18 results on '"Höcker, Julian"'
Search Results
2. Weak Dispersion of Exciton Landé Factor with Band Gap Energy in Lead Halide Perovskites: Approximate Compensation of the Electron and Hole Dependences
- Author
-
Kopteva, Natalia E., primary, Yakovlev, Dmitri R., additional, Kirstein, Erik, additional, Zhukov, Evgeny A., additional, Kudlacik, Dennis, additional, Kalitukha, Ina V., additional, Sapega, Victor F., additional, Hordiichuk, Oleh, additional, Dirin, Dmitry N., additional, Kovalenko, Maksym V., additional, Baumann, Andreas, additional, Höcker, Julian, additional, Dyakonov, Vladimir, additional, Crooker, Scott A., additional, and Bayer, Manfred, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Low Temperature Optical Properties of Novel Lead‐Free Cs 2 NaFeCl 6 Perovskite Single Crystals
- Author
-
Armer, Melina, primary, Dörflinger, Patrick, additional, Weis, Andreas, additional, Büchner, Carsten, additional, Gottscholl, Andreas, additional, Höcker, Julian, additional, Frank, Kilian, additional, Nusser, Lukas, additional, Sirtl, Maximilian T., additional, Nickel, Bert, additional, Bein, Thomas, additional, and Dyakonov, Vladimir, additional
- Published
- 2023
- Full Text
- View/download PDF
4. The Lande factors of electrons and holes in lead halide perovskites: universal dependence on the band gap
- Author
-
Kirstein, Erik, Yakovlev, Dmitri R., Glazov, Mikhail M., Zhukov, Evgeny A., Kudlacik, Dennis, Kalitukha, Ina V., Sapega, Victor F., Dimitriev, Grigorii S., Semina, Marina A., Nestoklon, Mikhail O., Ivchenko, Eougenious L., Kopteva, Nataliia E., Dirin, Dmitry N., Nazarenko, Olga, Kovalenko, Maksym V., Baumann, Andreas, Höcker, Julian, Dyakonov, Vladimir, and Bayer, Manfred
- Abstract
The Lande or g-factors of charge carriers are decisive for the spin-dependent phenomena in solids and provide also information about the underlying electronic band structure. We present a comprehensive set of experimental data for values and anisotropies of the electron and hole Lande factors in hybrid organic-inorganic (MAPbI(3), MAPb(Br0.5Cl0.5)(3), MAPb(Br0.05Cl0.95)(3), FAPbBr(3), FA(0.9)Cs(0.1)PbI(2.8)Br(0.2), MA=methylammonium and FA=formamidinium) and all-inorganic (CsPbBr3) lead halide perovskites, determined by pump-probe Kerr rotation and spin-flip Raman scattering in magnetic fields up to 10 T at cryogenic temperatures. Further, we use first-principles density functional theory (DFT) calculations in combination with tight-binding and k center dot p approaches to calculate microscopically the Lande factors. The results demonstrate their universal dependence on the band gap energy across the different perovskite material classes, which can be summarized in a universal semi-phenomenological expression, in good agreement with experiment., Nature Communications, 13, ISSN:2041-1723
- Published
- 2022
5. Spin Dynamics of Electrons and Holes Interacting with Nuclei in MAPbI3 Perovskite Single Crystals
- Author
-
Kirstein, Erik, primary, Yakovlev, Dmitri R., additional, Zhukov, Evgeny A., additional, Höcker, Julian, additional, Dyakonov, Vladimir, additional, and Bayer, Manfred, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Qualitativ-hochwertige bleiorganische Trihalogenid-Perowskit-Kristalle: Wachstum, Charakterisierung und photovoltaische Anwendungen
