 ·yr-1 or ~170% of annual inputs), a shortfall presumably met by stored C. Our data set provides an ecosystem-based estimate of the fate of forest litter C at ambient nutrient concentrations: 6.2% was leached as dissolved organic C, 40.6% and 8.5% flowed to litter-associated fungi and bacteria, respectively, 7.5% was consumed by macroinvertebrates, 1.8% was exported as coarse particles, and the remainder (35.4%) was presumably fragmented by biophysical processes. Our calculations also allowed an estimate of inputs into the heterogeneous FPOM pool, which is otherwise difficult to obtain. At naturally low nutrient concentrations, 50.7% was derived from fragmented litter, 39.1% from microbial biomass (mostly fungal), and 10.2% from macroinvertebrate egesta. Nutrient addition drove large changes in C fluxes in the experimental stream, especially in flows of leaf litter to fungi (×1.7 pretreatment) and macroinvertebrates (×2.7), and of FPOM to hydrologic export (×2.6). Our results underscore the key roles of both microbes and metazoans in controlling C flow through detritus-based ecosystems, as well as how release from persistent nutrient limitation may perturb steady-state conditions of C inputs vs. outputs. Our analysis also suggests areas for future research, including assessing the relative importance of stored vs. recycled C in fueling detrital food webs subject to altered nutrient regimes and other global-change drivers., (© 2020 by the Ecological Society of America.)- Published
- 2021
- Full Text
- View/download PDF
18. Global patterns and drivers of ecosystem functioning in rivers and riparian zones.
- Author
-
Tiegs SD, Costello DM, Isken MW, Woodward G, McIntyre PB, Gessner MO, Chauvet E, Griffiths NA, Flecker AS, Acuña V, Albariño R, Allen DC, Alonso C, Andino P, Arango C, Aroviita J, Barbosa MVM, Barmuta LA, Baxter CV, Bell TDC, Bellinger B, Boyero L, Brown LE, Bruder A, Bruesewitz DA, Burdon FJ, Callisto M, Canhoto C, Capps KA, Castillo MM, Clapcott J, Colas F, Colón-Gaud C, Cornut J, Crespo-Pérez V, Cross WF, Culp JM, Danger M, Dangles O, de Eyto E, Derry AM, Villanueva VD, Douglas MM, Elosegi A, Encalada AC, Entrekin S, Espinosa R, Ethaiya D, Ferreira V, Ferriol C, Flanagan KM, Fleituch T, Follstad Shah JJ, Frainer Barbosa A, Friberg N, Frost PC, Garcia EA, García Lago L, García Soto PE, Ghate S, Giling DP, Gilmer A, Gonçalves JF Jr, Gonzales RK, Graça MAS, Grace M, Grossart HP, Guérold F, Gulis V, Hepp LU, Higgins S, Hishi T, Huddart J, Hudson J, Imberger S, Iñiguez-Armijos C, Iwata T, Janetski DJ, Jennings E, Kirkwood AE, Koning AA, Kosten S, Kuehn KA, Laudon H, Leavitt PR, Lemes da Silva AL, Leroux SJ, LeRoy CJ, Lisi PJ, MacKenzie R, Marcarelli AM, Masese FO, McKie BG, Oliveira Medeiros A, Meissner K, Miliša M, Mishra S, Miyake Y, Moerke A, Mombrikotb S, Mooney R, Moulton T, Muotka T, Negishi JN, Neres-Lima V, Nieminen ML, Nimptsch J, Ondruch J, Paavola R, Pardo I, Patrick CJ, Peeters ETHM, Pozo J, Pringle C, Prussian A, Quenta E, Quesada A, Reid B, Richardson JS, Rigosi A, Rincón J, Rîşnoveanu G, Robinson CT, Rodríguez-Gallego L, Royer TV, Rusak JA, Santamans AC, Selmeczy GB, Simiyu G, Skuja A, Smykla J, Sridhar KR, Sponseller R, Stoler A, Swan CM, Szlag D, Teixeira-de Mello F, Tonkin JD, Uusheimo S, Veach AM, Vilbaste S, Vought LBM, Wang CP, Webster JR, Wilson PB, Woelfl S, Xenopoulos MA, Yates AG, Yoshimura C, Yule CM, Zhang YX, and Zwart JA
- Subjects
- Human Activities, Humans, Carbon Cycle physiology, Ecosystem, Environmental Monitoring methods, Rivers microbiology, Temperature
