1. Woody Plant Structural Diversity Changes across an Inverse Elevation-Dependent Warming Gradient in a Subtropical Mountain Forest
- Author
-
Yuqiao Su, Xianhua Gan, Weiqiang Zhang, Guozhang Wu, and Fangfang Huang
- Subjects
climate change ,forest community ,structural diversity ,size diversity ,indicator species ,ordination ,Plant ecology ,QK900-989 - Abstract
Examining the changes in woody plant structural diversity along an inverse elevation-dependent warming gradient will enhance our mechanistic understanding of how warming affects forest communities because such an inverse elevational gradient reflects a warming trend in a mountain landscape. Here, we investigated the effects of warming on the patterns of species composition and structural diversity in a subtropical broadleaved forest. We calculated a warming index based on elevational difference and modeled the aspect-related potential incident radiation (PDIR) using nonparametric multiplicative regression. We tested the changes in structural diversity of three communities for significant differences along the warming gradient. We associated both the warming index and PDIR with the principal components and tested their relationships for significant differences. We found that trees of different sizes varied in their response to the warming gradient. While a significant decreasing trend was exhibited in both species diversity and size diversity for trees of all sizes and for adult trees along the warming gradient, no significant changes in seedlings were found, and the average basal area value was the highest for the warmest community. Our findings demonstrated that a short-range elevational gradient was adequate to separate the communities in species composition and structural diversity. Patterns of structural diversity along the warming gradient varied in size classes. The community at a higher elevation had more indicator species that were unique in separating the community from others. Principal component analysis showed that the first two principal components were negatively correlated with the warming index, indicating that warming destabilized species composition and community structure. Our study suggests that warming is the major driver of changes in structural diversity and species composition of woody plant communities in a subtropical broadleaved forest and that warming may promote tree productivity at the community level but reduce structural diversity at the quadrat level.
- Published
- 2024
- Full Text
- View/download PDF