- Author
-
Höcker, Julian Harald
- Subjects
Perowskit ,Kristall ,ddc:530 ,53 Physik - Abstract
Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation – double halide formamidinium lead triiodide – methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide – methylammonium lead tribromide – caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310]., Mit der Antisolvent-Kristallisation (AVC) und der inversen Temperaturkristallisation (ITC) konnten alle aus der Dünnschichtanwendungen bekannten Perowskite auf Basis von Methylammonium als mm-große Kristalle gezüchtet werden. Detaillierte qualitative und quantitative Analysen ergaben die gleichen Stöchiometrie der Kristalle wie die ihrer entsprechenden Vorläuferlösung. Wie bereits erwähnt, war es möglich Kristalle mit einer Vielzahl unterschiedlicher Farben und dementsprechend variierenden Bandlücken zu erhalten, die durch selektive Änderung des Halogenverhältnisses als Photodetektoren im UV-VIS/NIR Bereich dienen könnten. Die Variation der Halogene führt jedoch nicht nur zu einer Veränderung der optischen Eigenschaften, sondern auch zu einer Erhöhung der Gitterkonstante mit zunehmendem Brom/Chlor- bzw. Iod/Brom-Verhältnis. Darüber hinaus ändert sich die Gitterstruktur von einem einfachen kubischen Gitter für MAPbCl3 und MAPbBr3 zu einem tetragonal-raumzentrierten Gitter für MAPbI3. Die Zahl der Verfahren zur Züchtung von OLTP-Einkristallen nimmt ständig zu. Die oben genannten Kristallisationsverfahren können kombiniert werden, um qualitativ hochwertige Perowskitkristalle zu züchten. Ein mechanischer Ansatz zur Züchtung komplexer und großformatiger Kristalle ohne Verwendung von Impfkristallen wurde mit der Wiederauffüllbaren-Kristallisationsmethode (RFCM) realisiert, die auf der inversen Löslichkeit von ITC beruht. Durch das Einleiten einer frischen Vorläuferlösung und die gleichzeitige Entfernung der verbrauchten Lösung war es möglich in-situ große Kristalle mit hervorragender struktureller Qualität zu züchten, wie die Röntgenbeugungsmessung (XRD) und die Rocking-Kurve eines FAMA-Einkristalls bestätigen. Die Methode ermöglicht nicht nur die Züchtung komplexer großer FAMA- und CsFAMA-Kristalle, sondern ist auch der etablierten Impfkristalltechnik überlegen, wie die radiographischen Messungen der Kristalloberfläche und des Kristallinneren zeigten. Um die Herausforderung der elektrischen Kontaktierung zu meistern, wurden Leiterplatten entwickelt, die die Kristalle sanft kontaktieren, um so elektronische Messungen zu ermöglichen. Ein wichtiger Beitrag zum Verständnis der inversen Löslichkeit wurde durch die Entwicklung eines neuen Kristallisationsverfahrens geleistet, das als reaktive inverse Temperaturkristallisation (RITC) bezeichnet wird. Dabei handelt es sich um eine Kombination aus reaktiver und inverser Temperaturkristallisation. Durch Zugabe einer geringen Menge eines primären Alkohols zur Perowskit-Vorläuferlösung konnte die inverse Löslichkeit des Perowskits drastisch reduziert werden. Dies konnte durch die Polaritätswerte der Alkohole bestimmt werden, wobei die Löslichkeit der Lösung mit abnehmender Polarität sank. Durch die geringere Löslichkeit konnten die Kristalle bei viel niedrigeren Temperaturen als mit der ITC-Methode gewachsen werden. Darüber