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
- Full Text
- View/download PDF
19. Nutrients and temperature additively increase stream microbial respiration.
- Author
-
Manning DWP, Rosemond AD, Gulis V, Benstead JP, and Kominoski JS
- Subjects
- Biomass, Carbon metabolism, Nitrogen metabolism, Phosphorus metabolism, Temperature, Bacteria metabolism, Fungi metabolism, Oxygen Consumption physiology, Rivers microbiology
- Abstract
Rising temperatures and nutrient enrichment are co-occurring global-change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across seasonal temperature gradients before (PRE) and after (ENR1, ENR2) experimental nutrient (nitrogen [N] and phosphorus [P]) additions to five forest streams. Nitrogen and phosphorus were added at different N:P ratios using increasing concentrations of N (~80-650 μg/L) and corresponding decreasing concentrations of P (~90-11 μg/L). We assessed the temperature dependence, and microbial (i.e., fungal) drivers of detrital mass-specific respiration rates using the metabolic theory of ecology, before vs. after nutrient enrichment, and across N and P concentrations. Detrital mass-specific respiration rates increased with temperature, exhibiting comparable activation energies (E, electronvolts [eV]) for all substrates (FBOM E = 0.43 [95% CI = 0.18-0.69] eV, leaf litter E = 0.30 [95% CI = 0.072-0.54] eV, wood E = 0.41 [95% CI = 0.18-0.64] eV) close to predicted MTE values. There was evidence that temperature-driven increased respiration occurred via increased fungal biomass (wood) or increased fungal biomass-specific respiration (leaf litter). Respiration rates increased under nutrient-enriched conditions on leaves (1.32×) and wood (1.38×), but not FBOM. Respiration rates responded weakly to gradients in N or P concentrations, except for positive effects of P on wood respiration. The temperature dependence of respiration was comparable among years and across N or P concentration for all substrates. Responses of leaf litter and wood respiration to temperature and the combined effects of N and P were similar in magnitude. Our data suggest that the temperature dependence of stream microbial respiration is unchanged by nutrient enrichment, and that increased temperature and N + P availability have additive and comparable effects on microbial respiration rates., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
20. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.
- Author
-
Gulis V, Kuehn KA, Schoettle LN, Leach D, Benstead JP, and Rosemond AD
- Subjects
- Biomass, Carbon metabolism, Ecosystem, Fresh Water chemistry, Nitrogen metabolism, Phosphorus metabolism, Plant Leaves chemistry, Plant Leaves microbiology, Fresh Water microbiology, Fungi growth & development, Fungi metabolism
- Abstract
Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.
- Published
- 2017
- Full Text
- View/download PDF
21. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
- Author
-
Manning DW, Rosemond AD, Gulis V, Benstead JP, Kominoski JS, and Maerz JC
- Subjects
- Animals, Bacteria metabolism, Fungi metabolism, Invertebrates metabolism, Plant Leaves chemistry, Plant Leaves metabolism, Biodegradation, Environmental, Carbon metabolism, Ecosystem, Rivers
- Abstract
Nutrient enrichment of detritus-based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial- vs. detritivore-mediated detrital breakdown are poorly understood. We tested effects of experimental N and P additions on detrital stoichiometry (C:N, C:P) and total and microbial breakdown (i.e., with and without detritivorous shredders, respectively) of five detritus types (four leaf litter species and wood) with different initial C : nutrient content. We enriched five headwater streams continuously for two years at different relative availabilities of N and P and compared breakdown rates and detrital stoichiometry to pretreatment conditions. Total breakdown rates increased with nutrient enrichment and were predicted by altered detrital stoichiometry. Streamwater N and P, fungal biomass, and their interactions affected stoichiometry of detritus. Streamwater N and P decreased detrital C:N, whereas streamwater P had stronger negative effects on detrital C:P. Nutrient addition and fungal biomass reduced C:N by 70% and C:P by 83% on average after conditioning, compared to only 26% for C:N and 10% for C:P under pretreatment conditions. Detritus with lowest initial nutrient content changed the most and had greatest increases in total breakdown rates. Detrital stoichiometry was reduced and differences among detritus types were homogenized by nutrient enrichment. With enrichment, detrital nutrient content approached detritivore nutritional requirements and stimulated greater detritivore vs. microbial litter breakdown. We used breakpoint regression to estimate values of detrital stoichiometry that can potentially be used to indicate elevated breakdown rates. Breakpoint ratios for total breakdown were 41 (C:N) and 1518 (C:P), coinciding with total breakdown rates that were ~1.9 times higher when C:N or C:P fell below these breakpoints. Microbial and shredder-mediated breakdown rates both increased when C:N and C:P were reduced, suggesting that detrital stoichiometry is useful for predicting litter breakdown dominated by either microbial or shredder activity. Our results show strong effects of nutrient enrichment on detrital stoichiometry and offer a robust link between a potential holistic nutrient loading metric (decreased and homogenized detrital stoichiometry) and increased C loss from stream ecosystems., (© 2016 by the Ecological Society of America.)