hinaus eignet sich die Methode für die Züchtung aller bekannten bleiorganischen Trihalogenid-Perowskite und ermöglichte die Züchtung von qualitativ hochwertigen Einkristallen, was durch Röntgenmessungen bestätigt wurde. Um Perowskit-Kristalle für photovoltaische Anwendungen zu nutzen, müssen sie wie die entsprechenden polykristallinen Dünnschichten in ihrer Dicke reduziert werden, da mm-dicke Kristalle für diesen Zweck weniger geeignet sind. Bevor jedoch µm-dicke Kristalle gezüchtet wurden, wurden polykristalline MAPbI3-Dünnschichten mit einigen 100 nm auf dem Lochleiter Poly[N,N’-bis(4-butilphenyl) - N,N’-bis(phenyl)-benzidine] (polyTPD) prozessiert, um im Folgenden effiziente Solarzellen herzustellen. Die erzielten Ergebnisse lieferten nicht nur einen weiteren wichtigen Beitrag zur Perowskit-Dünnschichtphotovoltaik, sondern die gewonnenen Erkenntnisse ermöglichten im Folgenden auch ein besseres Verständnis für die Herstellung von halbleitenden Bauteilen auf Basis von Kristallwafern und Kristall-„Filmen“. Insbesondere die hydrophobe Eigenschaft von Poly(triaryl)aminen erleichterte die Handhabung von MAPbI3-Wafern. Um die Waferdicke zu kontrollieren und Kristalle mit einer hohen Strukturqualität zu züchten, wurde ein selbst gebauter Aufbau verwendet. Ein Kristallwafer kann leicht auf einem mit Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA)-beschichteten Siliziumwafer gezüchtet werden, wobei die Wachstumshöhe des Kristalls durch Abstandshalter begrenzt ist. Die gewachsenen MAPbI3-Wafer mit einer Dicke von wenigen hundert µm erwiesen sich als sehr vielversprechend für die Herstellung eines Photodetektor-Prototyps, was durch die Auswertung des Photostroms und der Photoresponsivität in Abhängigkeit von der Zeit bestätigt wurde. Schließlich gelang es die Dicke der Perowskitkristalle MAPbBr3 und MAPbI3 mit Hilfe der raumbegrenzten RITC-Methode auf nur 10 bis 15 µm zu reduzieren. Wie die Wafer, wiesen auch die Kristall-„Filme“ eine hohe Strukturqualität auf und wurden für die Fabrikation einer MAPbI3-basierten Solarzelle verwendet. Die Auswertung der charakteristischen Solarzellenparameter der MAPbI3-Kristall-„Film“-Solarzelle lieferte erste vielversprechende Ergebnisse und zeigt das Potenzial der Verwendung von Kristallen für photovoltaische Zellen, auch wenn die Herstellung von dünnen Perowskit-Kristall-Solarzellen heute noch sehr schwierig ist.
- Published
- 2022
- Full Text
- View/download PDF
7. Photon Echo Polarimetry of Excitons and Biexcitons in a CH3NH3PbI3 Perovskite Single Crystal
- Author
-
Trifonov, Artur V., primary, Grisard, Stefan, additional, Kosarev, Alexander N., additional, Akimov, Ilya A., additional, Yakovlev, Dmitri R., additional, Höcker, Julian, additional, Dyakonov, Vladimir, additional, and Bayer, Manfred, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices
- Author
-