- Published
- 2016
- Full Text
- View/download PDF
22. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates.
- Author
-
Manning DW, Rosemond AD, Kominoski JS, Gulis V, Benstead JP, and Maerz JC
- Subjects
- Animals, Biomass, Ecosystem, Fungi metabolism, Invertebrates, Nitrogen chemistry, North Carolina, Phosphorus chemistry, Biodegradation, Environmental, Plant Leaves, Rivers chemistry
- Abstract
Nitrogen (N) and phosphorus (P) concentrations are elevated in many freshwater systems, stimulating breakdown rates of terrestrially derived plant litter; however, the relative importance of N and P in driving litter breakdown via microbial and detritivore processing are not fully understood. Here, we determined breakdown rates of two litter species, Acer rubrum (maple) and Rhododendron maximum (rhododendron), before (PRE) and during two years (YR1, YR2) of experimental N and P additions to five streams, and quantified the relative importance of hypothesized factors contributing to breakdown. Treatment streams received a gradient of P additions (low to high soluble reactive phosphorus [SRP]; ~10-85 µg/L) crossed with a gradient of N additions (high to low dissolved inorganic nitrogen [DIN]; ~472-96 µg/L) to achieve target molar N:P ratios ranging from 128 to 2. Litter breakdown rates increased above pre-treatment levels by an average of 1.1-2.2x for maple, and 2.7-4.9x for rhododendron in YR1 and YR2. We used path analysis to compare fungal biomass, shredder biomass, litter stoichiometry (nutrient content as C:N or C:P), discharge, and streamwater temperature as predictors of breakdown rates and compared models containing streamwater N, P or N + P and litter C:N or C:P using model selection criteria. Litter breakdown rates were predicted equally with either streamwater N or P (R2 = 0.57). In models with N or P, fungal biomass, litter stoichiometry, discharge, and shredder biomass predicted breakdown rates; litter stoichiometry and fungal biomass were most important for model fit. However, N and P effects may have occurred via subtly different pathways. Litter N content increased with fungal biomass (N-driven effects) and litter P content increased with streamwater P availability (P-driven effects), presumably via P storage in fungal biomass. In either case, the effects of N and P through these pathways were associated with higher shredder biomass and breakdown rates. Our results suggest that N and P stimulate litter breakdown rates via mechanisms in which litter stoichiometry is an important nexus for associated microbial and detritivore effects.
- Published
- 2015
- Full Text
- View/download PDF
23. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams.
- Author
-
Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, and Graça MA
- Subjects
- Animals, Invertebrates metabolism, Ecosystem, Plant Leaves metabolism, Rivers
- Abstract
The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By contrast, nutrient enrichment at the litter-bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co-limitation of decomposition in streams. The magnitude of the nutrient-enrichment effect on litter decomposition was higher for wood than for leaves, and for low-quality than for high-quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta-analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low-quality plant litter inputs., (© 2014 IMAR‐CMA. Biological Reviews © 2014 Cambridge Philosophical Society.)
- Published
- 2015
- Full Text
- View/download PDF
24. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates.
- Author
-
Kominoski JS, Rosemond AD, Benstead JP, Gulis V, Maerz JC, and Manning DW
- Subjects
- Animals, Nitrogen chemistry, Oxygen Consumption, Phosphorus chemistry, Time Factors, Bacteria metabolism, Fungi metabolism, Nitrogen metabolism, Phosphorus metabolism
- Abstract
Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and.drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-moderate N and P concentrations are needed to establish likely interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems. We established 25 combinations of dissolved inorganic N (DIN; 55-545 µg/L) and soluble reactive P (SRP; 4-86 µg/L) concentrations with corresponding N:P molar ratios of 2-127 in experimental stream channels. We excluded macroinvertebrates, focusing on microbially driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum L.) leaf litter. Breakdown rates, k, per day (d-1) and per degree-day (dd-l), increased by up to 6X for maple and 12× for rhododendron over our N and P enrichment gradient compared to rates at low ambient N and P concentrations. The best models of k (d- and dd-1) included litter species identity and N and P concentrations; there was evidence for both additive and interactive effects of N and P. Models explaining variation in k dd-1 were supported by N and P for both maple and rhododendron (R =0.67 and 0.33, respectively). Residuals in the relationship between k dd-1 and N concentration were largely explained by P, but residuals for k dd-1 and P. concentration were less adequately explained by N. Breakdown rates were more closely related to nutrient concentrations than variables associated with measurements of two mechanistic parameters associated with C loss (fungal biomass and microbial respiration rate). We also determined the effects of nutrient addition on litter C: nutrient stoichiometry and found reductions in litter C:N and C:P along our experimental nutrient gradient. Our results indicate that microbially driven litter processing rates increase across low-to-moderate nutrient gradients that are now common throughout human-modified landscapes.
- Published
- 2015
- Full Text
- View/download PDF
25. Freshwater ecology. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems.
- Author
-
Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DW, Suberkropp K, and Wallace JB
- Subjects
- Acer, Biomass, Liriodendron, Nitrogen chemistry, Nutritional Physiological Phenomena, Phosphorus chemistry, Plant Leaves, Quercus, Rhododendron, Carbon Sequestration, Food Chain, Rivers chemistry, Water Pollution
- Abstract
Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
26. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes.
- Author
-
Baschien C, Tsui CK, Gulis V, Szewzyk U, and Marvanová L
- Subjects
- Ascomycota isolation & purification, Cluster Analysis, DNA, Fungal chemistry, DNA, Fungal genetics, DNA, Ribosomal chemistry, DNA, Ribosomal genetics, Genes, rRNA, Molecular Sequence Data, Phylogeny, RNA, Fungal genetics, RNA, Ribosomal genetics, Sequence Analysis, DNA, Ascomycota classification, Ascomycota genetics, Water Microbiology
- Abstract
Aquatic hyphomycetes play a key role in decomposition of submerged organic matter and stream ecosystem functioning. We examined the phylogenetic relationships among various genera of aquatic hyphomycetes belonging to the Leotiomycetes (Ascomycota) using sequences of internal transcribed spacer (ITS) and large subunit (LSU) regions of rDNA generated from 42 pure cultures including 19 ex-types. These new sequence data were analyzed together with additional sequences from 36 aquatic hyphomycetes and 60 related fungi obtained from GenBank. Aquatic hyphomycetes, characterized by their tetraradiate or sigmoid conidia, were scattered in nine supported clades within the Helotiales (Leotiomycetes). Tricladium, Lemonniera, Articulospora, Anguillospora, Varicosporium, Filosporella, and Flagellospora are not monophyletic, with species from the same genus distributed among several major clades. The Gyoerffyella clade and the Hymenoscyphus clade accommodated species from eight and six different genera, respectively. Thirteen aquatic hyphomycete taxa were grouped in the Leotia-Bulgaria clade while twelve species clustered within the Hymenoscyphus clade along with several amphibious ascomycetes. Species of Filosporella and some species from four other aquatic genera were placed in the Ascocoryne-Hydrocina clade. It is evident that many aquatic hyphomycetes have relatives of terrestrial origin. Adaptation to colonize the aquatic environment has evolved independently in multiple phylogenetic lineages within the Leotiomycetes., (Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
27. Two new Tricladium species from streams in Alaska.
- Author
-
Gulis V, Baschien C, and Marvanová L
- Subjects
- Alaska, Base Sequence, DNA, Fungal chemistry, DNA, Fungal genetics, DNA, Ribosomal chemistry, DNA, Ribosomal genetics, DNA, Ribosomal Spacer chemistry, DNA, Ribosomal Spacer genetics, Mitosporic Fungi cytology, Mitosporic Fungi genetics, Mitosporic Fungi isolation & purification, Molecular Sequence Data, Rivers, Sequence Analysis, DNA, Spores, Fungal classification, Spores, Fungal growth & development, Spores, Fungal isolation & purification, Carex Plant microbiology, Mitosporic Fungi classification, Phylogeny, Spores, Fungal cytology
- Abstract
Two new species of aquatic hyphomycetes in the genus Tricladium are described from streams in Alaska, USA. Both species were isolated from submerged decaying sedges. Tricladium kelleri has blackish colonies and typical tricladioid conidia formed on sympodial conidiogenous cells. Tricladium alaskense has conidia with fine elements and 0-4 lateral branches; conidia are formed on sympodial conidiogenous cells. The two species are compared to other species in the genus and related genera using morphological characters and/or rDNA sequencing data (ITS and 28S). Molecular phylogenetic analysis placed both species in the Helotiales.