Schmidt-Mende, Lukas, primary, Dyakonov, Vladimir, additional, Olthof, Selina, additional, Ünlü, Feray, additional, Lê, Khan Moritz Trong, additional, Mathur, Sanjay, additional, Karabanov, Andrei D., additional, Lupascu, Doru C., additional, Herz, Laura M., additional, Hinderhofer, Alexander, additional, Schreiber, Frank, additional, Chernikov, Alexey, additional, Egger, David A., additional, Shargaieva, Oleksandra, additional, Cocchi, Caterina, additional, Unger, Eva, additional, Saliba, Michael, additional, Byranvand, Mahdi Malekshahi, additional, Kroll, Martin, additional, Nehm, Frederik, additional, Leo, Karl, additional, Redinger, Alex, additional, Höcker, Julian, additional, Kirchartz, Thomas, additional, Warby, Jonathan, additional, Gutierrez-Partida, Emilio, additional, Neher, Dieter, additional, Stolterfoht, Martin, additional, Würfel, Uli, additional, Unmüssig, Moritz, additional, Herterich, Jan, additional, Baretzky, Clemens, additional, Mohanraj, John, additional, Thelakkat, Mukundan, additional, Maheu, Clément, additional, Jaegermann, Wolfram, additional, Mayer, Thomas, additional, Rieger, Janek, additional, Fauster, Thomas, additional, Niesner, Daniel, additional, Yang, Fengjiu, additional, Albrecht, Steve, additional, Riedl, Thomas, additional, Fakharuddin, Azhar, additional, Vasilopoulou, Maria, additional, Vaynzof, Yana, additional, Moia, Davide, additional, Maier, Joachim, additional, Franckevičius, Marius, additional, Gulbinas, Vidmantas, additional, Kerner, Ross A., additional, Zhao, Lianfeng, additional, Rand, Barry P., additional, Glück, Nadja, additional, Bein, Thomas, additional, Matteocci, Fabio, additional, Castriotta, Luigi Angelo, additional, Di Carlo, Aldo, additional, Scheffler, Matthias, additional, and Draxl, Claudia, additional
- Published
- 2021
- Full Text
- View/download PDF
9. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices
- Author
-
Schmidt-Mende, Lukas, Dyakonov, Vladimir, Olthof, Selina, Ünlü, Feray, Trong Lê, Khan Moritz, Mathur, Sanjay, Karabanov, Andrei D., Lupascu, Doru C., Herz, Laura M., Hinderhofer, Alexander, Schreiber, Frank, Chernikov, Alexey, Egger, David A., Shargaieva, Oleksandra, Cocchi, Caterina, Unger, Eva, Saliba, Michael, Byranvand, Mahdi Malekshahi, Kroll, Martin, Nehm, Frederik, Leo, Karl, Redinger, Alex, Höcker, Julian, Kirchartz, Thomas, Warby, Jonathan, Gutierrez-Partida, Emilio, Neher, Dieter, Stolterfoht, Martin, Würfel, Uli, Unmüssig, Moritz, Herterich, Jan, Baretzky, Clemens, Mohanraj, John, Thelakkat, Mukundan, Maheu, Clément, Jaegermann, Wolfram, Mayer, Thomas, Rieger, Janek, Fauster, Thomas, Niesner, Daniel, Yang, Fengjiu, Albrecht, Steve, Riedl, Thomas, Fakharuddin, Azhar, Vasilopoulou, Maria, Vaynzof, Yana, Moia, Davide, Maier, Joachim, Franckevičius, Marius, Gulbinas, Vidmantas, Kerner, Ross A., Zhao, Lianfeng, Rand, Barry P., Glück, Nadja, Bein, Thomas, Matteocci, Fabio, Castriotta, Luigi Angelo, Di Carlo, Aldo, Scheffler, Matthias, Draxl, Claudia, Schmidt-Mende, Lukas, Dyakonov, Vladimir, Olthof, Selina, Ünlü, Feray, Trong Lê, Khan Moritz, Mathur, Sanjay, Karabanov, Andrei D., Lupascu, Doru C., Herz, Laura M., Hinderhofer, Alexander, Schreiber, Frank, Chernikov, Alexey, Egger, David A., Shargaieva, Oleksandra, Cocchi, Caterina, Unger, Eva, Saliba, Michael, Byranvand, Mahdi Malekshahi, Kroll, Martin, Nehm, Frederik, Leo, Karl, Redinger, Alex, Höcker, Julian, Kirchartz, Thomas, Warby, Jonathan, Gutierrez-Partida, Emilio, Neher, Dieter, Stolterfoht, Martin, Würfel, Uli, Unmüssig, Moritz, Herterich, Jan, Baretzky, Clemens, Mohanraj, John, Thelakkat, Mukundan, Maheu, Clément, Jaegermann, Wolfram, Mayer, Thomas, Rieger, Janek, Fauster, Thomas, Niesner, Daniel, Yang, Fengjiu, Albrecht, Steve, Riedl, Thomas, Fakharuddin, Azhar, Vasilopoulou, Maria, Vaynzof, Yana, Moia, Davide, Maier, Joachim, Franckevičius, Marius, Gulbinas, Vidmantas, Kerner, Ross A., Zhao, Lianfeng, Rand, Barry P., Glück, Nadja, Bein, Thomas, Matteocci, Fabio, Castriotta, Luigi Angelo, Di Carlo, Aldo, Scheffler, Matthias, and Draxl, Claudia
- Abstract
Metal halide perovskites are the first solution processed semiconductors that can compete in their functionality with conventional semiconductors, such as silicon. Over the past several years, perovskite semiconductors have reported breakthroughs in various optoelectronic devices, such as solar cells, photodetectors, light emitting and memory devices, and so on. Until now, perovskite semiconductors face challenges regarding their stability, reproducibility, and toxicity. In this Roadmap, we combine the expertise of chemistry, physics, and device engineering from leading experts in the perovskite research community to focus on the fundamental material properties, the fabrication methods, characterization and photophysical properties, perovskite devices, and current challenges in this field. We develop a comprehensive overview of the current state-of-the-art and offer readers an informed perspective of where this field is heading and what challenges we have to overcome to get to successful commercialization.
- Published
- 2021
10. A temperature-reduced method for the rapid growth of hybrid perovskite single crystals with primary alcohols
- Author
-
Höcker, Julian, primary, Brust, Felix, additional, Armer, Melina, additional, and Dyakonov, Vladimir, additional
- Published
- 2021
- Full Text
- View/download PDF
11. Influence of crystallisation on the structural and optical properties of lead-free Cs2AgBiBr6 perovskite crystals
- Author
-
Armer, Melina, primary, Höcker, Julian, additional, Büchner, Carsten, additional, Häfele, Sophie, additional, Dörflinger, Patrick, additional, Sirtl, Maximilian T., additional, Tvingstedt, Kristofer, additional, Bein, Thomas, additional, and Dyakonov, Vladimir, additional
- Published
- 2021
- Full Text
- View/download PDF
12. Spin Dynamics of Electrons and Holes Interacting with Nuclei in MAPbI3 Perovskite Single Crystals.
- Author
-
Kirstein, Erik, Yakovlev, Dmitri R., Zhukov, Evgeny A., Höcker, Julian, Dyakonov, Vladimir, and Bayer, Manfred
- Published
- 2022
- Full Text
- View/download PDF
13. Impact of Pressure and Temperature on the Compaction Dynamics and Layer Properties of Powder-Pressed Methylammonium Lead Halide Thick Films
- Author
-
Witt, Christina, primary, Schmid, Andreas, additional, Leupold, Nico, additional, Schultz, Maximilian, additional, Höcker, Julian, additional, Baumann, Andreas, additional, Moos, Ralf, additional, and Panzer, Fabian, additional
- Published
- 2020
- Full Text
- View/download PDF
14. Seed crystal free growth of high-quality double cation – double halide perovskite single crystals for optoelectronic applications
- Author
-
Höcker, Julian, primary, Ozcan, Mehmet, additional, Hammer, Sebastian, additional, Fischer, Mathias, additional, Bichler, Benedikt, additional, Armer, Melina, additional, Rieder, Philipp, additional, Drach, Volker, additional, Pflaum, Jens, additional, Nickel, Bert, additional, and Dyakonov, Vladimir, additional