- Published
- 2012
- Full Text
- View/download PDF
28. Continental-scale effects of nutrient pollution on stream ecosystem functioning.
- Author
-
Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MA, Fleituch T, Lacoursière JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB, and Chauvet E
- Subjects
- Animals, Biodiversity, Biomass, Europe, Eutrophication, Ilex, Quercus, Ecosystem, Invertebrates metabolism, Plant Leaves, Rivers microbiology, Water Pollution, Chemical
- Abstract
Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.
- Published
- 2012
- Full Text
- View/download PDF
29. Evolutionary relationships between aquatic anamorphs and teleomorphs: Tricladium and Varicosporium.
- Author
-
Campbell J, Marvanová L, and Gulis V
- Subjects
- Ascomycota cytology, Biological Evolution, DNA, Fungal genetics, DNA, Ribosomal genetics, Europe, North America, Phylogeny, Ascomycota classification, Ascomycota genetics, Water Microbiology
- Abstract
Tricladium, with 21 accepted species, is the largest genus of aquatic hyphomycetes. It encompasses species with dematiaceous as well as mucedinaceous colonies. Conidiogenesis is thalloblastic; conidiogenous cells proliferate percurrently or sympodially. Conidia have typically two alternate primary lateral branches. Fontanospora and Variocladium are segregates of Tricladium, differing by conidial branching. Varicosporium comprises nine species, one not well known. Conidiogenesis is blastic or thalloblastic, conidiogenous cells proliferate sympodially or are determinate; conidia regularly produce primary and secondary branches and often fragment into part conidia. Molecular analyses on the 28S rDNA of 86 isolates, including 16 species of Tricladium, five species of Varicosporium, two species of Fontanospora and one species of Variocladium, place these hyphomycetes within Helotiales. Tricladium is polyphyletic and placed in six clades; Varicosporium is polyphyletic and placed in three clades; Fontanospora is polyphyletic within a single clade. Variocladium is placed with poor support as a sister taxon to Varicosporium giganteum, Hymenoscyphus scutula and Torrendiella eucalypti.
- Published
- 2009
- Full Text
- View/download PDF
30. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem.
- Author
-
Benstead JP, Rosemond AD, Cross WF, Wallace JB, Eggert SL, Suberkropp K, Gulis V, Greenwood JL, and Tant CJ
- Subjects
- Plant Development, Plants metabolism, Ecosystem, Nitrogen metabolism, Phosphorus metabolism, Rivers
- Abstract
Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-ecosystem scales. We quantified organic matter (OM) budgets over three consecutive years in two detritus-based Appalachian (U.S.A.) streams. After the first year, we began enriching one stream with low-level nitrogen and phosphorus inputs. Subsequent effects of nutrients on outputs of different OM compartments were determined using randomized intervention analysis. Nutrient addition did not affect dissolved or coarse particulate OM export but had dramatic effects on fine particulate OM (FPOM) export at all discharges relative to the reference stream. After two years of enrichment, FPOM export was 340% higher in the treatment stream but had decreased by 36% in the reference stream relative to pretreatment export. Ecosystem respiration, the dominant carbon output in these systems, also increased in the treatment stream relative to the reference, but these changes were smaller in magnitude than those in FPOM export. Nutrient enrichment accelerated rates of OM processing, transformation, and export, potentially altering food-web dynamics and ecosystem stability in the long term. The results of our large-scale manipulation of a detrital ecosystem parallel those from analogous studies of soils, in which net loss of organic carbon has often been shown to result from experimental nutrient addition at the plot scale. Streams are useful model systems in which to test the effects of nutrients on ecosystem-scale detrital dynamics because they allow both the tracking of OM conversion along longitudinal continua and the integrated measurement of fluxes of transformed material through downstream sites.
- Published
- 2009
- Full Text
- View/download PDF
31. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams.
- Author
-
Gulis V, Suberkropp K, and Rosemond AD
- Subjects
- Acetates metabolism, Analysis of Variance, Carbon metabolism, Ergosterol metabolism, Fungi growth & development, Oxygen analysis, Oxygen metabolism, Rivers chemistry, Food Chain, Fungi metabolism, Plant Leaves microbiology, Rivers microbiology, Wood microbiology
- Abstract
Fungi are the dominant organisms decomposing leaf litter in streams and mediating energy transfer to other trophic levels. However, less is known about their role in decomposing submerged wood. This study provides the first estimates of fungal production on wood and compares the importance of fungi in the decomposition of submerged wood versus that of leaves at the ecosystem scale. We determined fungal biomass (ergosterol) and activity associated with randomly collected small wood (<40 mm diameter) and leaves in two southern Appalachian streams (reference and nutrient enriched) over an annual cycle. Fungal production (from rates of radiolabeled acetate incorporation into ergosterol) and microbial respiration on wood (per gram of detrital C) were about an order of magnitude lower than those on leaves. Microbial activity (per gram of C) was significantly higher in the nutrient-enriched stream. Despite a standing crop of wood two to three times higher than that of leaves in both streams, fungal production on an areal basis was lower on wood than on leaves (4.3 and 15.8 g C m(-2) year(-1) in the reference stream; 5.5 and 33.1 g C m(-2) year(-1) in the enriched stream). However, since the annual input of wood was five times lower than that of leaves, the proportion of organic matter input directly assimilated by fungi was comparable for these substrates (15.4 [wood] and 11.3% [leaves] in the reference stream; 20.0 [wood] and 20.2% [leaves] in the enriched stream). Despite a significantly lower fungal activity on wood than on leaves (per gram of detrital C), fungi can be equally important in processing both leaves and wood in streams.
- Published
- 2008
- Full Text
- View/download PDF
32. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates.
- Author
-
Ferreira V, Gulis V, and Graça MA
- Subjects
- Alnus metabolism, Alnus microbiology, Animals, Bombacaceae metabolism, Nitrogen metabolism, Phosphorus metabolism, Plant Leaves metabolism, Plant Leaves microbiology, Portugal, Quercus metabolism, Quercus microbiology, Reproduction drug effects, Ecosystem, Fungi drug effects, Invertebrates drug effects, Nitrates pharmacology, Rivers microbiology
- Abstract
We assessed the effect of whole-stream nitrate enrichment on decomposition of three substrates differing in nutrient quality (alder and oak leaves and balsa veneers) and associated fungi and invertebrates. During the 3-month nitrate enrichment of a headwater stream in central Portugal, litter was incubated in the reference site (mean NO3-N 82 microg l-1) and four enriched sites along the nitrate gradient (214-983 microg NO3-N l-1). A similar decomposition experiment was also carried out in the same sites at ambient nutrient conditions the following year (33-104 microg NO3-N l-1). Decomposition rates and sporulation of aquatic hyphomycetes associated with litter were determined in both experiments, whereas N and P content of litter, associated fungal biomass and invertebrates were followed only during the nitrate addition experiment. Nitrate enrichment stimulated decomposition of oak leaves and balsa veneers, fungal biomass accrual on alder leaves and balsa veneers and sporulation of aquatic hyphomycetes on all substrates. Nitrate concentration in stream water showed a strong asymptotic relationship (Michaelis-Menten-type saturation model) with temperature-adjusted decomposition rates and percentage initial litter mass converted into aquatic hyphomycete conidia for all substrates. Fungal communities did not differ significantly among sites but some species showed substrate preferences. Nevertheless, certain species were sensitive to nitrogen concentration in water by increasing or decreasing their sporulation rate accordingly. N and P content of litter and abundances or richness of litter-associated invertebrates were not affected by nitrate addition. It appears that microbial nitrogen demands can be met at relatively low levels of dissolved nitrate, suggesting that even minor increases in nitrogen in streams due to, e.g., anthropogenic eutrophication may lead to significant shifts in microbial dynamics and ecosystem functioning.
- Published
- 2006
- Full Text
- View/download PDF
33. Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport.
- Author
-
Gulis V and Suberkropp K
- Abstract
The concentrations and relative abundances of aquatic hyphomycete conidia in water were followed during a three-year study in two headwater streams at Coweeta Hydrologic Laboratory, North Carolina, using the membrane-filtration technique. After a one-year pretreatment period, one of the streams was enriched continuously with inorganic nutrients (N+P) for two years while the other stream served as the reference. This ecosystem-level nutrient manipulation resulted in concentrations of aquatic hyphomycete conidia in the water of the treated stream that were 4.5-6.9 times higher than the concentrations observed during the pretreatment period and in the reference stream. Nutrient enrichment led to an increase in the number of fungal species detected on each sampling date. Changes in dominance patterns and relative abundances of individual species also were detected after treatment. Nutrient addition stimulates the reproductive activity of aquatic hyphomycetes, their colonization success and fungal-mediated leaf-litter decomposition. Such changes in the activity of the fungal community might affect higher trophic levels in lotic ecosystems.
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.