- Published
- 2020
- Full Text
- View/download PDF
15. Influence of crystallisation on the structural and optical properties of lead-free Cs2AgBiBr6 perovskite crystals.
- Author
-
Armer, Melina, Höcker, Julian, Büchner, Carsten, Häfele, Sophie, Dörflinger, Patrick, Sirtl, Maximilian T., Tvingstedt, Kristofer, Bein, Thomas, and Dyakonov, Vladimir
- Subjects
- *
OPTICAL properties , *CRYSTAL optics , *PEROVSKITE , *CRYSTALLIZATION , *CRYSTALS - Abstract
By slowly evaporating organic solvents, we succeeded in growing lead-free double perovskite Cs2AgBiBr6 crystals. Solubility curves prove the advantage of this growth technique and allow comparison with the controlled cooling method. The growth temperature significantly affects the optical properties of the crystals, which enables us to better understand the material structure–property relationships. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
16. Efficient Solution Processed CH3NH3PbI3 Perovskite Solar Cells with PolyTPD Hole Transport Layer
- Author
-
Höcker, Julian, primary, Kiermasch, David, additional, Rieder, Philipp, additional, Tvingstedt, Kristofer, additional, Baumann, Andreas, additional, and Dyakonov, Vladimir, additional
- Published
- 2019
- Full Text
- View/download PDF
17. Efficient Solution Processed CH3NH3PbI3 Perovskite Solar Cells with PolyTPD Hole Transport Layer.
- Author
-
Höcker, Julian, Kiermasch, David, Rieder, Philipp, Tvingstedt, Kristofer, Baumann, Andreas, and Dyakonov, Vladimir
- Subjects
- *
PEROVSKITE , *SILICON solar cells , *SOLAR cells , *FRONTIER orbitals , *VALENCE bands - Abstract
The organic and hydrophobic polymer poly[N, N′-bis(4-butilphenyl)-N, N′-bis(phenyl)-benzidine] (polyTPD) represents a promising hole transport layer (HTL) for perovskite photovoltaics due to its suitable energy levels, whereby its highest occupied molecular orbital level matches well with the valence band level of methylammonium lead triiodide (CH3NH3PbI3, MAPbI3) perovskite. However, processing a perovskite layer from the solution on the surface of this organic material, is found to be difficult due to the surface properties of the latter. In this study, we evaluate efficient p-i-n type MAPbI3 perovskite solar cells employing differently processed polyTPD layers. We found that the surface coverage of the MAPbI3 perovskite layer strongly depends on the preparation method of the underlying polyTPD layer. By varying the solvents for the polyTPD precursor, its concentration, and by applying an optimised two-step perovskite deposition technique we increased both the surface coverage of the perovskite layer as well as the power conversion efficiency (PCE) of the corresponding solar cell devices. Our simple solvent-engineering approach demonstrates that no further interface modifications are needed for a successful preparation of efficient planar photovoltaic devices with PCEs in the range of 15 %–16 %. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
18. Efficient Solution Processed CH3NH3PbI3Perovskite Solar Cells with PolyTPD Hole Transport Layer
- Author
-
Höcker, Julian, Kiermasch, David, Rieder, Philipp, Tvingstedt, Kristofer, Baumann, Andreas, and Dyakonov, Vladimir
- Abstract
The organic and hydrophobic polymer poly[N, N′-bis(4-butilphenyl)-N, N′-bis(phenyl)-benzidine] (polyTPD) represents a promising hole transport layer (HTL) for perovskite photovoltaics due to its suitable energy levels, whereby its highest occupied molecular orbital level matches well with the valence band level of methylammonium lead triiodide (CH3NH3PbI3, MAPbI3) perovskite. However, processing a perovskite layer from the solution on the surface of this organic material, is found to be difficult due to the surface properties of the latter. In this study, we evaluate efficient p-i-n type MAPbI3perovskite solar cells employing differently processed polyTPD layers. We found that the surface coverage of the MAPbI3perovskite layer strongly depends on the preparation method of the underlying polyTPD layer. By varying the solvents for the polyTPD precursor, its concentration, and by applying an optimised two-step perovskite deposition technique we increased both the surface coverage of the perovskite layer as well as the power conversion efficiency (PCE) of the corresponding solar cell devices. Our simple solvent-engineering approach demonstrates that no further interface modifications are needed for a successful preparation of efficient planar photovoltaic devices with PCEs in the range of 15 %–16 %.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.